Effect of Polymer Adjuvant Type and Concentration on Atomization Characteristics of Nozzle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nozzle and Solution Selection
2.2. Basic Theory
2.3. Measurement Platform Construction
2.4. Experimental Design and Methodology
3. Results
3.1. Analysis of Physical Properties of Polymer Adjuvants
3.2. Spatial Distribution of Droplet Size
3.2.1. Characterization of Droplet Size Distribution in Vertical Direction
3.2.2. Characterization of Droplet Size Distribution in Horizontal Direction
3.2.3. Spray Pattern Droplet Size Spatial Distribution Uniformity Analysis
3.3. Spatial Distribution of Droplet Velocity
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, P.; Zhang, R.; Yang, J.; Chen, L. Development Status and Key Technologies of Plant Protection UAVs in China: A Review. Drones 2022, 6, 354. [Google Scholar] [CrossRef]
- Kang, F.; Wu, X.; Wang, Y.; Zheng, Y.; Li, S.; Chen, C. Research progress and prospect of pesticide droplet deposition characteristics. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2021, 37, 1–14. [Google Scholar]
- Tuck, C.R.; Ellis, M.C.B.; Miller, P.C.H. Techniques for measurement of droplet size and velocity distributions in agricultural sprays. Crop Prot. 1997, 16, 619–628. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, J.; Zhou, H.; Dorr, G.J. Droplet deposition distribution and off-target drift during pesticide spraying operation. Trans. Chin. Soc. Agric. Mach. 2017, 48, 117–122. [Google Scholar]
- Xue, S.; Han, J.; Xi, X.; Lan, Z.; Wen, R.; Ma, X. Coordination of distinctive pesticide adjuvants and atomization nozzles on droplet spectrum evolution for spatial drift reduction. Chin. J. Chem. Eng. 2024, 66, 250–262. [Google Scholar] [CrossRef]
- Samples, C.A.; Butts, T.R.; Vieira, B.C.; Irby, J.T.; Reynolds, D.B.; Catchot, A.; Kruger, G.R.; Dodds, D.M. Effect of Deposition Aids Tank-Mixed with Herbicides on Cotton and Soybean Canopy Deposition and Spray Droplet Parameters. Agronomy 2021, 11, 278. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, M.; Zhou, Q.; Jiao, Y.; Sun, H.; Cheng, X.; Xue, X. Study on Effects of Different Concentration Adjuvants on the Properties of Prochloraz Emulsion in Water Solution Droplets and Deposition. Agronomy 2023, 13, 2635. [Google Scholar] [CrossRef]
- Dorr, G.; Hanan, J.; Adkins, S.; Hewitt, A.; O'Donnell, C.; Noller, B. Spray deposition on plant surfaces: A modelling approach. Funct. Plant Biol. 2008, 35, 988–996. [Google Scholar] [CrossRef]
- Griesang, F.; Spadoni, A.B.D.; Ferreira, P.H.U.; Ferreira, M.D.C. Effect of working pressure and spacing of nozzles on the quality of spraying distribution. Crop Prot. 2022, 151, 105818. [Google Scholar] [CrossRef]
- Gu, C.; Zou, W.; Wang, X.; Chen, L.; Zhai, C. Wind loss model for the thick canopies of orchard trees based on accurate variable spraying. Front. Plant Sci. 2022, 13, 1010540. [Google Scholar] [CrossRef]
- Li, L.; Hu, Z.; Liu, Q.; Yi, T.; Han, P.; Zhang, R.; Pan, L. Effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard. Front. Plant Sci. 2022, 13, 981494. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Hewitt, A.J.; Chen, L.; Li, L.; Tang, Q. Challenges and opportunities of unmanned aerial vehicles as a new tool for crop pest control. Pest. Manag. Sci. 2023, 79, 4123–4131. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhang, Z.; Xu, G.; Chen, L.; Hewitt, A.J. Effect of spray adjuvant types and concentration on nozzle atomization. Trans. Chin. Soc. Agric. Eng. 2018, 34, 36–43. [Google Scholar]
- Li, X.; Chen, L.; Tang, Q.; Li, L.; Chen, W.; Hu, P.; Zhang, R. Characteristics on the Spatial Distribution of Droplet Size and Velocity with Difference Adjuvant in Nozzle Spraying. Agronomy 2022, 12, 1960. [Google Scholar] [CrossRef]
- Li, X.; Zhang, R.; Tang, Q.; Li, L.; Ding, C.; Chen, L. Experimental study on the spatial distribution of spray nozzle atomization droplet size and velocity. J. Agric. Mech. Res. 2024, 46, 159–167. [Google Scholar]
- Zhang, J.; Song, J.; He, X.; Zeng, A.; Liu, Y. Droplets movement characteristics in atomisation process of flat fan nozzle. Trans. Chin. Soc. Agric. Mach. 2011, 42, 66–69, 75. [Google Scholar]
- Li, S.; Chen, C.; Wang, Y.; Kang, F.; Li, W. Study on the Atomization Characteristics of Flat Fan Nozzles for Pesticide Application at Low Pressures. Agriculture 2021, 11, 309. [Google Scholar] [CrossRef]
- Chen, C.; Li, S.; Wu, X.; Wang, Y.; Kang, F. Analysis of droplet size uniformity and selection of spray parameters based on the biological optimum particle size theory. Environ. Res. 2022, 204, 112076. [Google Scholar] [CrossRef]
- Vallet, A.; Tinet, C. Characteristics of droplets from single and twin jet air induction nozzles: A preliminary investigation. Crop Prot. 2013, 48, 63–68. [Google Scholar] [CrossRef]
- Thompson, J.C.; Rothstein, J.P. The atomization of viscoelastic fluids in flat-fan and hollow-cone spray nozzles. J. Non-Newton. Fluid Mech. 2007, 147, 11–22. [Google Scholar] [CrossRef]
- Roudini, M.; Wozniak, G. Experimental investigation of spray characteristics of pre-filming air-blast atomizers II—Influence of liquid properties. J. Appl. Fluid Mech. 2019, 13, 679–691. [Google Scholar] [CrossRef]
- Tang, Q.; Zhang, R.; Chen, L.; Deng, W.; Xu, M.; Xu, G.; Li, L.; Hewitt, A. Numerical simulation of the downwash flow field and droplet movement from an unmanned helicopter for crop spraying. Comput. Electron. Agric. 2020, 174, 105468. [Google Scholar] [CrossRef]
- Zheng, Z.; Xue, X.; Song, S.; Li, Z.; Dai, Q.; Li, K.; Xu, X. Investigation of nozzle spray pressure and droplet particle size and velocity distribution based on hollow conical fog single nozzle. J. Agric. Mech. Res. 2021, 43, 110–117. [Google Scholar]
- Ruobing, W.; Gary, D.; Hewitt, A.; Cooper-White, J. Impacts of polymer/surfactant interactions on spray drift. Colloids Surf. A Physicochem. Eng. Asp. 2016, 500, 88–97. [Google Scholar]
- Li, C.; He, R.; He, Z.; Kumar, S.S.; Fredericks, S.A.; Hogan, C.J.; Hong, J. Spatially-resolved characterization of oil-in-water emulsion sprays. Int. J. Multiph. Flow 2021, 145, 103813. [Google Scholar] [CrossRef]
- Cao, J. Liquid Atomization; Peking University Press: Beijing, China, 2013. [Google Scholar]
- Sun, S.; Tang, Y.; Miao, A.; Hou, C.; Zhuang, J.; Lin, T.; Luo, S. Research on atomization performance of fan and hollow cone nozzle of plant protection drone. Jiangsu Agric. Sci. 2019, 47, 246–250. [Google Scholar]
- Smitter, L.M.; Guédez, J.F.; Müller, A.J.; Sáez, A.E. Interactions between Poly (ethylene Oxide) and Sodium Dodecyl Sulfate in Elongational Flows. J. Colloid Interface Sci. 2001, 236, 343–353. [Google Scholar] [CrossRef]
- Tsuji, Y.; Morikawa, Y. LDV measurements of an air-solid two-phase flow in a horizontal pipe. J. Fluid Mech. 1982, 120, 385–409. [Google Scholar] [CrossRef]
- Erik, M.; Justin, C.W. The effects of chain conformation in the microfluidic entry flow of polymer–surfactant systems. J. Non-Newton. Fluid Mech. 2009, 160, 22–30. [Google Scholar]
- Iaroslav, M.; Elizabeth, R.A.; Steven, A.F.; Christine, M.C.; Cari, S.D. A review of liquid sheet breakup: Perspectives from agricultural sprays. J. Aerosol Sci. 2021, 157, 105805. [Google Scholar]
- Antoine, G.; Rick, S.; Daniel, B. What determines the drop size in sprays of polymer solutions? J. Non-Newton. Fluid Mech. 2022, 305, 104813. [Google Scholar]
- Cabane, D.R.B. Organization of surfactant micelles adsorbed on a polymer molecule in water: A neutron scatting study. J. Phys. Fr. 1982, 43, 1529–1542. [Google Scholar] [CrossRef]
- Nikas, Y.J.; Blankschtein, D. Complexation of nonionic polymers and surfactants in dilute aqueous solutions. Langmuir 1994, 10, 3512–3528. [Google Scholar] [CrossRef]
- Goddard, E.D. Polymer-surfactant interaction Part I. uncharged water-soluble polymers and charged surfactants. Colloids Surf. 1986, 19, 255–300. [Google Scholar] [CrossRef]
- ASAE Standards S572; Spray Nozzle Classification by Droplet Spectra. ASAE: St. Joseph, MI, USA, 2004.
Type of Adjuvant | Name | Critical Micelle Concentration (CMC) |
---|---|---|
Polymer | PEO | 0.075 wt% |
Nonionic surfactants | Tween20 | 0.06 mM |
Anionic surfactants | SDS | 7–10 mM |
Droplet Velocity/m·s−1 | Type of Adjuvant | A | A1 | A2 | R2 |
---|---|---|---|---|---|
v | Water | 2.37 | −2.85 | 0.40 | 0.93 |
PEO | 1.66 | −0.85 | −1.10 | 0.99 | |
0.5CMC PEO/Tween20 | 1.94 | −3.09 | 1.55 | 0.99 | |
1CMC PEO/Tween20 | 2.09 | −3.48 | 2.24 | 0.99 | |
2CMC PEO/Tween20 | 2.14 | −3.23 | 1.65 | 0.99 | |
4CMC PEO/Tween20 | 3.12 | −5.30 | 4.05 | 0.99 | |
0.5CMC PEO/SDS | 2.77 | −4.14 | 2.49 | 0.99 | |
1CMC PEO/SDS | 2.34 | −2.06 | 0.06 | 0.99 | |
2CMC PEO/SDS | 2.40 | −2.76 | 1.22 | 0.99 | |
4CMC PEO/SDS | 2.76 | −4.26 | 2.80 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, P.; Zhang, R.; Chen, L.; Li, L.; Tang, Q.; Yan, W.; Yang, J. Effect of Polymer Adjuvant Type and Concentration on Atomization Characteristics of Nozzle. Agriculture 2024, 14, 404. https://doi.org/10.3390/agriculture14030404
Hu P, Zhang R, Chen L, Li L, Tang Q, Yan W, Yang J. Effect of Polymer Adjuvant Type and Concentration on Atomization Characteristics of Nozzle. Agriculture. 2024; 14(3):404. https://doi.org/10.3390/agriculture14030404
Chicago/Turabian StyleHu, Peng, Ruirui Zhang, Liping Chen, Longlong Li, Qing Tang, Wenlong Yan, and Jiajun Yang. 2024. "Effect of Polymer Adjuvant Type and Concentration on Atomization Characteristics of Nozzle" Agriculture 14, no. 3: 404. https://doi.org/10.3390/agriculture14030404
APA StyleHu, P., Zhang, R., Chen, L., Li, L., Tang, Q., Yan, W., & Yang, J. (2024). Effect of Polymer Adjuvant Type and Concentration on Atomization Characteristics of Nozzle. Agriculture, 14(3), 404. https://doi.org/10.3390/agriculture14030404