Farmers’ Perceptions of Maize Production Constraints and the Effects of Push–Pull Technology on Soil Fertility, Pest Infestation, and Maize Yield in Southwest Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Sites
2.2. Data Sources
2.2.1. Survey on Farmers’ Perceptions
2.2.2. On-Farm Demonstrations of PPT
2.2.3. Data Collection
2.3. Data Analysis
3. Results
3.1. Farmers’ Perceptions of Maize Production Constraints
3.2. Farmers’ Perceptions of the Effects of PPT
3.3. Effects of PPT on Maize Yield, Pest Infestation, and Soil Fertility
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ethiopian Statistical Service. Agricultural Sample Survey (2021/22): Report on Area and Production of Major Crops; 593 Statistical Bulletin 59: Addis Ababa, Ethiopia, 2022. [Google Scholar]
- FAOSTAT. Food and Agriculture Organization of the United Nations (FAO). FAOSTAT Database. 2021. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 20 July 2022).
- Geta, E.; Bogale, A.; Kassa, B.; Elias, E. Productivity and efficiency analysis of smallholder maize producers in Southern Ethiopia. J. Hum. Ecol. 2013, 41, 67–75. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I.; Henao, A.; Lana, M.A. Agroecology and the design of climate change-resilient farming systems. Agron. Sustain. Dev. 2015, 35, 869–890. [Google Scholar] [CrossRef]
- Cheruiyot, D.; Chidawanyika, F.; Midega, C.A.O.; Pittchar, J.O.; Pickett, J.A.; Khan, Z.R. Field evaluation of a new third generation push-pull technology for control of striga weed, stemborers, and fall armyworm in western Kenya. Exp. Agric. 2022, 57, 301–315. [Google Scholar] [CrossRef]
- Khan, Z.; Midega, C.; Pittchar, J.O.; Murage, A.W.; Birkett, M.A.; Bruce, T.J.A.; Pickett, J.A. Achieving food security for one million sub-Saharan African poor through push-pull innovation by 2020. Phil. Trans. R. Soc. B Sci. 2014, 369, 20120284. [Google Scholar] [CrossRef] [PubMed]
- Altieri, M.A.; Nicholls, C.; Fune, F. The Scaling Up of Agroecology: Spreading the Hope for Food Security: A Contribution to Discussions at Rio+20 on Issues at the Interface of Hunger, Agriculture, Environment and Social Justice. 2012. Available online: https://foodfirst.org/wp-content/uploads/2014/06/JA11-The-Scaling-Up-of-Agroecology-Altieri.pdf (accessed on 10 December 2021).
- Khan, Z.; Midega, C.; Pittchar, J.; Bruce, T. Push-pull technology: A conservation agriculture approach for integrated management of insect pests, weeds and soil health in Africa. Int. J. Agric. Sustain. 2011, 9, 162–170. [Google Scholar] [CrossRef]
- D’Annolfo, R.; Gemmill-Herren, B.; Amudavi, D.; Shiraku, H.W.; Piva, M.; Garibaldi, L.A. The effects of agroecological farming systems on smallholder livelihoods: A case study on push–pull system from Western Kenya. Int. J. Agric. Sustain. 2021, 19, 56–70. [Google Scholar] [CrossRef]
- Khan, Z.R.; Midega, C.A.O.; Amudavi, D.M.; Hassanali, A.; Pickett, J.A. On-farm evaluation of the ‘push–pull’ technology for the control of stemborers and striga weed on maize in western Kenya. Field Crops Res. 2008, 106, 224–233. [Google Scholar] [CrossRef]
- Kassie, M.; Wossen, T.; De Groote, H.; Tefera, T.; Segan, S.; Balew, S. Economic impacts of fall armywaorm and its management strategies: Evidence from southern Ethiopia. Eur. Rev. Agric. Econ. 2020, 47, 1473–1501. [Google Scholar] [CrossRef]
- Ndayisaba, P.C.; Kuyah, S.; Midega, C.A.O.; Mwangi, P.N.; Khan, Z.R. Push-pull technology improves maize grain yield and total aboveground biomass in maize-based systems in Western Kenya. Field Crops Res. 2020, 256, 107911. [Google Scholar] [CrossRef]
- Kumela, T.; Mendesil, E.; Enchalew, B.; Kassie, M.; Tefra, T. Effect of the push-pull Cropping System on Maize Yield, Stem Borer Infestation and Farmers’ Perception. Agronomy 2019, 9, 452. [Google Scholar] [CrossRef]
- Midega, C.A.O.; Wasonga, C.J.; Hooper, A.M.; Pickett, J.A.; Khan, Z.R. Drought-tolerant Desmodium species effective suppress parasitic striga weed and improve cereal grain yeilds in western Kenya. Crop Prot. 2017, 98, 94–101. [Google Scholar] [CrossRef]
- Davis, F.M.; Williams, W.P. Visual Rating Scales for Screening Whorl-Stage Corn for Resistance to Fall Armyworm; Technical Bulletin 186; Mississippi Agricultural and Forestry Research Experiment Station: Mississippi State, MS, USA, 1992. Available online: http://www.nal.usda.gov/ (accessed on 1 October 2022).
- Williams, W.P.; Buckley, P.M.; Daves, C.A. Identifying Resistance in Corn to Southwestern Corn Borer (Lepidoptera: Crambidae), Fall Armyworm (Lepidoptera: Noctuidae), and Corn Earworm (Lepidoptera: Noctuidae). J. Agric. Urban Entomol. 2007, 23, 87–97. [Google Scholar]
- Myavarapu, R. UF/IFAS Extesnion Soil Testing Laboratory (ESTL) Analytical Producers and Training Manual; Circular 1248; Soil and Water Science Deparment, Florida Cooperative Extesnion Service, Institute of Food and Agricultural Sciences, University of Florida: Gainesville, FL, USA, 2009. [Google Scholar]
- Mechlich, A. Mechlich II soil test extract: A modification of Mechlich II extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Bremmer, J.M. Nitrogen-Total. In Methods of Soil Analysis, Part 3; Chemical Methods: SSSA Book Series no. 5; Sparks, D.L., Ed.; SSSA: Madison, WI, USA, 1996; pp. 1085–1121. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 1996. [Google Scholar]
- StataCorp. Stata: Release 15. Statistical Software; StataCorp LLC: College Station, TX, USA, 2017. [Google Scholar]
- Kremen, C.; Iles, A.; Bacon, C. Diversified farming systems: An agroecological, systesms-based alternative to modern industrial agriculture. Ecol. Soc. 2012, 17, 44. [Google Scholar] [CrossRef]
- Waha, K.; Müller, C.; Bondeau, A.; Dietrich, J.P.; Kurukulasuriya, P.; Heinke, J. Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan. Glob. Environ. Chang. 2013, 23, 130–143. [Google Scholar] [CrossRef]
- Midega, C.A.; Bruce, T.J.A.; Pickett, J.A.; Pittchar, J.O.; Murage, A.; Khan, Z.R. Climate-adapted companion cropping increases agricultral productivity in East Africa. Field Crops Res. 2015, 180, 118–125. [Google Scholar] [CrossRef]
- Gugissa, D.A.; Abro, Z.; Tefera, T. Achieving a climate-change resilient farming system through push–pull technology: Evidence from maize farming systems in Ethiopia. Sustainability 2022, 14, 2648. [Google Scholar] [CrossRef]
- Midega, C.A.O.; Pittchar, J.O.; Pickett, J.A.; Hailu, G.W.; Khan, Z.R. A climate-adapted push-pull systemactively controls fall armyworm, Spodoptera frugiperda (J E Smith), in maize in East Africa. Crop Prot. 2018, 105, 10–15. [Google Scholar] [CrossRef]
- Abro, Z.; Kimathi, E.; De Groote, H.; Tefera, T.; Sevgan, S.; Niassy, S.; Kassie, M. Socioeconomic and health impacts of fall armyworm in Ethiopia. PLoS ONE 2021, 16, e0257736. [Google Scholar] [CrossRef]
- Luttermoser, T.; Khan, Z.R.; Midega, C.A.; Nyagol, D.; Jonsson, M.; Poveda, K. Are pests adapting to the push-pull system? Ecologically intensified farms in Kenya maintain successful pest control over time. Agric. Ecosyst. Environ. 2023, 347, 108345. [Google Scholar] [CrossRef]
- Hailu, G.; Saliou, N.; Khan, Z.R.; Ochatum, N.; Sevgan, S. Maize–Legume Intercropping and Push–Pull for Management of Fall Armyworm, Stemborers, and Striga in Uganda. Agron. J. 2018, 110, 2513–2522. [Google Scholar] [CrossRef]
- Ndayisaba, P.C.; Kuyah, S.; Midega, C.A.O.; Mwangi, P.N.; Khan, Z.R. Push-pull technology improves carbon stocks in rainfed smallholder agriculture in Western Kenya. Carbon Manag. 2022, 13, 127–141. [Google Scholar] [CrossRef]
- Drinkwater, L.E.; Midega, C.A.O.; Awuor, R.; Nyagol, D.; Khan, Z.R. Perennial legume intercrops provide multiple belowground ecosystem services in smallholder farming systems. Agric. Ecosyst. Environ. 2021, 320, 107566. [Google Scholar] [CrossRef]
- Ouya, F.O.; Murage, A.W.; Pittchar, J.O.; Chidawanyika, F.; Pickett, J.A.; Khan, Z.R. Impacts of climate-resilient push–pull technology on farmers’ income in selected counties in Kenya and Tanzania: Propensity score matching approach. Agric. Food Secur. 2023, 12, 15. [Google Scholar] [CrossRef]
- ICIPE 2025. The ‘Push–Pull’ Farming System: Climate-Smart, Sustainable Agriculture for Africa. The International Centre of Insect Physiology and Ecology (Icipe). Available online: http://www.push-pull.net/planting_for_prosperity.pdf (accessed on 5 October 2022).
- Toma, P.; Miglietta, P.P.; Morrone, D.; Porrini, D. Environmental risks and efficiency performances: The vulnerability of Italian forestry firms. Corp. Soc. Responsib. Environ. Manag. 2020, 27, 2793–2803. [Google Scholar] [CrossRef]
- Paul, U.K. Estimation of technical efficiency of chemical-free farming using data envelopment analysis and machine learning: Evidence from India. Benchmarking Int. J. 2024, 31, 140–161. [Google Scholar] [CrossRef]
Administrative Zones | Districts | Kebeles | Number of Respondents N |
---|---|---|---|
Halaba | Atote Ulo | Felka | 34 (16.04) |
Yeye | 36 (16.98) | ||
Sinkilie Bitena | 28 (13.21) | ||
Gurage | Abeshgie | Boketa Soriety | 34 (16.04) |
Gibie Yibarie | 51(24.06) | ||
Cheha | Gasorie | 29 13.68) | |
Total | 212 (100) |
Variable | Observation | Mean Score | Std. Dev. | Rank of the Problem |
---|---|---|---|---|
Drought | 57 | 3.5 | 1.0 | 6 |
Stemborer | 92 | 2.9 | 1.0 | 5 |
FAW | 117 | 2.8 | 1.1 | 4 |
Soil fertility | 63 | 3.5 | 1.0 | 6 |
Pesticide price | 73 | 2.3 | 1.1 | 3 |
Fertilizer price | 149 | 1.9 | 1.0 | 2 |
Seed price | 142 | 1.8 | 0.9 | 1 |
Cropping Season | Treatment | Stem Borer Infestation (%) | Infestation Reduction via PPT in Monocrop Plots (%) | Yield (t/h) | Yield Gain due to PPT in Monocrop Plots (%) |
---|---|---|---|---|---|
2014 | PPT | 4.81 a * | 43.5% | 9.62 a | 17.8% |
Monocrop | 8.52 b | 7.91 b | - | ||
2015 | PPT | 2.90 a | 53.6% | 10.79 a | 26.5% |
Monocrop | 6.25 b | 7.94 b | - | ||
2016 | PPT | 4.08 a | 83.5% | 11.93 a | 30.8% |
Monocrop | 24.68 b | 8.25 b | - |
Crop Season | Treatment | Total Nitrogen Content (%) |
---|---|---|
2014 | PPT | 0.27367 a * |
Monocrop | 0.17044 b | |
2015 | PPT | 0.30778 a |
Monocrop | 0.17867 b | |
2016 | PPT | 0.48400 a |
Monocrop | 0.17733 b |
Soil Parameters | PPT vs. Monocrop | 2020 |
---|---|---|
Mean ± SE | ||
Soil PH | PPT | 6.9 ± 0.1 a * |
Monocrop | 6.6 ± 0.1 a | |
Electronic conductivity | PPT | 124.3 ± 18 a |
Monocrop | 114.2 ± 13 a | |
Organic carbon | PPT | 2.7 ± 0.2 a |
Monocrop | 2.2 ± 0.1 b | |
Organic matter | PPT | 4.5 ± 0.3 a |
Monocrop | 3.7 ± 0.3 b | |
Total nitrogen | PPT | 0.2 ± 0.1 a |
Monocrop | 0.1 ± 0.1 b | |
Cation exchange capacity | PPT | 67.0 ± 2.1 a |
Monocrop | 57.4 ± 2.7 b | |
Available phosphorus | PPT | 19.2 ± 6.0 a |
Monocrop | 12.7 ± 4.8 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sime, M.; Ballo, S.; Abro, Z.; Gugissa, D.A.; Mendesil, E.; Tefera, T. Farmers’ Perceptions of Maize Production Constraints and the Effects of Push–Pull Technology on Soil Fertility, Pest Infestation, and Maize Yield in Southwest Ethiopia. Agriculture 2024, 14, 381. https://doi.org/10.3390/agriculture14030381
Sime M, Ballo S, Abro Z, Gugissa DA, Mendesil E, Tefera T. Farmers’ Perceptions of Maize Production Constraints and the Effects of Push–Pull Technology on Soil Fertility, Pest Infestation, and Maize Yield in Southwest Ethiopia. Agriculture. 2024; 14(3):381. https://doi.org/10.3390/agriculture14030381
Chicago/Turabian StyleSime, Mekonnen, Shifa Ballo, Zewdu Abro, Desalegn Amlaku Gugissa, Esayas Mendesil, and Tadele Tefera. 2024. "Farmers’ Perceptions of Maize Production Constraints and the Effects of Push–Pull Technology on Soil Fertility, Pest Infestation, and Maize Yield in Southwest Ethiopia" Agriculture 14, no. 3: 381. https://doi.org/10.3390/agriculture14030381
APA StyleSime, M., Ballo, S., Abro, Z., Gugissa, D. A., Mendesil, E., & Tefera, T. (2024). Farmers’ Perceptions of Maize Production Constraints and the Effects of Push–Pull Technology on Soil Fertility, Pest Infestation, and Maize Yield in Southwest Ethiopia. Agriculture, 14(3), 381. https://doi.org/10.3390/agriculture14030381