Groundcovers Improve Soil Properties in Woody Crops Under Semiarid Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sites Description
2.3. Vegetation Composition and Soil Coverage
2.4. Physicochemical Soil Parameters
2.4.1. Soil Organic Carbon Stock
2.4.2. Aggregate Stability
2.4.3. Porosity
2.4.4. Infiltration
2.4.5. Soil Penetration Resistance
2.5. Statistical Analysis
3. Results
3.1. Soil Cover and Aboveground Biomass
3.2. Physical–Chemical Soil Parameters
3.2.1. Bulk Density
3.2.2. Soil Organic Carbon
3.2.3. Aggregate Stability
3.2.4. Porosity
3.2.5. Infiltration
3.2.6. Penetration Resistance
3.3. Relationships Between Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Family | Species | Plot Frequency |
---|---|---|
Asteraceae | Anacyclus clavatus | 1 |
Artemisa sp. | 2 | |
Chondrilla juncea | 2 | |
Dittrichia viscosa | 1 | |
Helichrysum stoechas | 1 | |
Rhaponticum coniferum | 3 | |
Santolina chamaecyparissus | 1 | |
Silybum marianum | 2 | |
Staehelina dubia | 4 | |
Xanthium orientale | 1 | |
Poaceae | Avena sp. | 1 |
Bromus madritensis | 3 | |
Cynodon dactylon | 2 | |
Dactylis glomerata | 1 | |
Stipa tenacissima | 2 | |
Taraxacum sp. | 1 | |
Brassicaceae | Diplotaxis erucoides | 3 |
Lepidium sp. | 3 | |
Capsella bursa-pastoris | 1 | |
Amaranthaceae | Amaranthus sp. | 1 |
Salsola kali | 1 | |
Boraginaceae | Echium vulgare | 5 |
Heliotropium supinum | 2 | |
Euphorbiaceae | Euphorbia serrata | 3 |
Euphorbia chamaesyce = Chamaesyce canescens | 1 | |
Fabaceae | Astragalus sp. | 2 |
Medicago sp. | 2 | |
Lamiaceae | Lamium amplexicaule | 2 |
Rosmarinus officinalis | 2 | |
Plantaginaceae | Llanten sp. | 1 |
Veronica hederifolia | 2 | |
Apiaceae | Eryngium campestre | 1 |
Asparagaceae | Asparagus acutifolius | 4 |
Cistaceae | Halimium atriplicifolium | 7 |
Convolvulaceae | Convolvulus arvensis | 3 |
Geraniaceae | Erodium sp. | 2 |
Malvaceae | Malva silvestris | 3 |
Papaveraceae | Fumaria officinalis | 1 |
Polygonaceae | Rumex sp. | 1 |
Rhamnaceae | Rhamnus lycioides | 1 |
Rosaceae | Sanguisorba minor | 6 |
Solanaceae | Solanum nigrum | 1 |
Thymelaeaceae | Daphne gnidium | 6 |
Urticaceae | Urtica dioica | 1 |
Species richness per plot (Min.–Max.) | 7 (2–11) |
References
- IPBES Summary for Policymakers of the Assessment Report on Land Degradation and Restoration of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Scholes, R.; Montanarella, L.; Brainich, A.; Barger, N.; ten Brink, B.; Cantele, M.; Erasmus, B.; Fisher, J.; Gardner, T.; Holland, T.G.; et al. (Eds.) IPBES Secretariat: Bonn, Germany, 2018; pp. 1–48. [Google Scholar]
- FAO. FAO Soils Portal: Soil Degradation; Food and Agricultural Organization of the United Nations (FAO): Rome, Italy, 2024; Available online: https://www.fao.org/soils-portal/soil-degradation-restoration/en/ (accessed on 15 September 2024).
- FAO; ITPS. Recarbonizing global soils—A technical manual of recommended sustainable soil management. In Volume 4: Cropland, Grassland, Integrated Systems and Farming Approaches—Case Studies; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil degradation in the European Mediterranean Region: Processes, Status and Consequences. Sci. Total Environ. 2022, 805, 150106. [Google Scholar] [CrossRef] [PubMed]
- Montanarella, L. Trends in Land Degradation in Europe; Sivakumar, M., Ndiangùi, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-72437-7. [Google Scholar]
- Pravalie, R.; Borrelli, P.; Panagos, P.; Ballabio, C.; Lugato, E.; Chappell, A.; Miguez-Macho, G.; Maggi, F.; Peng, J.; Niculit, M.; et al. JRC Publications Repository—A unifying modelling of multiple land degradation pathways in Europe. Nat. Commun. 2024, 15, 3862, JRC133741. [Google Scholar] [CrossRef] [PubMed]
- Haines-Young, R.; Potschin, M. Common International Classification of Ecosystem Services (CICES); European Environment Agency (EEA): Copenhagen, Denmark, 2023; Available online: https://cices.eu/ (accessed on 20 August 2024).
- Pereira, P.; Bogunovic, I.; Munoz-Rojas, M.; Brevik, E.C. Soil Ecosystem Services, Sustainability, Valuation and Management. Curr. Opin. Environ. Sci. Health 2018, 5, 7–13. [Google Scholar] [CrossRef]
- Montanarella, L.; Pennock, D.J.; McKenzie, N.; Badraoui, M.; Chude, V.; Baptista, I.; Mamo, T.; Yemefack, M.; Aulakh, M.S.; Yagi, K.; et al. World’s Soils Are under Threat. SOIL 2016, 2, 79–82. [Google Scholar] [CrossRef]
- Sastre, B.; García-Díaz, A.; Bienes, R.; Marques, M.J. Cover Crops: How to Protect and Restore Soil Conditions in Eroded Woody Crops; COST ES1104-QUICK Ref. SHEET 1; COST (European Cooperation in Science and Technology): Brussels, Belgium, 2016. [Google Scholar]
- Duran Zuazo, V.H.; Rodriguez Pleguezuelo, C.R.; Duran-Zuazo, V.H.; Rodriguez-Pleguezuelo, C.R. Soil-Erosion and Runoff Prevention by Plant Covers. A Review. Agron. Sustain. Dev. 2008, 28, 65–86. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; Alletto, L. Ecosystem Services of Cover Crops: A Research Roadmap. Trends Plant Sci. 2022, 27, 758–768. [Google Scholar] [CrossRef] [PubMed]
- Antolini, F.; Tate, E.; Dalzell, B.; Young, N.; Johnson, K.; Hawthorne, P.L. Flood Risk Reduction from Agricultural Best Management Practices. J. Am. Water Resour. Assoc. 2020, 56, 161–179. [Google Scholar] [CrossRef]
- Gómez, J.A.; Sobrinho, T.A.; Giraldez, J.V.; Fereres, E. Soil Management Effects on Runoff, Erosion and Soil Properties in an Olive Grove of Southern Spain. Soil Tillage Res. 2009, 102, 5–13. [Google Scholar] [CrossRef]
- Fleskens, L.; Stroosnijder, L. Is Soil Erosion in Olive Groves as Bad as Often Claimed? Geoderma 2007, 141, 260–271. [Google Scholar] [CrossRef]
- Payen, F.T.; Sykes, A.; Aitkenhead, M.; Alexander, P.; Moran, D.; MacLeod, M. Soil Organic Carbon Sequestration Rates in Vineyard Agroecosystems under Different Soil Management Practices: A Meta-Analysis. J. Clean. Prod. 2021, 290, 125736. [Google Scholar] [CrossRef]
- Vicente-Vicente, J.L.; García-Ruiz, R.; Francaviglia, R.; Aguilera, E.; Smith, P. Soil Carbon Sequestration Rates under Mediterranean Woody Crops Using Recommended Management Practices: A Meta-Analysis. Agric. Ecosyst. Environ. 2016, 235, 204–214. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Nadal-Romero, E.; Lana-Renault, N.; Beguería, S. Erosion in Mediterranean Landscapes: Changes and Future Challenges. Geomorphology 2013, 198, 20–36. [Google Scholar] [CrossRef]
- Zdruli, P. Land Resources of the Mediterranean: Status, Pressures, Trends and Impacts on Future Regional Development. L. Degrad. Dev. 2014, 25, 373–384. [Google Scholar] [CrossRef]
- Liebhard, G.; Guzmán, G.; Gómez, J.A.; Winter, S.; Zaller, J.G.; Bauer, T.; Nicolai, A.; Cluzeau, D.; Popescu, D.; Bunea, C.; et al. Vineyard Cover Crop Management Strategies and Their Effect on Soil Properties across Europe. Eur. J. Soil Sci. 2024, 75, e13573. [Google Scholar] [CrossRef]
- Sastre, B.; Barbero-Sierra, C.; Bienes, R.; Marques, M.J.; García-Dí az, A. Soil Loss in an Olive Grove in Central Spain under Cover Crops and Tillage Treatments, and Farmer Perceptions. J. Soils Sediments 2017, 17, 873–888. [Google Scholar] [CrossRef]
- Novara, A.; Cerda, A.; Barone, E.; Gristina, L. Cover Crop Management and Water Conservation in Vineyard and Olive Orchards. Soil Tillage Res. 2021, 208, 104896. [Google Scholar] [CrossRef]
- Marques, M.J.; Bienes, R.; Cuadrado, J.; Ruiz-Colmenero, M.; Barbero-Sierra, C.; Velasco, A. Analysing Perceptions Attitudes and Responses of Winegrowers about Sustainable Land Management in Central Spain. L. Degrad. Dev. 2015, 26, 458–467. [Google Scholar] [CrossRef]
- Sastre, B.; Álvarez, B.; Antón, O.; Perez, M.Á.; Marques, M.J.; Bienes, R.; García-Díaz, A. Groundcovers in Olive Groves in Semiarid Climates: Are They Always Beneficial? Water 2020, 12, 2230. [Google Scholar] [CrossRef]
- Cerdà, A.; Flanagan, D.C.; le Bissonnais, Y.; Boardman, J. Soil Erosion and Agriculture. Soil Tillage Res. 2009, 106, 107–108. [Google Scholar] [CrossRef]
- Gómez, J.A. Sustainability Using Cover Crops in Mediterranean Tree Crops, Olives and Vines—Challenges and Current Knowledge. Hung. Geogr. Bull. 2017, 66, 13–28. [Google Scholar] [CrossRef]
- Ruiz-Colmenero, M.; Bienes, R.; Eldridge, D.J.; Marques, M.J. Vegetation Cover Reduces Erosion and Enhances Soil Organic Carbon in a Vineyard in the Central Spain. Catena 2013, 104, 153–160. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Carbon Sequestration in Agricultural Soils via Cultivation of Cover Crops–A Meta-Analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Sastre, B.; Jose Marques, M.; Garcia-Diaz, A.; Bienes, R. Three Years of Management with Cover Crops Protecting Sloping Olive Soils, Carbon and Water Effects on Gypsiferous Soil. CATENA 2018, 171, 115–124. [Google Scholar] [CrossRef]
- García-Díaz, A.; Bienes, R.; Gristina, L.; Cerdà, A.; Pereira, P.; Novara, A. Carbon input threshold for soil carbon budget optimization in eroding vineyards. Geoderma 2016, 271, 144–149. [Google Scholar] [CrossRef]
- Marques, M.J.; Álvarez, A.M.; Carral, P.; Esparza, I.; Sastre, B.; Bienes, R. Estimating Soil Organic Carbon in Agricultural Gypsiferous Soils by Diffuse Reflectance Spectroscopy. Water 2020, 12, 261. [Google Scholar] [CrossRef]
- Daryanto, S.; Fu, B.; Wang, L.; Jacinthe, P.A.; Zhao, W. Quantitative Synthesis on the Ecosystem Services of Cover Crops. Earth-Sci. Rev. 2018, 185, 357–373. [Google Scholar] [CrossRef]
- Koudahe, K.; Allen, S.C.; Djaman, K. Critical Review of the Impact of Cover Crops on Soil Properties. Int. Soil Water Conserv. Res. 2022, 10, 343–354. [Google Scholar] [CrossRef]
- Herranz-Luque, J.E.; Gonzalez-Canales, J.; Martín-Sanz, J.P.; Antón, O.; Moreno-Delafuente, A.; Navas-Vázquez, M.J.; Ramos-Nieto, R.; Bienes, R.; García-Díaz, A.; Marques, M.J.; et al. Monitoring Land Management Practices Using Vis–NIR Spectroscopy Provides Insights into Predicting Soil Organic Carbon and Limestone Levels in Agricultural Plots. Agronomy 2024, 14, 1150. [Google Scholar] [CrossRef]
- IECM Instituto de Estadística de la Comunidad de Madrid-DESVAN, Banco de Datos Estructurales. Available online: https://gestiona.comunidad.madrid/desvan/Inicio.icm?enlace=desvan (accessed on 4 July 2024).
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An Assessment of the Global Impact of 21st Century Land Use Change on Soil Erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An Examination of Degtjareff Method for Determining Soil Organic Matter and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- FAO. Standard Operating Procedure for Soil Bulk Density, Cylinder Method; FAO: Rome, Italy, 2023. [Google Scholar]
- USDA. Soil Quality Test Kit Guide; United States Department of Agriculture, Agricultural Research Service and Natural Resources Conservation Service-Soil Quality Institute: Washington, DC, USA, 2001.
- Richards, L.A. A Pressure-Membrane Extraction Apparatus for Soil Solution. Soil Sci. 1941, 51, 377–386. [Google Scholar] [CrossRef]
- Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-31211-6. [Google Scholar]
- IBM. SPSS Statistics for Windows 2023, version 29; IBM: Armonk, NY, USA, 2023. [Google Scholar]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. In Proceedings of the International AAAI Conference on Weblogs and Social Media, San Jose, CA, USA, 7–12 May 2009; Volume 3, pp. 361–362. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Hedlund, K.; Jackson, L.E.; Kätterer, T.; Lugato, E.; Thomsen, I.K.; Jørgensen, H.B.; Isberg, P.-E. How Does Tillage Intensity Affect Soil Organic Carbon? A Systematic Review. Environ. Evid. 2017, 6, 30. [Google Scholar] [CrossRef]
- West, T.O.; Post, W.M. Soil Organic Carbon Sequestration Rates by Tillage and Crop Rotation. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef]
- Gristina, L.; Scalenghe, R.; García-Díaz, A.; Matranga, M.G.; Ferraro, V.; Guaitoli, F.; Novara, A. Soil Organic Carbon Stocks under Recommended Management Practices in Different Soils of Semiarid Vineyards. L. Degrad. Dev. 2020, 31, 1906–1914. [Google Scholar] [CrossRef]
- Álvaro-Fuentes, J.; López, M.V.; Cantero-Martinez, C.; Arrúe, J.L. Tillage Effects on Soil Organic Carbon Fractions in Mediterranean Dryland Agroecosystems. Soil Sci. Soc. Am. J. 2008, 72, 541–547. [Google Scholar] [CrossRef]
- Rodríguez-Murillo, J.C. Organic Carbon Content under Different Types of Land Use and Soil in Peninsular Spain. Biol. Fertil. Soils 2001, 33, 53–61. [Google Scholar] [CrossRef]
- Virto, I.; Imaz, M.J.; Fernandez-Ugalde, O.; Urrutia, I.; Enrique, A.; Bescansa, P. Soil Quality Evaluation Following the Implementation of Permanent Cover Crops in Semi-Arid Vineyards. Organic Matter, Physical and Biological Soil Properties. Span. J. Agric. Res. 2012, 10, 1121–1132. [Google Scholar] [CrossRef]
- Fernández-Ugalde, O.; Virto, I.; Bescansa, P.; Imaz, M.J.; Enrique, A.; Karlen, D.L. No-Tillage Improvement of Soil Physical Quality in Calcareous, Degradation-Prone, Semiarid Soils. Soil Tillage Res. 2009, 106, 29–35. [Google Scholar] [CrossRef]
- Montanaro, G.; Xiloyannis, C.; Nuzzo, V.; Dichio, B. Orchard Management, Soil Organic Carbon and Ecosystem Services in Mediterranean Fruit Tree Crops. Sci. Hortic. 2017, 217, 92–101. [Google Scholar] [CrossRef]
- García-Díaz, A.; Marqués, M.J.; Sastre, B.; Bienes, R. Labile and Stable Soil Organic Carbon and Physical Improvements Using Groundcovers in Vineyards from Central Spain. Sci. Total Environ. 2018, 621, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Peregrina, F. Soil Carbon Content and Its Stratification at the Medium-Term (5 and 8 Years) in a Semi-Arid Vineyard with Cover Crops. Span. J. Soil Sci. 2019, 9, 63–70. [Google Scholar] [CrossRef]
- Wooliver, R.; Jagadamma, S. Response of Soil Organic Carbon Fractions to Cover Cropping: A Meta-Analysis of Agroecosystems. Agric. Ecosyst. Environ. 2023, 351, 108497. [Google Scholar] [CrossRef]
- García-Ruiz, J.M. The Effects of Land Uses on Soil Erosion in Spain: A Review. Catena 2010, 81, 1–11. [Google Scholar] [CrossRef]
- Soriano, M.-A.; Cabezas, J.M.; Gómez, J.A. Field Evaluation of Selected Autochthonous Herbaceous Species for Cover Crops in Mediterranean Woody Crops. Eur. J. Agron. 2023, 143, 126723. [Google Scholar] [CrossRef]
- Guzmán, G.; Cabezas, J.M.; Sánchez-Cuesta, R.; Lora, Á.; Bauer, T.; Strauss, P.; Winter, S.; Zaller, J.G.; Gómez, J.A. A Field Evaluation of the Impact of Temporary Cover Crops on Soil Properties and Vegetation Communities in Southern Spain Vineyards. Agric. Ecosyst. Environ. 2019, 272, 135–145. [Google Scholar] [CrossRef]
- Archer, J.R.; Smith, P.D. The relation between bulk density, available water capacity, and air capacity of soils. J. Soil Sci. 1972, 23, 475–480. [Google Scholar] [CrossRef]
- Barbero-Sierra, C.; Ruíz Pérez, M.; Marqués Pérez, M.J.; Álvarez González, A.M.; Cruz Maceín, J.L. Local and Scientific Knowledge to Assess Plot Quality in Central Spain. Arid L. Res. Manag. 2018, 32, 111–129. [Google Scholar] [CrossRef]
- Hao, X.; Abou Najm, M.; Steenwerth, K.L.; Nocco, M.A.; Basset, C.; Daccache, A. Are There Universal Soil Responses to Cover Cropping? A Systematic Review. Sci. Total Environ. 2023, 861, 160600. [Google Scholar] [CrossRef]
- Johannes, A.; Matter, A.; Schulin, R.; Weisskopf, P.; Baveye, P.C.; Boivin, P. Optimal Organic Carbon Values for Soil Structure Quality of Arable Soils. Does Clay Content Matter? Geoderma 2017, 302, 14–21. [Google Scholar] [CrossRef]
- Dao, T.H. Tillage and Winter Wheat Residue Management Effects on Water Infiltration and Storage. Soil Sci. Soc. Am. J. 1993, 57, 1586–1595. [Google Scholar] [CrossRef]
- Unger, P.W. Infiltration of Simulated Rainfall: Tillage System and Crop Residue Effects. Soil Sci. Soc. Am. J. 1992, 56, 283–289. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Water Infiltration and Soil Structure Related to Organic Matter and Its Stratification with Depth. Soil Tillage Res. 2002, 66, 197–205. [Google Scholar] [CrossRef]
- Tisdall, J.M.; Oades, J. Organic Matter and Water-stable Aggregates in Soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Arai, M.; Minamiya, Y.; Tsuzura, H.; Watanabe, Y.; Yagioka, A.; Kaneko, N. Changes in Water Stable Aggregate and Soil Carbon Accumulation in a No-Tillage with Weed Mulch Management Site after Conversion from Conventional Management Practices. Geoderma 2014, 221–222, 50–60. [Google Scholar] [CrossRef]
- Pagliai, M.; Vignozzi, N.; Pellegrini, S. Soil Structure and the Effect of Management Practices. Soil Tillage Res. 2004, 79, 131–143. [Google Scholar] [CrossRef]
- Francaviglia, R.; Almagro, M.; Vicente-Vicente, J.L. Conservation Agriculture and Soil Organic Carbon: Principles, Processes, Practices and Policy Options. Soil Syst. 2023, 7, 17. [Google Scholar] [CrossRef]
Farm | O-8A | O-8B | O-9A | O-9B | O-11A | O-11B | O-12A | O-12B | O-14A | O-14B | O-16A | O-16B | O-18A | O-18B | O-19A | O-19B | O-22A | O-22B |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Municipality | Valdelagua | Valdelaguna | Chinchón | Villaconejos | Arganda del Rey | Arganda del Rey | Villarejo de Salvanés | Villarejo de Salvanés | Brea de Tajo | Brea de Tajo | Torres de la Alameda | Torres de la Alameda | Torres de la Alameda | Torres de la Alameda | Torres de la Alameda | Torres de la Alameda | Perales de Tajuña | Perales de Tajuña |
Woody crop | Olive | Olive | Olive | Olive | Olive | Olive | Olive | Olive | Olive | Vineyard | Olive | Olive | Olive | Olive | Olive | Olive | Olive | Olive |
Coordinates (ETRS89) | 466,321, 4,445,833 | 466,276, 4,445,833 | 460,925, 4,441,558 | 460,936, 4,441,509 | 462,910, 4,457,339 | 462,900, 4,457,359 | 474,605, 4,440,956 | 474,578, 4,440,963 | 486,919, 4,452,958 | 486,905, 4,452,989 | 469,403, 4,470,424 | 469,425, 4,470,393 | 470,012, 4,470,249 | 470,037, 4,470,252 | 470,135, 4,470,064 | 470,176, 4,470,058 | 468,755, 4,456,047 | 468,525, 4,455,991 |
Altitude (masl) | 773 | 773 | 687 | 689 | 710 | 703 | 719 | 721 | 762 | 767 | 772 | 782 | 786 | 788 | 778 | 780 | 745 | 743 |
Slope (%) | 2–4 | 2–4 | 8–10 | 8–10 | 2–4 | 2–4 | 8–10 | 8–10 | 6–8 | 6–8 | 12–14 | 12–14 | 6–8 | 6–8 | 4–6 | 4–6 | 2–4 | 2–4 |
Plot surface (ha) | 0.85 | 0.76 | 0.51 | 0.89 | 4.67 | 2.27 | 0.47 | 0.5 | 2.12 | 2.05 | 0.19 | 0.45 | 0.31 | 0.14 | 0.34 | 0.27 | 0.46 | 0.36 |
Plantation density | 110 | 77 | 83 | 100 | 106 | 73 | 64 | 110 | 64 | 1900 | 140 | 178 | 185 | 100 | 156 | 143 | 90 | 100 |
Plantation age (years) | >300 | ≈70 | ≈70 | 28 | ≈70 | ≈70 | ≈70 | >40 | ≈50 | 12 | ≈60 | ≈60 | ≈70 | 28 | ≈60 | >60 | >75 | >75 |
Soil management | GC | CT | NM | CT | NM | CT | GC | CT | GC | CT | GC | CT | GC | CT | GC | CT | NM | CT |
Alternative management age (years) | 5 | - | 5 | - | 7 | - | 15 | - | 15 | - | 6 | - | 5 | - | 5 | - | 7 | - |
Soil texture | Clay Loam | Silty Clay Loam | Loam | Clay Loam | Loam | Loam | Clay Loam | Clay Loam | Clay Loam | Clay Loam | Sandy Loam | Loam | Silt Loam | Silt Loam | Sandy Loam | Clay Loam | Clay Loam | Clay Loam |
pH (1:5 H2O) | 8.3 | 8.3 | 7.8 | 7.9 | 7.2 | 7.7 | 7.7 | 7.7 | 8.0 | 8.4 | 8.0 | 6.9 | 7.3 | 7.3 | 7.3 | 7.2 | 8.4 | 8.4 |
Electrical conductivity (µS cm−1) (1:5 25 °C) | 185 | 153 | 2178 | 1445 | 771 | 410 | 383 | 510 | 752 | 212 | 487 | 101 | 632 | 446 | 531 | 530 | 155 | 174 |
Limestone (%) | 12.3 | 14.4 | 26.0 | 32.3 | 5.4 | 4.8 | 54.4 | 57.8 | 2.9 | 3.7 | 22.9 | 9.1 | 15.2 | 33.8 | 23.0 | 18.1 | 22.4 | 7.6 |
Soil classification (FAO) | Leptosol | Leptosol | Gypsisol | Gypsisol | Leptosol | Leptosol | Calcisol | Calcisol | Luvisol | Luvisol | Leptosol | Leptosol | Luvisol | Luvisol | Luvisol | Luvisol | Luvisol | Luvisol |
Farm | O-24A | O-24B | O-26A | O-26B | O-27A | O-27B | O-28A | O-28B | O-28C | O-28D | O-31A | O-31B | O-33A | O-33B | O-35A | O-35B | V-1A | V1-B |
Municipality | Arganda del Rey | Arganda del Rey | Perales de Tajuña | Perales de Tajuña | Perales de Tajuña | Perales de Tajuña | Colmenar de Oreja | Colmenar de Oreja | Colmenar de Oreja | Colmenar de Oreja | Carabaña | Carabaña | Tielmes | Tielmes | Arganda del Rey | Arganda del Rey | Colmenar de Oreja | Colmenar de Oreja |
Woody crop | Olive | Olive | Olive | Olive | Olive | Olive | Olive | Olive | Olive | Olive | Olive | Olive | Olive | Olive | Olive | Olive | Vineyard | Vineyard |
Coordinates | 463,754, 4,457,496 | 463,738, 4,457,508 | 470,863, 4,455,477 | 470,875, 4,455,497 | 469,985, 4,455,049 | 469,977, 4,455,065 | 455,370, 4,435,773 | 455,370, 4,435,773 | 455,370, 4,435,773 | 455,370, 4,435,773 | 482,350, 4,455,547 | 482,305, 4,455,578 | 475,982, 4,451,781 | 475,991, 4,451,743 | 464,275, 4,460,893 | 464,349, 4,460,983 | 468,053, 4,442,632 | 468,053, 4,442,632 |
Altitude (msnm) | 700 | 694 | 753 | 752 | 627 | 629 | 535 | 535 | 535 | 535 | 783 | 782 | 767 | 770 | 683 | 683 | 754 | 754 |
Slope (%) | 6–8 | 6–8 | 2–4 | 2–4 | 25–30 | 25–30 | 6–8 | 6–8 | 6–8 | 6–8 | 6–8 | 6–8 | 2–4 | 2–4 | 6–8 | 6–8 | 2–4 | 2–4 |
Plot surface | 1.98 | 0.62 | 0.64 | 0.4 | 0.24 | 0.41 | 9.07 | 9.07 | 9.07 | 9.07 | 3.32 | 1.71 | 0.63 | 0.55 | 0.78 | 1.33 | 7.53 | 7.53 |
Plantation density (trees ha−1) | 111 | 124 | 70 | 139 | 114 | 139 | 238 | 238 | 238 | 238 | 40 | 32 | 55 | 59 | 100 | 64 | 4166 | 4166 |
Plantation age (years) | 39 | 18 | 63 | 63 | >100 | >100 | 13 | 13 | 13 | 13 | >75 | >75 | >75 | >75 | 28 | 28 | ||
Alternative management | NM | CT | NM | CT | NM | CT | GC | CT | GC—permanent grass | GC—annual legume | GC | CT | GC | CT | NM | CT | GC | CT |
Alternative management age (years) | 10 | - | 7 | - | 7 | - | 7 | - | 7 | 1 | 10 | - | 4 | - | 5 | - | 8 | - |
Soil texture | Clay Loam | Loam | Clay Loam | Clay Loam | Loam | Loam | Loam | Loam | Loam | Loam | Loam | Clay Loam | Clay Loam | Clay Loam | Clay Loam | Clay Loam | Clay Loam | Clay Loam |
pH (1:5 H2O) | 7.5 | 7.6 | 8.5 | 8.3 | 8.5 | 8.4 | 7.7 | 7.7 | 7.6 | 7.6 | 8.0 | 8.5 | 8.5 | 8.5 | 8.3 | 8.4 | 7.7 | 8.2 |
Electrical conductivity (µS cm−1) (1:5 25 °C) | 507 | 471 | 456 | 162 | 165 | 205 | 2140 | 2160 | 2130 | 2180 | 195 | 151 | 210 | 164 | 135 | 110 | 540 | 239 |
Limestone (%) | 27.0 | 16.7 | 12.3 | 12.7 | 4.5 | 3.4 | 11.5 | 9.7 | 8.3 | 9.6 | 7.1 | 4.6 | 29.5 | 29.5 | 12.8 | 9.7 | 13.1 | 15.1 |
Soil classification (FAO) | Leptosol | Leptosol | Luvisol | Luvisol | Luvisol | Luvisol | Gypsisol | Gypsisol | Gypsisol | Gypsisol | Luvisol | Luvisol | Leptosol | Leptosol | Regosol | Regosol | Regosol | Regosol |
Factor (p-Value) | Factors | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Treatment | Depth | Treatment x Depth | Treatment | Depth | ||||||
GC | NM | CT | 0–5 | 5–10 | 10–20 | 20–30 | ||||
Vegetation cover (%) | <0.001 | - | - | 65.8 a | 50.4 b | 20.5 c | - | - | - | - |
Aboveground biomass (g m−2) | <0.001 | - | - | 77.0 a | 43.6 b | 32.6 b | - | - | - | - |
BD (g cm−3) | 0.819 | <0.001 | 0.168 | 1.44 a | 1.42 a | 1.43 a | 1.32 b | 1.46 a | 1.49 a | 1.45 a |
SOC (Mg ha−1) | <0.001 | <0.001 | 0.002 | 8.3 a | 6.7 b | 7.1 b | 6.0 c | 5.8 c | 9.7 a | 8.2 b |
WSA (%) | <0.001 | <0.001 | 0.002 | 49.5 a | 42.1 b | 43.3 b | 44.4 b | 41.4 b | 45.1 ab | 49.0 a |
FC (%) | 0.336 | 0.472 | 0.860 | 28.8 a | 26.4 a | 28.1 a | 28.2 a | 27.4 a | - | - |
PWP (%) | 0.980 | 0.751 | 0.919 | 17.8 a | 18.0 a | 17.6 a | 18.0 a | 17.5 a | - | - |
AWC (%) | 0.081 | 0.678 | 0.938 | 11.0 a | 8.4 a | 10.5 a | 10.2 a | 9.8 a | - | - |
Infiltration (mm h−1) | <0.001 | - | - | 90.5 a | 105.5 a | 59.8 b | - | - | - | - |
PR (N cm−2) | <0.001 | <0.001 | 0.991 | 566 a | 540 a | 417 b | 351 d | 498 c | 560 b | 620 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sastre, B.; Antón-Iruela, O.; Moreno-Delafuente, A.; Navas, M.J.; Marques, M.J.; González-Canales, J.; Martín-Sanz, J.P.; Ramos, R.; García-Díaz, A.; Bienes, R. Groundcovers Improve Soil Properties in Woody Crops Under Semiarid Climate. Agriculture 2024, 14, 2288. https://doi.org/10.3390/agriculture14122288
Sastre B, Antón-Iruela O, Moreno-Delafuente A, Navas MJ, Marques MJ, González-Canales J, Martín-Sanz JP, Ramos R, García-Díaz A, Bienes R. Groundcovers Improve Soil Properties in Woody Crops Under Semiarid Climate. Agriculture. 2024; 14(12):2288. https://doi.org/10.3390/agriculture14122288
Chicago/Turabian StyleSastre, Blanca, Omar Antón-Iruela, Ana Moreno-Delafuente, Mariela J. Navas, Maria Jose Marques, Javier González-Canales, Juan Pedro Martín-Sanz, Rubén Ramos, Andrés García-Díaz, and Ramón Bienes. 2024. "Groundcovers Improve Soil Properties in Woody Crops Under Semiarid Climate" Agriculture 14, no. 12: 2288. https://doi.org/10.3390/agriculture14122288
APA StyleSastre, B., Antón-Iruela, O., Moreno-Delafuente, A., Navas, M. J., Marques, M. J., González-Canales, J., Martín-Sanz, J. P., Ramos, R., García-Díaz, A., & Bienes, R. (2024). Groundcovers Improve Soil Properties in Woody Crops Under Semiarid Climate. Agriculture, 14(12), 2288. https://doi.org/10.3390/agriculture14122288