Genetic Diversity and Phylogenetic Analysis of the Endangered Transylvanian Pinzgau Cattle: A Key Resource for Biodiversity Conservation and the Sustainability of Livestock Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Blood Samples
2.2. Extraction and Quantification of Genomic DNA from Blood Samples
2.3. Primer Design, PCR Amplification, and Gene Sequencing
Primer Selection | Primer Specificity Gene | Primer Sequence (5′-3′) | Base Composition G1 + C2(%) | GenBank Accession No. and Genome Position [43] | Amplicon Length (bp) |
---|---|---|---|---|---|
BCYT | cytochrome b | Forward sequence primer: TTCTTACATGGAATCTAACCATGA | 33.3 | V00654.1 14,443–14,466 | 1140 |
cytochrome b | Reverse sequence primer: GGGAGGTTAGTTGTTCTCCTTCTC | 50.0 | V00654.1 473–497 | ||
BRS | D-loop | Forward sequence primer: CCTAAGACTCAAGGAAGAAACTGC | 45.8 | V00654.1 15,718–15,741 | 910 |
D-loop | Reverse sequence primer: CAGTGAGAATGCCCTCTAGGTT | 50.0 | V00654.1 496–517 |
2.4. Validation of Amplified PCR Products in Agarose Gel Electrophoresis
2.5. Quantitative Assessment of Nitrogenous Base Proportions in Cyt b and D-loop Sequences from Transylvanian Pinzgau
2.6. The Coefficient of Specificity
2.7. Data Analysis
Software No. | Specification of the Software Program Utilized | Type of Data Analysis | Reference |
---|---|---|---|
1. | PCR_amplicon sequencing ✓→Sanger sequencing | [45] | |
2. | Chromatogram alignment and adjustment of sequences ✓→DNA Baser 5.15 | [46] | |
3. | DNA sequence alignment ✓→Mega X 11.0.10 | [46,47] | |
4. | Evaluation of the optimal substitution model ✓→jModelTest 2.1.10 | [48,49] | |
5. | Assembly of the haplotype network ✓→PopArt 1.7 | [49,50,51] | |
6. | Phylogenetic tree build ✓→SeaView/PhyML 5.0.5 | [52,53,54] | |
7. | Evaluation of nucleotide sequence diversity ✓→DnaSP 5.10.1 | [51,55,56] |
3. Results
3.1. Dynamics of the Evolutionary Rate of mtDNA Markers
3.2. Haplotype Frequency Evaluation
3.3. Analysis of Haplotype Networks and Construction of Phylogenetic Trees
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Medugorac, I.; Medugorac, A.; Russ, I.; Veit-Kensch, C.E.; Taberlet, P.; Luntz, B.; Mix, H.M.; Förster, M. Genetic diversity of European cattle breeds highlights the conservation value of traditional unselected breeds with high effective population size. Mol. Ecol. 2009, 18, 3394–3410. [Google Scholar] [CrossRef] [PubMed]
- Koyun, H.; Koncagül, S.; Karakuş, K. Significance of Genetic Diversity in Farm Animal Production. Türk Bilimsel Derlemeler Derg. 2016, 1, 82–83. [Google Scholar]
- Simeanu, D.; Radu-Rusu, R.M. Animal nutrition and productions. Agriculture 2023, 13, 943. [Google Scholar] [CrossRef]
- Maciuc, V. Cattle Breeding Management; Alfa: Iasi, Romania, 2006; pp. 76–78. ISBN 973-8953-18-9. [Google Scholar]
- Kasarda, R.; Jamborová, L.; Moravcíková, N. Genetic diversity and production potential of animal food resources. Acta Fytotech. Zootech. 2020, 23, 102–108. [Google Scholar] [CrossRef]
- Mădescu, B.M.; Lazăr, R.; Ciobanu, M.M.; Boișteanu, P.C. Morpfo-Productive Characteristics of Aubrac Cattle Breed: A Sistematic Review. Sci. Pap. Ser. D Anim. Sci. 2021, 64, 260–265. [Google Scholar]
- Groeneveld, L.F.; Lenstra, J.A.; Eding, H.; Toro, M.A.; Scherf, B.; Pilling, D. Genetic diversity in farm animals—A review. Anim. Genet. 2010, 11, 6–31. [Google Scholar] [CrossRef]
- Usturoi, A.; Avarvarei, B.V.; Nistor, C.E.; Simeanu, C.; Davidescu, M.A.; Usturoi, M.G. The Quality of Some Acid Dairy Products Obtained in the Traditional System. Sci. Pap. Anim. Sci. Biotechnol. 2024, 57, 187–193. [Google Scholar]
- Kasarda, R.; Vostrý, L.; Vostrá-Vydrová, H.; Candráková, K.; Moravčíková, N. Food Resources Biodiversity: The Case of Local Cattle in Slovakia. Sustainability 2021, 13, 1296. [Google Scholar] [CrossRef]
- Barnes, K.; Collins, T.; Dion, S.; Reynolds, H.; Riess, S.; Stanzyk, A.; Wolfe, A.; Lonergan, S.; Boettcher, P.; Charrondiere, U.R.; et al. Importance of cattle biodiversity and its influence on the nutrient composition of beef. Anim. Front. 2012, 2, 54–60. [Google Scholar] [CrossRef]
- Yan, L.; She, Y.; Elzo, M.A.; Zhang, C.; Fang, X.; Chen, H. Exploring genetic diversity and phylogenic relationships of Chinese cattle using gene mtDNA 16S rRNA. Arch. Anim. Breed. 2019, 62, 325–333. [Google Scholar] [CrossRef]
- Davidescu, M.A.; Grădinaru, A.C.; Creangă, Ș. Endangered romanian cattle breeds–between traditional breeding and genetic conservation. Sci. Pap. Anim. Sci. Ser. Sci. Pap. Anim. Husb. Ser. 2021, 75, 66–75. [Google Scholar]
- Davidescu, M.-A.; Simeanu, D.; Gorgan, D.-L.; Ciorpac, M.; Creanga, S. Analysis of Phylogeny and Genetic Diversity of Endangered Romanian Grey Steppe Cattle Breed, a Reservoir of Valuable Genes to Preserve Biodiversity. Agriculture 2022, 12, 2059. [Google Scholar] [CrossRef]
- Upadhyay, M.R.; European Cattle Genetic Diversity Consortium; Chen, W.; Lenstra, J.A.; Goderie, C.R.J.; MacHugh, D.E.; Park, S.D.E.; Magee, D.A.; Matassino, D.; Ciani, F.; et al. Genetic origin, admixture and population history of aurochs (Bos primigenius) and primitive European cattle. Heredity 2017, 118, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Prihandini, P.W.; Primasari, A.; Luthfi, M.; Efendy, J.; Pamungkas, D. Genetic Diversity of Mitochondrial DNA Cytochrome b in Indonesian Native and Local Cattle Populations. J. Ilmu Ternak Dan Vet. 2020, 25, 39–47. [Google Scholar] [CrossRef]
- Küttel, L.; Letko, A.; Häfliger, I.M.; Signer-Hasler, H.; Joller, S.; Hirsbrunner, G.; Mészáros, G.; Sölkner, J.; Flury, C.; Leeb, T.; et al. A complex structural variant at the KIT locus in cattle with the Pinzgauer spotting pattern. Anim. Genet. 2019, 50, 423–429. [Google Scholar] [CrossRef]
- Kasarda, R.; Moravcikova, N.; Sidlova, V.; Krupova, Z.; Krupa, E.; Kadlecik, O. Progress in evaluation of Diversity in Pinzgau cattle based on molecular markers. Arch. Zootech. 2016, 19, 37–44. [Google Scholar]
- Ciocan-Alupii, M.; Radu-Rusu, R.M.; Pânzaru, C.; Nistor-Anton, M.; Bilkevich, V.; Maciuc, V. Study of productive performance in the Pinzgau breed exploited in the Dornelor Basin, Suceava County. Sci. Pap. Ser. D Anim. Sci. 2022, LXV, 298–303. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org (accessed on 12 January 2024).
- Scherf, B.D. World Watch List for Domestic Animal Diversity, 3rd ed.; FAO: Rome, Italy, 2000; Available online: https://www.fao.org/docrep/009/x8750e/x8750e00.htm (accessed on 11 October 2023).
- Bonfiglio, S.; Ginja, C.; De Gaetano, A.; Achilli, A.; Olivieri, A.; Colli, L.; Tesfaye, K.; Agha, S.H.; Gama, L.T.; Cattonaro, F.; et al. Origin and spread of Bos taurus: New clues from mitochondrial genomes belonging to haplogroup T1. PLoS ONE 2012, 7, e38601. [Google Scholar] [CrossRef]
- Scheu, A.; Powell, A.; Bollongino, R.; Vigne, J.-D.; Tresset, A.; Çakırlar, C.; Benecke, N.; Burger, J. The genetic prehistory of domesticated cattle from their origin to the spread across Europe. BMC Genet. 2015, 16, 54. [Google Scholar] [CrossRef]
- Decker, J.E.; McKay, S.D.; Rolf, M.M.; Kim, J.; Alcalá, A.M.; Sonstegard, T.S.; Hanotte, O.; Götherström, A.; Seabury, C.M.; Praharani, L.; et al. Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLoS Genet. 2014, 10, e1004254. [Google Scholar] [CrossRef]
- Achilli, A.; Bonfiglio, S.; Olivieri, A.; Malusà, A.; Pala, M. The multifaceted origin of taurine cattle reflected by the mitochondrial genome. PLoS ONE 2009, 4, e5753. [Google Scholar] [CrossRef]
- Gurke, M.; Vidal-Gorosquieta, A.; Pajimans, J.L.A.; Wȩcek, K.; Barlow, A.; González-Fortes, G.; Hartmann, S.; Grandal-d’Anglade, A.; Hofreiter, M. Insight into the introduction of domestic cattle and the process of Neolithization to the Spanish region Galicia by genetic evidence. PLoS ONE 2021, 16, e0249537. [Google Scholar] [CrossRef] [PubMed]
- Cubric-Curik, V.; Novosel, D.; Brajkovic, V.; Stabelli, O.R.; Krebs, S.; Sölkner, J.; Salamon, D.; Ristov, S.; Berger, B.; Trivizaki, S.; et al. Large-scale mitogenome sequencing reveals consecutive expansions of domestic taurine cattle and supports sporadic aurochs introgression. Evol. Appl. 2022, 15, 663–678. [Google Scholar] [CrossRef]
- Bollongino, R.; Edwards, C.J.; Alt, K.W.; Burger, J.; Bradley, D.G. Early history of European domestic cattle as revealed by ancient DNA. Biol. Lett. 2006, 2, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Janák, V.; Novák, K.; Kyselý, R. Late History of Cattle Breeds in Central Europe in Light of Genetic and Archaeogenetic Sources—Overview, Thoughts, and Perspectives. Animals 2024, 14, 645. [Google Scholar] [CrossRef]
- Kukučková, V.; Kasarda, R.; Žitný, J.; Moravčíková, N. Genetic markers and biostatistical methods as appropriate tools to preserve genetic resources. AGROFOR Intern. J. 2018, 3, 41–48. [Google Scholar] [CrossRef]
- Stock, F.; Edwards, C.J.; Bollongino, R.; Finlay, E.K.; Burger, J.; Bradley, D.G. Cytochrome b sequences of ancient cattle and wild ox support phylogenetic complexity in the ancient and modern bovine populations. Anim. Genet. 2009, 40, 694–700. [Google Scholar] [CrossRef]
- Necula, D.; Ciupe, S.; Tamas-Krumpe, O.; Todoran, D.; Ognean, L. Analysis of the Current Opportunities for Valorization and Conservation of the Main Autochthonous Cattle Breeds in the Conditions of the Carpathian Mountain Areas. Vet. Med. 2024, 81, 1–9. [Google Scholar] [CrossRef]
- Popa, R.; Popa, D.; Maftei, M.; Dronca, D.; Băcilă, V. Animal biodiversity conservation, a key of sustainable agriculture. Case study: The Romanian Pinzgau breed in Transylvania region. Sci. Pap. Anim. Sci. Ser. D 2012, LV, 25–29. [Google Scholar]
- Maciuc, V.; Pânzaru, C.; Ciocan-Alupii, M.; Radu-Rusu, C.-G.; Radu-Rusu, R.-M. Comparative Assessment of the Nutritional and Sanogenic Features of Certain Cheese Sorts Originating in Conventional Dairy Farms and in “Mountainous” Quality System Farms. Agriculture 2024, 14, 172. [Google Scholar] [CrossRef]
- Cărătuș, N.; Vidu, L.; Mărginean, G.E. Study on the exploitation of cattle in Transylvania. Ann. “Valahia” Univ. Targoviste 2019, 13, 57–62. [Google Scholar] [CrossRef]
- Necula, D.; Cătună-Boca, C.; Tamas-Krumpe, O.M.; Ognean, L. Evolution of the Transylvanian Pinzgau cattle breed in its natural habitat in the Carpathian mountain areas (A short review). ABAH Bioflux 2022, 14, 96–101. [Google Scholar]
- PCR Master Mix—Promega Corporation. PCR Master Mix. Available online: https://www.promega.ro/products/pcr/taq-polymerase/master-mix-pcr/?catNum=M7502 (accessed on 29 March 2024).
- Minhas-Khan, A.; Ghafar-Zadeh, M.; Shaffaf, T.; Forouhi, S.; Scime, A.; Magierowski, S.; Ghafar-Zadeh, E. UV-Vis Spectrophotometric Analysis of DNA Retrieval for DNA Storage Applications. Actuators 2021, 10, 246. [Google Scholar] [CrossRef]
- Koetsier, G.; Cantor, E. A Practical Guide to Analyzing Nucleic Acid Concentration and Purity with Microvolume Spectrophotometers. In Technical Note; New England Biolabs Inc.: Ipswich, MA, USA, 2019; pp. 1–8. [Google Scholar]
- GenBank Overview-NCBI. Bos taurus Complete Mitochondrial Genome. Available online: https://www.ncbi.nlm.nih.gov/nuccore/V00654 (accessed on 9 December 2023).
- Seroussi, E.; Yakobson, E. Bovine mtDNA D-loop haplotypes exceed mutations in number despite reduced recombination: An effective alternative for identity control. Animal 2010, 4, 1818–1822. [Google Scholar] [CrossRef]
- Arbizu, C.I.; Ferro-Mauricio, R.D.; Chávez-Galarza, J.C.; Vásquez, H.V.; Maicelo, J.L.; Poemape, C.; Gonzales, J.; Quilcate, C.; Corredor, F.-A. The Complete Mitochondrial Genome of a Neglected Breed, the Peruvian Creole Cattle (Bos taurus), and Its Phylogenetic Analysis. Data 2022, 7, 76. [Google Scholar] [CrossRef]
- Hiendleder, S.; Lewalski, H.; Janke, A. Complete Mitochondrial Genomes of Bos taurus and Bos indicus Provide New Insights into Intra-Species Variation, Taxonomy and Domestication. Cytogenet. Genome Res. 2008, 120, 150–156. [Google Scholar] [CrossRef]
- UCSC Genome Browser. Available online: https://genome.ucsc.edu/ (accessed on 9 September 2023).
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed]
- Furutani, S.; Furutani, N.; Kawai, Y.; Nakayama, A.; Nagai, H. Rapid DNA Sequencing Technology Based on the Sanger Method for Bacterial Identification. Sensors 2022, 22, 2130. [Google Scholar] [CrossRef]
- Li, M.; Nordborg, M.; Li, L.M. Adjust quality scores from alignment and improve sequencing accuracy. Nucleic Acids Res. 2004, 32, 5183–5191. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Chen, W.; Kenney, T.; Bielawski, J.; Gu, H. Testing adequacy for DNA substitution models. BMC Bioinform. 2019, 20, 329. [Google Scholar] [CrossRef] [PubMed]
- Sinding, M.H.S.; Gilbert, M.T.P. The Draft Genome of Extinct European Aurochs and its Implications for De-Extinction. Open Quat. 2016, 2, 7. [Google Scholar] [CrossRef]
- Gouy, M.; Tannier, E.; Comte, N.; Parsons, D.P. Seaview version 5: A multiplatform software for multiple sequence alignment, molecular phylogenetic analyses, and tree reconciliation. Mult. Seq. Alignment Methods Protoc. 2021, 2231, 241–260. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef] [PubMed]
- Rozas, J.; Sánchez-DelBarrio, J.C.; Messeguer, X.; Rozas, R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 2003, 19, 2496–2497. [Google Scholar] [CrossRef] [PubMed]
- Tarekegn, G.M.; Ji, X.Y.; Bai, X.; Liu, B.; Zhang, W.; Birungi, J.; Djikeng, A.; Tesfaye, K. Variations in mitochondrial cytochrome b region among Ethiopian indigenous cattle populations assert Bos taurus maternal origin and historical dynamics. Asian-Australas. J. Anim. Sci. 2018, 31, 1393–1400. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.L.; Lin, R.Y.; Xu, L.X.; Cheng, L. Analysis of polymorphisms of mitochondrial DNA D-loop and Mc1R gene in Chinese Wuchuan Black cattle. J. Appl. Anim. Res. 2014, 42, 487–491. [Google Scholar] [CrossRef]
- Kukučková, V.; Moravčíková, N.; Ferenčaković, M.; Simčič, M.; Mészáros, G.; Sölkner, J.; Trakovická, A.; Kadlečík, O.; Curik, I.; Kasarda, R. Genomic characterization of Pinzgau cattle: Genetic conservation and breeding perspectives. Conserv. Genet. 2017, 18, 893–910. [Google Scholar] [CrossRef]
- Singhla, T.; Boonyayatra, S.; Chulakasian, S.; Lukkana, M.; Alvarez, J.; Sreevatsan, S.; Wells, S.J. Determination of the sensitivity and specificity of bovine tuberculosis screening tests in dairy herds in Thailand using a Bayesian approach. BMC Vet. Res. 2019, 15, 149. [Google Scholar] [CrossRef]
- Kasarda, R.; Moravčí-ková, N.; Trakovická, A.; Mészáros, G.; Kadlečí-k, O. Genome-wide selection signatures in Pinzgau cattle. Potravin. Slovak J. Food Sci. 2015, 9, 268–274. [Google Scholar] [CrossRef]
- Miluchová, M.; Gábor, M.; Gašper, J. Analysis of the Genetic Structure of Slovak Holstein Cattle Using Seven Candidate Genes Related to Milk Quality. Diversity 2022, 14, 989. [Google Scholar] [CrossRef]
- Smitz, N.; Berthouly, C.; Cornélis, D.; Heller, R.; Van Hooft, P.; Chardonnet, P.; Caron, A.; Prins, H.; van Vuuren, B.J.; De Iongh, H.; et al. Pan-African genetic structure in the African buffalo (Syncerus caffer): Investigating intraspecific divergence. PLoS ONE 2013, 8, e56235. [Google Scholar] [CrossRef]
- Li, M.H.; Zerabruk, M.; Vangen, O.; Olsaker, I.; Kantanen, J. Reduced genetic structure of north Ethiopian cattle revealed by Y-chromosome analysis. Heredity 2007, 98, 214–221. [Google Scholar] [CrossRef]
- Felius, M.; Koolmees, P.A.; Theunissen, B.; European Cattle Genetic Diversity Consortium; Lenstra, J.A. On the Breeds of Cattle—Historic and Current Classifications. Diversity 2011, 3, 660–692. [Google Scholar] [CrossRef]
- Dorji, J.; Vander-Jagt, C.; Chamberlain, A.; Cocks, B.; MacLeod, I.; Daetwyler, H. Cattle Maternal Diversity Inferred from 1,883 Taurine and Indicine Mitogenomes-Preprint. Res. Sq. 2021, 1–35. [Google Scholar] [CrossRef]
- Dorji, J.; Vander Jagt, C.J.; Chamberlain, A.J.; Cocks, B.G.; MacLeod, I.M.; Daetwyler, H.D. Recovery of mitogenomes from whole genome sequences to infer maternal diversity in 1883 modern taurine and indicine cattle. Sci. Rep. 2022, 12, 5582. [Google Scholar] [CrossRef]
- Liu, H.; Zhai, J.; Wu, H.; Wang, J.; Zhang, S.; Li, J.; Niu, Z.; Shen, C.; Zhang, K.; Liu, Z.; et al. Diversity of Mitochondrial DNA Haplogroups and Their Association with Bovine Antral Follicle Count. Animals 2022, 12, 2350. [Google Scholar] [CrossRef] [PubMed]
- Baumung, R.; Sölkner, J. Analysis of pedigrees of Tux-Zillertal, Carinthian Blond and Original Pinzgau cattle population in Austria. J. Anim. Breed. Genet. 2002, 119, 175–181. [Google Scholar] [CrossRef]
- Matiuti, M.; Bogdan, A.T.; Crainiceanu, E. A case study of Transylvanian Pinzgau in Banat areal. Sci. Pap. Anim. Sci. Biotechnol. 2009, 42, 169–174. [Google Scholar]
- Mannen, H.; Kohno, M.; Nagata, Y.; Tsuji, S.; Bradley, D.G.; Yeo, J.S.; Nyamsamba, D.; Zagdsuren, Y.; Yokohama, M.; Nomura, K.; et al. Independent mitochondrial origin and historical genetic differentiation in North Eastern Asian cattle. Mol. Phylogenet Evol. 2004, 32, 539–544. [Google Scholar] [CrossRef]
- Kasarda, R.; Moravčíková, N.; Lehocká, K.; Olšanská, B.; Prišťák, J.; Trakovická, A.; Kadlečík, O. Haplotype block structure in the genome of Slovak Pinzgau cattle. In Proceedings of the X International Scientific Agricultural Symposium Agrosym, Jahorina, Bosnia and Herzegovina, 3–6 October 2019; pp. 1440–1445. [Google Scholar]
- Šidlová, V.; Kasarda, R.; Moravčíková, N.; Trakovická, A.; Kadlečík, O. Microsatellite analysis of population structure in Slovak Pinzgau cattle. Acta Agrar. Kaposváriensis 2014, 18, 24–29. [Google Scholar]
- Mang, N. Genetic Structure of Quantitative Characters in Pinzgau of Transilvania Breed from Hateg Region. Sci. Pap. Anim. Sci. Biotechnol. 2011, 44, 432–434. [Google Scholar]
- Brenig, B. Endangered Pinzgauer cattle subtype Jochberger Hummel are genetically distinct. Anim. Genet. 2020, 51, 590–594. [Google Scholar] [CrossRef] [PubMed]
- Kadlečík, O.; Kasarda, R.; Pavlík, I.; Hazuchová, E. Pedigree Analysis of Slovak Pinzgau Breed. Agric. Conspec. Sci. 2011, 76, 165–168. [Google Scholar]
- Kasarda, R.; Kadlecik, O.; Mészáros, G. Trends of endangered population of Pinzgau Cattle in Slovakia. Arch. Zootech. 2008, 11, 82–87. [Google Scholar]
- Šidlová, V.; Moravčíková, N.; Trakovická, A.; Ferenčaković, M.; Curik, I.; Kasarda, R. Production type of Slovak Pinzgau cattle in respect of related breeds. Acta Fytotechn. Zootechn. 2015, 18, 25–29. [Google Scholar] [CrossRef]
- Kukučková, V.; Moravčíková, N.; Trakovická, A.; Kadlečík, O.; Kasarda, R. Genetic differentiation of Slovak Pinzgau, Simmental, Charolais and Holstein cattle based on the linkage disequilibrium, persistence of phase and effective population size. Acta Argic. Slov. 2016, 5, 37–40. [Google Scholar] [CrossRef]
- Melus, V.; Kasarda, R.; Kadlecik, O.; Trakovicka, A. Breeding potential of the Slovak Pinzgau cattle: Seeking biochemical and molecular biologic traits. Arch. Zootech. 2009, 12, 34–37. [Google Scholar]
- Mészáros, G.; Fuerst, C.; Fuerst-Waltl, B.; Kadlečík, O.; Kasarda, R.; Sölkner, J. Genetic evaluation for length of productive life in Slovak Pinzgau cattle. Arch. Anim. Breed. 2008, 51, 438–448. [Google Scholar] [CrossRef]
- Taberlet, P.; Coissac, E.; Pansu, J.; Pompanon, F. Conservation genetics of cattle, sheep, and goats. Comptes Rendus Biol. 2011, 334, 247–254. [Google Scholar] [CrossRef]
- Pavlík, I.; Sölkner, J.; Kadlečík, O.; Kasarda, R.; Mészáros, G.; Fuerst, C.; Fuerst-Waltl, B. Joint genealogical analysis as a tool for diversity evaluation in Pinzgau cattle populations. Arch. Anim. Breed. 2014, 57, 14. [Google Scholar] [CrossRef]
- Magee, D.A.; MacHugh, D.E.; Edwards, C.J. Skip Nav Destination Interrogation of modern and ancient genomes reveals the complex domestic history of cattle. Anim. Front. 2014, 4, 7–22. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, Z.; Zhang, M.; Wang, S.; Gao, T.; Huang, H.; Zhang, T.; Cai, H.; Liu, X.; Fu, T.; et al. Population Structure and Selection Signal Analysis of Nanyang Cattle Based on Whole-Genome Sequencing Data. Genes 2024, 15, 351. [Google Scholar] [CrossRef]
- Verdugo, M.P.; Mullin, V.E.; Scheu, A.; Mattiangeli, V.; Daly, K.G.; Delser, P.M.; Hare, A.J.; Burger, J.; Collins, M.J.; Kehati, R.; et al. Ancient cattle genomics, origins, and rapid turnover in the Fertile Crescent. Science 2019, 365, 173–176. [Google Scholar] [CrossRef] [PubMed]
Sequences | Total of Informative Sites | % | Total of Variable Sites | % | Tr/Tv 1 Ratio |
---|---|---|---|---|---|
cyt b | 17 | 1.51 | 23 | 1.98 | 0.637 |
D-loop | 15 | 1.61 | 22 | 2.44 | 5.267 |
Identified Haplotypes | Representative Individuals of Haplotype | Total No. of Individuals/Haplotype |
---|---|---|
T1 | tp_09 | 1 |
T2 | tp _01; tp _11; tp _12; tp _20; tp _21 | 5 |
T3 | tp _02; tp _03; tp _04; tp _05; tp _06; tp _07; tp _08; tp _10; tp _13; tp _14; tp _15; tp _16; tp _17; tp _18; tp _19; tp _22; tp _23; tp _24 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davidescu, M.-A.; Pânzaru, C.; Mădescu, B.-M.; Radu-Rusu, R.-M.; Doliș, M.G.; Simeanu, C.; Usturoi, A.; Ciobanu, A.; Creangă, Ș. Genetic Diversity and Phylogenetic Analysis of the Endangered Transylvanian Pinzgau Cattle: A Key Resource for Biodiversity Conservation and the Sustainability of Livestock Production. Agriculture 2024, 14, 2234. https://doi.org/10.3390/agriculture14122234
Davidescu M-A, Pânzaru C, Mădescu B-M, Radu-Rusu R-M, Doliș MG, Simeanu C, Usturoi A, Ciobanu A, Creangă Ș. Genetic Diversity and Phylogenetic Analysis of the Endangered Transylvanian Pinzgau Cattle: A Key Resource for Biodiversity Conservation and the Sustainability of Livestock Production. Agriculture. 2024; 14(12):2234. https://doi.org/10.3390/agriculture14122234
Chicago/Turabian StyleDavidescu, Mădălina-Alexandra, Claudia Pânzaru, Bianca-Maria Mădescu, Răzvan-Mihail Radu-Rusu, Marius Gheorghe Doliș, Cristina Simeanu, Alexandru Usturoi, Andrei Ciobanu, and Șteofil Creangă. 2024. "Genetic Diversity and Phylogenetic Analysis of the Endangered Transylvanian Pinzgau Cattle: A Key Resource for Biodiversity Conservation and the Sustainability of Livestock Production" Agriculture 14, no. 12: 2234. https://doi.org/10.3390/agriculture14122234
APA StyleDavidescu, M.-A., Pânzaru, C., Mădescu, B.-M., Radu-Rusu, R.-M., Doliș, M. G., Simeanu, C., Usturoi, A., Ciobanu, A., & Creangă, Ș. (2024). Genetic Diversity and Phylogenetic Analysis of the Endangered Transylvanian Pinzgau Cattle: A Key Resource for Biodiversity Conservation and the Sustainability of Livestock Production. Agriculture, 14(12), 2234. https://doi.org/10.3390/agriculture14122234