Gene Effect of Morphophysiological Traits in Popcorn (Zea mays L. var. everta) Grown Under Contrasting Water Regimes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genotypes and Experimental Conditions
2.2. Morphological Traits
2.3. Leaf Pigments
2.4. Stomatal Density and Index
2.5. Plant Cumulative Evapotranspiration and Agronomic Water Use Efficiency
2.6. Leaf Relative Water Content
2.7. Carbon Isotope Signature
2.8. Root Traits
2.9. Statistical Analysis
2.10. Statistical Analysis of the Partial Diallel
3. Results
3.1. Impact of Water Restriction on Growth Traits and Leaf Pigments
3.2. Impact of Water Restriction on Stomatal Index and Density, Cumulative Evapotranspiration, Agronomic Water Use Efficiency, and Stable Carbon Isotope Signatures
3.3. Impact of Water Restriction on Root Traits
Traits | Combined Analysis | Water Deficit (45%) | Full Irrigation (100%) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Line | Testers | Hybrids | C | Line | Testers | Hybrids | C | ||||||||||
G | WR | G × WR | I | II | III | IV | I | II | III | IV | |||||||
RWDa | ** | * | ns | 713.13 | ±14.75 * | 491.44 | ±11.38 ns | 1110.60 | ±16.70 ns | ** | 968.01 | ±10.42 ** | 871.27 | ±14.47 * | 1262.33 | ±18.92 ns | ** |
RWDb | ** | * | ns | 212.42 | ±8.24 ** | 66.07 | ±4.11 ns | 483.54 | ±11.09 * | ** | 330.84 | ±9.59 ns | 224.63 | ±10.03 ns | 502.18 | ±11.82 ns | ** |
RWDc | ** | * | ns | 106.72 | ±7.54 ns | 27.00 | ±2.76 ns | 244.30 | ±7.50 ** | ** | 134.61 | ±9.46 ns | 44.23 | ±4.46 ns | 303.27 | ±9.06 * | ** |
RWDd | ** | ns | ns | 57.33 | ±7.68 ns | 4.39 | ±3.28 ns | 125.44 | ±8.18 ns | ** | 53.75 | ±7.38 * | 6.44 | ±3.97 ns | 125.21 | ±8.67 * | ** |
RWDe | * | ** | ns | 32.17 | ±5.59 ns | 0.00 | ±0.00 ns | 67.15 | ±7.34 ns | ** | 0.89 | ±1.75 ns | 0.00 | ±0.00 ns | 29.74 | ±6.57 * | ** |
3.4. Significance and Importance of Mean Squares Associated with General (GCA) and Specific (SCA) Combining Abilities
4. Discussion
4.1. Impacts of Water Restriction on Growth Traits and Leaf Pigments
4.2. Stomatal Index and Density, Cumulative Evapotranspiration, Agronomic Water Use Efficiency, and Stable Carbon Isotope Signature in an Environment Under Water Restriction and Full Irrigation
4.3. Root Traits Under the Contrasting Water Regimes Applied
4.4. Mean Square Implications for Plant Breeding
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, S.; Qin, F. Genetic Dissection of Maize Drought Tolerance for Trait Improvement. Mol. Breed. 2021, 41, 8. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, K.F.M.; do Amaral, A.T., Jr.; Kamphorst, S.H.; Pinto, V.B.; de Lima, V.J.; de Oliveira, U.A.; Viana, F.N.; Leite, J.T.; Gomes, L.P.; Silva, J.G.d.S.; et al. Decoding the Effects of Drought Stress on Popcorn (Zea mays var. everta) Flowering Combining Proteomics and Physiological Analysis. Plant Physiol. Biochem. 2024, 208, 108444. [Google Scholar] [CrossRef] [PubMed]
- Kamphorst, S.H.; Amaral Júnior, A.T.d.; Lima, V.J.d.; Guimarães, L.J.M.; Schmitt, K.F.M.; Leite, J.T.; Santos, P.H.A.D.; Chaves, M.M.; Mafra, G.S.; Santos, D.R.d., Jr.; et al. Can Genetic Progress for Drought Tolerance in Popcorn Be Achieved by Indirect Selection? Agronomy 2019, 9, 792. [Google Scholar] [CrossRef]
- Kamphorst, S.H.; Amaral Júnior, A.T.d.; Vergara-Diaz, O.; Gracia-Romero, A.; Fernandez-Gallego, J.A.; Chang-Espino, M.C.; Buchaillot, M.L.; Rezzouk, F.Z.; Lima, V.J.d.; Serret, M.D.; et al. Heterosis and Reciprocal Effects for Physiological and Morphological Traits of Popcorn Plants under Different Water Conditions. Agric. Water Manag. 2022, 261, 107371. [Google Scholar] [CrossRef]
- Dias, K.O.D.G.; Gezan, S.A.; Guimarães, C.T.; Parentoni, S.N.; Guimarães, P.E.d.O.; Carneiro, N.P.; Portugal, A.F.; Bastos, E.A.; Cardoso, M.J.; Anoni, C.d.O.; et al. Estimating Genotype × Environment Interaction for and Genetic Correlations among Drought Tolerance Traits in Maize via Factor Analytic Multiplicative Mixed Models. Crop. Sci. 2018, 58, 72. [Google Scholar] [CrossRef]
- Esmaeili, N.; Shen, G.; Zhang, H. Genetic Manipulation for Abiotic Stress Resistance Traits in Crops. Front. Plant Sci. 2022, 13, 1011985. [Google Scholar] [CrossRef]
- IPCC—Intergovernmental Panel on Climate Change. The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Kamphorst, S.H.; Amaral Júnior, A.T.d.; de Lima, V.J.; Santos, P.H.A.D.; Rodrigues, W.P.; Vivas, J.M.S.; Gonçalves, G.M.B.; Schmitt, K.F.M.; Leite, J.T.; Vivas, M.; et al. Comparison of Selection Traits for Effective Popcorn (Zea mays L. var. everta) Breeding Under Water Limiting Conditions. Front. Plant Sci. 2020, 11, 1289. [Google Scholar] [CrossRef]
- Kamphorst, S.H.; Gonçalves, G.M.B.; Amaral Júnior, A.T.d.; Lima, V.J.d.; Leite, J.T.; Schmitt, K.F.M.; Santos, D.R.d., Jr.; Santos, J.S.; Oliveira, F.T.d.; Corrêa, C.C.G.; et al. Screening of Popcorn Genotypes for Drought Tolerance Using Canonical Correlations. Agronomy 2020, 10, 1519. [Google Scholar] [CrossRef]
- Lima, V.J.d.; Amaral Júnior, A.T.d.; Kamphorst, S.H.; Bispo, R.B.; Leite, J.T.; Santos, T.d.O.; Schmitt, K.F.M.; Chaves, M.M.; Oliveira, U.A.d.; Santos, P.H.A.D.; et al. Combined Dominance and Additive Gene Effects in Trait Inheritance of Drought-Stressed and Full Irrigated Popcorn. Agronomy 2019, 9, 782. [Google Scholar] [CrossRef]
- Carvalho, C.M.; Khan, S.; do Amaral, A.T., Jr.; de Lima, V.J.; de Souza Silva, J.G.; Catarino Fuly, L.M.; Leite, J.T.; Santos Junior, D.R.d.; Viana, F.N.; de Souza, R.; et al. Early Selection for Drought Tolerance in Popcorn Based on Gene Effects Estimated in Seedlings. Front. Plant Sci. 2023, 14, 1203972. [Google Scholar] [CrossRef]
- Leite, J.T.; Amaral, A.T.d., Jr.; Kamphorst, S.H.; Lima, V.J.d.; Santos, D.R.d., Jr.; Schmitt, K.F.M.; Souza, Y.P.d.; Santos, T.d.O.; Bispo, R.B.; Mafra, G.S.; et al. Water Use Efficiency in Popcorn (Zea mays L. var. everta): Which Physiological Traits Would Be Useful for Breeding? Plants 2021, 10, 1450. [Google Scholar] [CrossRef] [PubMed]
- Cairns, J.E.; Sanchez, C.; Vargas, M.; Ordoñez, R.; Araus, J.L. Dissecting Maize Productivity: Ideotypes Associated with Grain Yield under Drought Stress and Well-Watered Conditions. J. Integr. Plant Biol. 2012, 54, 1007–1020. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.F.; Carlesso, R. Déficit Hídrico e os Processos Morfológico e Fisiológico das Plantas. Rev. Bras. Eng. Agríc. Ambient. 1998, 2, 287–294. [Google Scholar] [CrossRef]
- Sousa, R.S.; Bastos, E.A.; Cardoso, M.J.; Ribeiro, V.Q.; Brito, R.R. Desempenho Produtivo de Genótipos de Milho Sob Déficit Hídrico. Rev. Bras. Milho Sorgo 2015, 14, 49–60. [Google Scholar] [CrossRef]
- Campos, A.J.d.M.; Santos, S.M.; Nacarath, I.R.F.F. Estresse Hídrico em Plantas: Uma Revisão. Res. Soc. Dev. 2021, 10, e311101523155. [Google Scholar] [CrossRef]
- Araus, J.L.; Kefauver, S.C. Breeding to Adapt Agriculture to Climate Change: Affordable Phenotyping Solutions. Curr. Opin. Plant Biol. 2018, 45, 237–247. [Google Scholar] [CrossRef]
- Tardieu, F. Plant Response to Environmental Conditions: Assessing Potential Production, Water Demand, and Negative Effects of Water Deficit. Front. Physiol. 2013, 4, 35373. [Google Scholar] [CrossRef]
- Trachsel, S.; Kaeppler, S.M.; Brown, K.M.; Lynch, J.P. Shovelomics: High Throughput Phenotyping of Maize (Zea mays L.) Root Architecture in the Field. Plant Soil 2011, 341, 75–87. [Google Scholar] [CrossRef]
- Shoaib, M.; Banerjee, B.P.; Hayden, M.; Kant, S. Roots’ Drought Adaptive Traits in Crop Improvement. Plants 2022, 11, 2256. [Google Scholar] [CrossRef]
- Hallauer, A.R.; Carena, M.J.; Miranda Filho, J.B. Quantitative Genetics in Maize Breeding; Springer: New York, NY, USA, 2010; ISBN 978-1-4419-0765-3. [Google Scholar]
- Cruz, C.D.C.D.; Regazzi, A.J.; Carneiro, P.C.S.P.C.S.; Regazzi, I.A.J. Modelos Biométricos Aplicados ao Melhoramento Genético; UFV: Abbotsford, BC, Cananda, 2012; Volume 1, ISBN 9788572694339. [Google Scholar]
- Kempthorne, O.; Curnow, R.N. The Partial Diallel Cross. Biometrics 1961, 17, 229. [Google Scholar] [CrossRef]
- Lima, V.J.; Viana, A.P.; Amaral Júnior, A.T.; Kamphorst, S.H.; Leite, J.T.; Santos, P.H.A.D.; Bispo, R.B.; Santos, T.O. Exploring the Use of Testers to Maximize Selection Accuracy of Partially Inbred S3 Popcorn Progenies. Braz. J. Agric. Sci. 2020, 15, 1–11. [Google Scholar] [CrossRef]
- Elmyhun, M.; Liyew, C.; Shita, A.; Andualem, M. Combining Ability Performance and Heterotic Grouping of Maize (Zea mays) Inbred Lines in Testcross Formation in Western Amhara, North West Ethiopia. Cogent Food Agric. 2020, 6, 1727625. [Google Scholar] [CrossRef]
- Leite, J.T.; Amaral, A.T.d., Jr.; Kamphorst, S.H.; Lima, V.J.d.; Santos, D.R.d., Jr.; Alves, U.O.; Azeredo, V.C.; Pereira, J.L.; Bispo, R.B.; Schmidt, K.F.M.; et al. All Are in a Drought, but Some Stand Out: Multivariate Analysis in the Selection of Agronomic Efficient Popcorn Genotypes. Plants 2022, 11, 2275. [Google Scholar] [CrossRef] [PubMed]
- Kamphorst, S.H.; do Amaral, A.T., Jr.; de Lima, V.J.; Carena, M.J.; Azeredo, V.C.; Mafra, G.S.; Santos, P.H.A.D.; Leite, J.T.; Schmitt, K.F.M.; dos Santos, D.R., Jr.; et al. Driving Sustainable Popcorn Breeding for Drought Tolerance in Brazil. Front. Plant Sci. 2021, 12, 732285. [Google Scholar] [CrossRef] [PubMed]
- Hoagland, D.R.; Arnon, D.I. Others The Water-Culture Method for Growing Plants without Soil. Circ. Calif. Agric. Exp. Stn. 1950, 347, 39. [Google Scholar]
- Radoglou, K.M.; Jarvis, P.G.; Radoglou, K.M.; Jarvis, P.G. Effects of CO2 Enrichment on Four Poplar Clones. I. Growth and Leaf Anatomy. Ann. Bot. 1990, 65, 617–626. [Google Scholar] [CrossRef]
- Kennedy, P.; Kennedy, H.; Papadimitriou, S. The Effect of Acidification on the Determination of Organic Carbon, Total Nitrogen and Their Stable Isotopic Composition in Algae and Marine Sediment. Rapid Commun. Mass Spectrom. 2005, 19, 1063–1068. [Google Scholar] [CrossRef]
- Carreira, R.S.; Wagener, A.L.R.; Readman, J.W.; Fileman, T.W.; Macko, S.A.; Veiga, Á. Changes in the Sedimentary Organic Carbon Pool of a Fertilized Tropical Estuary, Guanabara Bay, Brazil: An Elemental, Isotopic and Molecular Marker Approach. Mar. Chem. 2002, 79, 207–227. [Google Scholar] [CrossRef]
- Barros, G.V.; Martinelli, L.A.; Oliveira Novais, T.M.; Ometto, J.P.H.B.; Zuppi, G.M. Stable Isotopes of Bulk Organic Matter to Trace Carbon and Nitrogen Dynamics in an Estuarine Ecosystem in Babitonga Bay (Santa Catarina, Brazil). Sci. Total Environ. 2010, 408, 2226–2232. [Google Scholar] [CrossRef]
- Elazab, A.; Molero, G.; Serret, M.D.; Araus, J.L. Root Traits and Δ13C and Δ18O of Durum Wheat under Different Water Regimes. Funct. Plant Biol. 2012, 39, 379. [Google Scholar] [CrossRef]
- Cruz, C.D. GENES—A Software Package for Analysis in Experimental Statistics and Quantitative Genetics. Acta Sci. Agron. 2013, 35, 271–276. [Google Scholar] [CrossRef]
- SAS. SAS/STAT Software, Version 9.4; SAS: Cary, NC, USA, 2012. [Google Scholar]
- Griffing, B. Concept of General and Specific Combining Ability in Relation to Diallel Crossing Systems. Aust. J. Biol. Sci. 1956, 9, 462–493. [Google Scholar] [CrossRef]
- Miranda Filho, J.B.; Parterniani, E.; Viegas, G.P. Melhoramento e Producao de Milho; FUNEP: Jaboticabal, Brasil, 1987; Volume 2. [Google Scholar]
- Tollenaar, M.; Ahmadzadeh, A.; Lee, E.A. Physiological Basis of Heterosis for Grain Yield in Maize. Crop Sci. 2004, 44, 2086–2094. [Google Scholar] [CrossRef]
- Von Forell, G.; Robertson, D.; Lee, S.Y.; Cook, D.D. Preventing Lodging in Bioenergy Crops: A Biomechanical Analysis of Maize Stalks Suggests a New Approach. J. Exp. Bot. 2015, 66, 4367–4371. [Google Scholar] [CrossRef] [PubMed]
- Araus, J.L.; Sánchez, C.; Cabrera-Bosquet, L. Is Heterosis in Maize Mediated through Better Water Use? New Phytol. 2010, 187, 392–406. [Google Scholar] [CrossRef]
- Chairi, F.; Elazab, A.; Sanchez-Bragado, R.; Araus, J.L.; Serret, M.D. Heterosis for Water Status in Maize Seedlings. Agric. Water Manag. 2016, 164, 100–109. [Google Scholar] [CrossRef]
- Sinha, S.K.; Khanna, R. Physiological, Biochemical, and Genetic Basis of Heterosis. Adv. Agron. 1975, 27, 123–174. [Google Scholar]
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M. Heat Tolerance in Plants: An Overview. Environ. Exp. Bot. 2007, 61, 199–223. [Google Scholar] [CrossRef]
- Nakabayashi, R.; Yonekura-Sakakibara, K.; Urano, K.; Suzuki, M.; Yamada, Y.; Nishizawa, T.; Matsuda, F.; Kojima, M.; Sakakibara, H.; Shinozaki, K.; et al. Enhancement of Oxidative and Drought Tolerance in Arabidopsis by Overaccumulation of Antioxidant Flavonoids. Plant J. 2014, 77, 367–379. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Dąbrowski, P.; Cetner, M.D.; Samborska, I.A.; Łukasik, I.; Brestic, M.; Zivcak, M.; Tomasz, H.; Mojski, J.; Kociel, H.; et al. A Comparison between Different Chlorophyll Content Meters under Nutrient Deficiency Conditions. J. Plant Nutr. 2017, 40, 1024–1034. [Google Scholar] [CrossRef]
- Garnier, E.; Cordonnier, P.; Guillerm, J.-L.; Sonié, L. Specific Leaf Area and Leaf Nitrogen Concentration in Annual and Perennial Grass Species Growing in Mediterranean Old-Fields. Oecologia 1997, 111, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Vergara-Díaz, O.; Zaman-Allah, M.A.; Masuka, B.; Hornero, A.; Zarco-Tejada, P.; Prasanna, B.M.; Cairns, J.E.; Araus, J.L. A Novel Remote Sensing Approach for Prediction of Maize Yield Under Different Conditions of Nitrogen Fertilization. Front. Plant Sci. 2016, 7, 666. [Google Scholar] [CrossRef] [PubMed]
- Brodribb, T.J.; Jordan, G.J.; Carpenter, R.J. Unified Changes in Cell Size Permit Coordinated Leaf Evolution. New Phytol. 2013, 199, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Lynch, J.P. Reduced Crown Root Number Improves Water Acquisition under Water Deficit Stress in Maize (Zea mays L.). J. Exp. Bot. 2016, 67, 4545–4557. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Bosquet, L.; Sánchez, C.; Araus, J.L. How Yield Relates to Ash Content, Δ13C and Δ18O in Maize Grown under Different Water Regimes. Ann. Bot. 2009, 104, 1207–1216. [Google Scholar] [CrossRef]
- Araus, J.L.; Cabrera-Bosquet, L.; Serret, M.D.; Bort, J.; Nieto-Taladriz, M.T. Comparative Performance of Δ13C, Δ18O and Δ15N for Phenotyping Durum Wheat Adaptation to a Dryland Environment. Funct. Plant Biol. 2013, 40, 595. [Google Scholar] [CrossRef]
- Araus, J.L.; Serret, M.D.; Edmeades, G.O. Phenotyping Maize for Adaptation to Drought. Front. Physiol. 2012, 3, 305. [Google Scholar] [CrossRef]
- Yousfi, S.; Serret, M.D.; Araus, J.L. Shoot Δ15N Gives a Better Indication than Ion Concentration or Δ13C of Genotypic Differences in the Response of Durum Wheat to Salinity. Funct. Plant Biol. 2009, 36, 144. [Google Scholar] [CrossRef]
- Yousfi, S.; Serret, M.D.; Márquez, A.J.; Voltas, J.; Araus, J.L. Combined Use of δ13C, δ18O and δ15N Tracks Nitrogen Metabolism and Genotypic Adaptation of Durum Wheat to Salinity and Water Deficit. New Phytol. 2012, 194, 230–244. [Google Scholar] [CrossRef]
- Ali, M.L.; Luetchens, J.; Singh, A.; Shaver, T.M.; Kruger, G.R.; Lorenz, A.J. Greenhouse Screening of Maize Genotypes for Deep Root Mass and Related Root Traits and Their Association with Grain Yield under Water-Deficit Conditions in the Field. Euphytica 2016, 207, 79–94. [Google Scholar] [CrossRef]
- Lynch, J.P. Steep, Cheap and Deep: An Ideotype to Optimize Water and N Acquisition by Maize Root Systems. Ann. Bot. 2013, 112, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Chairi, F.; Sanchez-Bragado, R.; Serret, M.D.; Aparicio, N.; Nieto-Taladriz, M.T.; Luis Araus, J. Agronomic and Physiological Traits Related to the Genetic Advance of Semi-Dwarf Durum Wheat: The Case of Spain. Plant Sci. 2020, 295, 110210. [Google Scholar] [CrossRef] [PubMed]
- El Hassouni, K.; Alahmad, S.; Belkadi, B.; Filali-Maltouf, A.; Hickey, L.T.; Bassi, F.M. Root System Architecture and Its Association with Yield under Different Water Regimes in Durum Wheat. Crop. Sci. 2018, 58, 2331–2346. [Google Scholar] [CrossRef]
Traits | Combined Analysis | Water Deficit (45%) | Full Irrigation (100%) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lines | Testers | Hybrids | C | Lines | Testers | Hybrids | C | ||||||||||
G | WR | G × WR | I | II | III | IV | I | II | III | IV | |||||||
PH | ** | ** | ns | 0.70 | ±0.33 ** | 0.35 | ±0.23 ns | 1.01 | ±0.39 ns | ** | 1.31 | ±0.37 ** | 0.84 | ±0.35 ns | 1.39 | ±0.29 ** | ** |
LDM | ** | ** | ns | 5.12 | ±0.73 ** | 2.52 | ±0.91 ns | 8.57 | ±1.15 ** | ** | 8.98 | ±1.28 * | 5.65 | ±0.54 ns | 11.20 | ±1.32 ns | ** |
SDM | ** | ** | ns | 5.51 | ±0.86 ** | 1.43 | ±0.31 ** | 9.06 | ±1.43 ** | ** | 12.76 | ±1.45 ** | 5.94 | ±0.69 ns | 14.73 | ±1.77 ns | ** |
ODM | ** | ** | ns | 5.86 | ±1.67 ** | 0.07 | ±0.42 ns | 13.71 | ±2.03 ns | ** | 16.06 | ±1.91 * | 7.80 | ±1.16 ns | 24.10 | ±2.40 ns | ** |
CHL | ** | * | ns | 25.85 | ±1.82 ** | 23.63 | ±1.27 ns | 41.37 | ±1.97 * | ** | 41.57 | ±1.50 ** | 37.04 | ±1.66 ns | 46.45 | ±1.98 ns | ** |
FLAV | ** | ns | ns | 0.57 | ±0.32 ns | 0.62 | ±0.26 ns | 0.63 | ±0.21 ** | * | 0.63 | ±0.26 * | 0.66 | ±0.20 ns | 0.65 | ±0.22 ** | ns |
ANTH | ** | * | ns | 0.20 | ±0.17 ** | 0.22 | ±0.10 * | 0.14 | ±0.21 ns | ** | 0.15 | ±0.08 ** | 0.17 | ±0.14 ns | 0.13 | ±0.14 ns | ** |
SLA | ** | * | ** | 211.74 | ±4.07 ** | 226.87 | ±5.04 ns | 183.41 | ±3.78 ns | ** | 172.95 | ±3.32 * | 184.26 | ±4.61 ns | 176.18 | ±0.56 * | ns |
Traits | Combined Analysis | Water Deficit (45%) | Full Irrigation (100%) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Line | Testers | Hybrids | C | Line | Testers | Hybrids | C | ||||||||||
G | WR | G × WR | I | II | III | IV | I | II | III | IV | |||||||
DSD | ** | ns | ns | 76.02 | ±3.87 ns | 84.61 | ±4.52 ns | 62.87 | ±3.33 ns | ** | 62.04 | ±3.46 ns | 68.35 | ±1.97 * | 59.30 | ±3.21 ns | ns |
BSD | ** | ns | ns | 103.07 | ±4.18 ns | 99.42 | ±4.47 ns | 86.21 | ±3.35 ns | ** | 87.54 | ±4.04 ns | 94.30 | ±1.54 ns | 32.45 | ±3.80 ns | ns |
DSI | ns | ns | ns | 22.81 | ±2.23 ns | 23.86 | ±1.18 ns | 19.71 | ±1.85 ns | ** | 19.88 | ±1.92 ns | 20.86 | ±0.84 * | 35.87 | ±2.54 ns | ns |
BSI | ns | ns | ns | 28.14 | ±1.93 ns | 27.76 | ±2.17 ns | 26.05 | ±1.81 ns | ns | 26.55 | ±1.83* | 26.06 | ±1.00 ns | 41.49 | ±2.77 ns | ns |
ET | ** | ** | ns | 3.33 | ±0.70 ** | 1.96 | ±0.93 ns | 6.03 | ±1.14 ns | ** | 9.58 | ±0.85** | 6.73 | ±0.85 ns | 45.83 | ±1.25 ns | ** |
RWC | ** | ns | ns | 85.76 | ±2.35 ns | 86.91 | ±1.26 ns | 89.56 | ±2.03 ns | * | 85.82 | ±1.83 ns | 87.89 | ±1.39 ns | 25.44 | ±2.11 ns | ns |
WUE | ** | ** | ** | 4.54 | ±0.83 ** | 2.33 | ±1.24 ns | 5.18 | ±0.58 ns | ** | 3.87 | ±0.71 ns | 2.86 | ±0.54 ns | 36.88 | ±0.14 ns | ** |
δ13C | ** | ** | ns | −14.24 | ±0.49 ns | −14.66 | ±0.59 ns | −14.13 | ±0.47 ns | ** | −14.00 | ±0.58 ns | −13.83 | ±0.30 ns | 23.16 | ±0.45 ns | * |
Ntotal dm (%) | ** | ** | ** | 2.59 | ±0.46 * | 2.48 | ±0.42 ns | 3.18 | ±0.51 ** | ** | 3.23 | ±0.52 ns | 3.58 | ±0.21 * | 3.45 | ±0.67 * | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamêgo, D.L.; Amaral Junior, A.T.d.; Kamphorst, S.H.; Lima, V.J.d.; Silva, S.P.d.; Figueiredo, J.d.S.; Oliveira, U.A.d.; Viana, F.N.; Santos, T.d.O.; Gonçalves, G.R.; et al. Gene Effect of Morphophysiological Traits in Popcorn (Zea mays L. var. everta) Grown Under Contrasting Water Regimes. Agriculture 2024, 14, 2157. https://doi.org/10.3390/agriculture14122157
Lamêgo DL, Amaral Junior ATd, Kamphorst SH, Lima VJd, Silva SPd, Figueiredo JdS, Oliveira UAd, Viana FN, Santos TdO, Gonçalves GR, et al. Gene Effect of Morphophysiological Traits in Popcorn (Zea mays L. var. everta) Grown Under Contrasting Water Regimes. Agriculture. 2024; 14(12):2157. https://doi.org/10.3390/agriculture14122157
Chicago/Turabian StyleLamêgo, Danielle Leal, Antônio Teixeira do Amaral Junior, Samuel Henrique Kamphorst, Valter Jário de Lima, Samuel Pereira da Silva, Jardel da Silva Figueiredo, Ueliton Alves de Oliveira, Flávia Nicácio Viana, Talles de Oliveira Santos, Gabriella Rodrigues Gonçalves, and et al. 2024. "Gene Effect of Morphophysiological Traits in Popcorn (Zea mays L. var. everta) Grown Under Contrasting Water Regimes" Agriculture 14, no. 12: 2157. https://doi.org/10.3390/agriculture14122157
APA StyleLamêgo, D. L., Amaral Junior, A. T. d., Kamphorst, S. H., Lima, V. J. d., Silva, S. P. d., Figueiredo, J. d. S., Oliveira, U. A. d., Viana, F. N., Santos, T. d. O., Gonçalves, G. R., Souza, G. A. R. d., Campostrini, E., Viana, A. P., Freitas, M. S. M., Ramos, H. C. C., Souza Filho, G. A. d., & Rezende, C. E. d. (2024). Gene Effect of Morphophysiological Traits in Popcorn (Zea mays L. var. everta) Grown Under Contrasting Water Regimes. Agriculture, 14(12), 2157. https://doi.org/10.3390/agriculture14122157