Are Governmental Policies an Effective Way to Reduce Agricultural Carbon Emissions? An Empirical Study of Shandong in Main Grain Producing Areas of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Framework
2.3. Data Sources
2.4. Types and Clusters of Policies
2.5. Carbon Emission Calculation
2.6. Stages of Agricultural Development on Carbon Emissions
2.7. Policy Influences
3. Results
3.1. Agricultural Carbon Emissions
3.2. Stages of Agricultural Development on Carbon Emissions
3.3. Policy Influences
4. Discussion
4.1. Main Findings
4.2. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tubiello, F.N.; Salvatore, M.; Rossi, S.; Ferrara, A.; Fitton, N.; Smith, P. The FAOSTAT database of greenhouse gas emissions from agriculture. Environ. Res. 2013, 8, 015009. [Google Scholar] [CrossRef]
- Lal, R.; Kimble, J.M. Conservation tillage for carbon sequestration. Nutr. Cycl. Agroecosyst. 1997, 49, 243–253. [Google Scholar] [CrossRef]
- Liu, D.; Zhu, X.; Wang, Y. China’s agricultural green total factor productivity based on carbon emission: An analysis of evolution trend and influencing factors. J. Clean. Prod. 2021, 278, 123692. [Google Scholar] [CrossRef]
- Jaiswal, B.; Agrawal, M. Carbon Footprints of Agriculture Sector; Springer: Singapore, 2020; pp. 81–99. [Google Scholar]
- Rehman, A.; Alam, M.M.; Alvarado, R.; Işık, C.; Ahmad, F.; Cismas, L.M.; Pupazan, M.C.M. Carbonization and agricultural productivity in Bhutan: Investigating the impact of crops production, fertilizer usage, and employment on CO2 emissions. J. Clean. Prod. 2022, 375, 134178. [Google Scholar] [CrossRef]
- Haider, A.; Bashir, A.; ul Husnain, M.I. Impact of agricultural land use and economic growth on nitrous oxide emissions: Evidence from developed and developing countries. Sci. Total Environ. 2020, 741, 140421. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef]
- Fan, L.; Yuan, Y.; Ying, Z.; Lam, S.K.; Liu, L.; Zhang, X.; Liu, H.; Gu, B. Decreasing farm number benefits the mitigation of agricultural non-point source pollution in China. Environ. Sci. Pollut. Res. 2019, 26, 464–472. [Google Scholar] [CrossRef]
- Sun, W.; Canadell, J.G.; Yu, L.; Yu, L.; Zhang, W.; Smith, P.; Fischer, T.; Huang, Y. Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture. Glob. Change Biol. 2020, 26, 3325–3335. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, S.; Liu, Q.; Ding, J. Agricultural carbon emission efficiency evaluation and influencing factors in Zhejiang province, China. Front. Environ. Sci. 2022, 10, 1005251. [Google Scholar] [CrossRef]
- Yasmeen, R.; Tao, R.; Shah, W.U.H.; Padda, I.U.H.; Tang, C. The nexuses between carbon emissions, agriculture production efficiency, research and development, and government effectiveness: Evidence from major agriculture-producing countries. Environ. Sci. Pollut. Res. 2022, 29, 52133–52146. [Google Scholar] [CrossRef]
- Appiah, K.; Du, J.; Poku, J. Causal relationship between agricultural production and carbon dioxide emissions in selected emerging economies. Environ. Sci. Pollut. Res. 2018, 25, 24764–24777. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Zhang, X. Carbon reduction effect of agricultural green production technology: A new evidence from China. Sci. Total Environ. 2023, 874, 162483. [Google Scholar] [CrossRef] [PubMed]
- Fedoroff, N.V.; Cohen, J.E. Plants and population: Is there time? Proc. Natl. Acad. Sci. USA 1999, 96, 5903–5907. [Google Scholar] [CrossRef] [PubMed]
- Shan, T.; Xia, Y.; Hu, C.; Zhang, S.; Zhang, J.; Xiao, Y.; Dan, F. Analysis of regional agricultural carbon emission efficiency and influencing factors: Case study of Hubei Province in China. PLoS ONE 2022, 17, e0266172. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Salvatore, M.; Cóndor Golec, R.D.; Ferrara, A.; Rossi, S.; Biancalani, R.; Federici, S.; Jacobs, H.; Flammini, A. Agriculture, forestry and other land use emissions by sources and removals by sinks. Environ. Sci. Agric. Food Sci. 2014, 2, 4–89. [Google Scholar]
- Raihan, A.; Tuspekova, A. The nexus between economic growth, renewable energy use, agricultural land expansion, and carbon emissions: New insights from Peru. Energy Nexus 2022, 6, 100067. [Google Scholar] [CrossRef]
- Zhang, L.; Pang, J.; Chen, X.; Lu, Z. Carbon emissions, energy consumption and economic growth: Evidence from the agricultural sector of China’s main grain-producing areas. Sci. Total Environ. 2019, 665, 1017–1025. [Google Scholar] [CrossRef]
- Luo, Y.; Long, X.; Wu, C.; Zhang, J. Decoupling CO2 emissions from economic growth in agricultural sector across 30 Chinese provinces from 1997 to 2014. J. Clean. Prod. 2017, 159, 220–228. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, Y. Decoupling and decomposition analysis of agricultural carbon emissions: Evidence from Heilongjiang province, China. Int. J. Environ. Res. Public Health 2021, 19, 198. [Google Scholar] [CrossRef]
- Díaz, M.; Concepción, E.D.; Morales, M.B.; Alonso, J.C.; Azcárate, F.M.; Bartomeus, I.; Bota, G.; Brotons, L.; García, D.; Giralt, D. Environmental objectives of Spanish agriculture: Scientific guidelines for their effective implementation under the Common Agricultural Policy 2023–2030. Ardeola 2021, 68, 445–460. [Google Scholar] [CrossRef]
- Nsabiyeze, A.; Ma, R.; Li, J.; Luo, H.; Zhao, Q.; Tomka, J.; Zhang, M. Tackling Climate Change in Agriculture: A Global Evaluation of the Effectiveness of Carbon Emission Reduction Policies. J. Clean. Prod. 2024, 468, 142973. [Google Scholar] [CrossRef]
- Lehmann, E.E.; Menter, M. Public cluster policy and performance. J. Clean. Prod. 2018, 43, 558–592. [Google Scholar] [CrossRef]
- Cheng, P.; Tang, H.; Lin, F.; Kong, X.; Research, P. Bibliometrics of the nexus between food security and carbon emissions: Hotspots and trends. Environ. Sci. Pollut. Res. 2023, 30, 25981–25998. [Google Scholar] [CrossRef]
- Li, J.; Gao, M.; Luo, E.; Wang, J.; Zhang, X. Does rural energy poverty alleviation really reduce agricultural carbon emissions? The case of China. Energy Econ. 2023, 119, 106576. [Google Scholar] [CrossRef]
- Haughey, E.; Neogi, S.; Portugal-Pereira, J.; van Diemen, R.; Slade, R. Sustainable intensification and carbon sequestration research in agricultural systems: A systematic review. Environ. Sci. Policy 2023, 143, 14–23. [Google Scholar] [CrossRef]
- Accorsi, R.; Cholette, S.; Manzini, R.; Pini, C.; Penazzi, S. The land-network problem: Ecosystem carbon balance in planning sustainable agro-food supply chains. J. Clean. Prod. 2016, 112, 158–171. [Google Scholar] [CrossRef]
- Xu, T.; Kang, C.; Zhang, H. China’s efforts towards carbon neutrality: Does energy-saving and emission-reduction policy mitigate carbon emissions? J. Environ. Manag. 2022, 316, 115286. [Google Scholar] [CrossRef]
- Pazienza, P.; de Lucia, C. For a new plastics economy in agriculture: Policy reflections on the EU strategy from a local perspective. J. Clean. Prod. 2020, 253, 119844. [Google Scholar] [CrossRef]
- Duque-Acevedo, M.; Belmonte-Ureña, L.J.; Cortés-García, F.J.; Camacho-Ferre, F. Agricultural waste: Review of the evolution, approaches and perspectives on alternative uses. Glob. Ecol. Conserv. 2020, 22, e00902. [Google Scholar] [CrossRef]
- Rong, J.; Hong, J.; Guo, Q.; Fang, Z.; Chen, S. Path mechanism and spatial spillover effect of green technology innovation on agricultural CO2 emission intensity: A case study in Jiangsu Province, China. Ecol. Indic. 2023, 157, 111147. [Google Scholar] [CrossRef]
- Feng, Y.F.; Zhang, Y.; Wu, Z.D.; Ye, Q.L.; Cao, X. Evaluation of Agricultural Eco-Efficiency and Its Spatiotemporal Differentiation in China, Considering Green Water Consumption and Carbon Emissions Based on Undesired Dynamic SBM-DEA. Sustainability 2023, 15, 3361. [Google Scholar] [CrossRef]
- Zhu, Y.; Huo, C. The Impact of Agricultural Production Efficiency on Agricultural Carbon Emissions in China. Energies 2022, 15, 4464. [Google Scholar] [CrossRef]
- Taleb, M. Modelling environmental energy efficiency in the presence of carbon emissions: Modified oriented efficiency measures under polluting technology of data envelopment analysis. J. Clean. Prod. 2023, 414, 137743. [Google Scholar] [CrossRef]
- Li, G.Y.; Hou, C.P.; Zhou, X.J. Carbon Neutrality, International Trade, and Agricultural Carbon Emission Performance in China. Front. Environ. Sci. 2022, 10, 931937. [Google Scholar] [CrossRef]
- Cui, H.R.; Zhao, T.; Shi, H. STIRPAT-Based Driving Factor Decomposition Analysis of Agricultural Carbon Emissions in Hebei, China. Pol. J. Environ. Stud. 2018, 27, 1449–1461. [Google Scholar] [CrossRef]
- Wang, Q.; Su, M. Drivers of decoupling economic growth from carbon emission–an empirical analysis of 192 countries using decoupling model and decomposition method. Environ. Impact Assess. Rev. 2020, 81, 106356. [Google Scholar] [CrossRef]
- Bianco, V.; Cascetta, F.; Nardini, S. Analysis of the carbon emissions trend in European Union. A decomposition and decoupling approach. Sci. Total Environ. 2024, 909, 168528. [Google Scholar] [CrossRef] [PubMed]
- Ruffing, K. Indicators to measure decoupling of environmental pressure from economic growth. Metal. Int. 2007, 67, 211. [Google Scholar]
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef]
- Fischer-Kowalski, M.; Swilling, M. Decoupling Natural Resource Use and Environmental Impacts from Economic Growth; United Nations Environment Programme: Nairobi, Kenya, 2011. [Google Scholar]
- Hossain, M.; Chen, S. The decoupling study of agricultural energy-driven CO2 emissions from agricultural sector development. Int. J. Environ. Sci. Technol. 2022, 19, 4509–4524. [Google Scholar] [CrossRef]
- Liu, X.; Xin, Y. Exploring the characteristics and driving factors of coupling coordination of regional sustainable development: Evidence from China’s 31 provinces. Environ. Sci. Pollut. Res. 2022, 29, 71075–71099. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Fan, H.; Hou, H.; Xu, C.; Sun, L.; Li, Q.; Ren, J. Spatiotemporal evolution and multi-scale coupling effects of land-use carbon emissions and ecological environmental quality. Sci. Total Environ. 2024, 922, 171149. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Zheng, X.; Zheng, Y.; Zhang, Y.; Li, H. Coupling Coordination Development of the Ecological–Economic System in Hangzhou, China. Sustainability 2023, 15, 16570. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, H.; Qian, J.; Li, X.; Cao, C.; Feng, Z.; Cui, Y. Sustainable Land Use Diagnosis Based on the Perspective of Coupling Socioeconomy and Ecology in the Xiongan New Area, China. Land 2024, 13, 92. [Google Scholar] [CrossRef]
- Han, D.; Yu, D.; Qiu, J. Assessing coupling interactions in a safe and just operating space for regional sustainability. Nat. Commun. 2023, 14, 1369. [Google Scholar] [CrossRef] [PubMed]
- SHANDONG STATISTICAL YEARBOOK. Available online: http://tjj.shandong.gov.cn/col/col6279/index.html (accessed on 23 July 2024).
- West, T.; Marland, G. Net carbon flux from agricultural ecosystems: Methodology for full carbon cycle analyses. Environ. Pollut. 2002, 116, 439–444. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, W. A research of agricultural eco-efficiency measure in China and space-time differences. China Popul. Resour. Environ. 2016, 26, 11–19. [Google Scholar]
- Duan, H.; Zhang, Y.; Zhao, J.; Bian, X. Carbon footprint analysis of farmland ecosystem in China. J. Soil Water Conserv. 2011, 25, 203–208. [Google Scholar]
- Han, H.; Zhong, Z.; Guo, Y.; Xi, F.; Liu, S.; Research, P. Coupling and decoupling effects of agricultural carbon emissions in China and their driving factors. Environ. Sci. Pollut. Res. 2018, 25, 25280–25293. [Google Scholar] [CrossRef]
- Tang, Z. An integrated approach to evaluating the coupling coordination between tourism and the environment. Tour. Manag. 2015, 46, 11–19. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zhou, Y.; Shi, Y.; Zhu, X. Investigation of a coupling model of coordination between urbanization and the environment. J. Environ. Manag. 2012, 98, 127–133. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Wang, S.; Liu, Y.; Ma, H.; Liu, Q. Examining the relationship between urbanization and the eco-environment using a coupling analysis: Case study of Shanghai, China. Ecol. Indic. 2017, 77, 185–193. [Google Scholar] [CrossRef]
- Kai, Y.; Shuran, L.; Jiancun, G.; Lei, P. Research on the coupling degree measurement model of urban gas pipeline leakage disaster system. Int. J. Disaster Risk Reduct. 2017, 22, 238–245. [Google Scholar] [CrossRef]
- Li, E.; Cui, Z. Coupling coordination between China’s regional innovation capability and economic development. Sci. Geogr. Sin. 2018, 38, 1412–1421. [Google Scholar]
- Yang, Z.; Wu, Y.; Wang, F.; Chen, A.; Wang, Y. Spatial-temporal differences and influencing factors of coupling coordination between urban quality and technology innovation in the Guangdong-Hong Kong-Macao Greater Bay Area. PLoS ONE 2023, 18, e0289988. [Google Scholar] [CrossRef]
- He, H.; Ding, R.; Tian, X. Spatiotemporal characteristics and influencing factors of grain yield at the county level in Shandong Province, China. Nature 2022, 12, 12001. [Google Scholar] [CrossRef]
- Deng, F.; Jia, S.; Ye, M.; Li, Z.; Research, P. Coordinated development of high-quality agricultural transformation and technological innovation: A case study of main grain-producing areas, China. Environ. Sci. Pollut. Res. 2022, 29, 35150–35164. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.J.A. The effects of agricultural technology progress on agricultural carbon emission and carbon sink in China. Agriculture 2023, 13, 793. [Google Scholar] [CrossRef]
- Sun, D.; Ge, Y.; Zhou, Y. Punishing and rewarding: How do policy measures affect crop straw use by farmers? An empirical analysis of Jiangsu Province of China. Energy Policy 2019, 134, 110882. [Google Scholar] [CrossRef]
- He, J.; Zhou, W.; Guo, S.; Deng, X.; Song, J.; Xu, D. Environmental policy and farmers’ active straw return: Administrative guidance or economic reward and punishment. Environ. Dev. Sustain. 2023, 26, 1–24. [Google Scholar] [CrossRef]
- Cammarata, M.; Scuderi, A.; Timpanaro, G.; Cascone, G. Factors influencing farmers’ intention to participate in the voluntary carbon market: An extended theory of planned behavior. J. Environ. Manag. 2024, 369, 122367. [Google Scholar] [CrossRef] [PubMed]
Policy Category | Policies |
---|---|
Industrialization | Shandong Province Key Agricultural Industrialization Leading Enterprises (2006 to date) |
Farmers’ Professional Cooperatives (2007 to date) | |
Provincial Agricultural Standardization Production Bases (2015 to date); | |
Agricultural Production Entrustment (2017–2020) | |
Agricultural Industry Strong Towns (2018 to date) | |
Provincial Modern Agricultural Industrial Parks (2019 to date) | |
Modern Agriculture Strong Counties (2021 to date) | |
Agricultural Green Development Pilot Counties (2021 to date) | |
Agricultural Full Industry Chain Typical Counties (2022 to date) | |
Waste | Crop Straw Comprehensive Utilization (2008 to date) |
Services | Provincial Agricultural Production Development Funds (2009–2018) |
High-Yield Grain Creation Platform Construction (2016–2017) | |
Agricultural Production Disaster Relief Funds (2018–2020) | |
Establishment of Local Standards in Agriculture (2018–2020) | |
High-Quality Development | Green Grain Increase Model (2014–2016) |
Cultivated Land Quality Improvement (2014–2020) | |
Pesticide Reduction (2015 to date) | |
Provincial Ecological Cycle Agriculture (2016–2018) | |
Planting Structure Optimization (2016–2020) | |
Grain Field Water and Fertilizer Integration (2016 to date) | |
Fertilizer Reduction and Efficiency Increase (2016 to date) | |
Agricultural and Rural Pollution Control (2017 to date) | |
Organic Fertilizer Replacement of Chemical Fertilizer (2017 to date) | |
Green Cycle High-Quality and Efficient Feature Agriculture (2018) | |
Green and High-Quality Grain Creation (2019–2020) | |
Cultivated Land Rotation and Fallow System (2019–2020) | |
Provincial Agricultural Green Development Pilot Zones (2020) | |
Green Breeding and Farming Cycle Agriculture Pilot (2021 to date) | |
High-Standard Farmland Construction (2021 to date) | |
Mechanization | Facility Planting Mechanization (2021) |
Subsidies for Agricultural Machinery Purchase and Application (2022 to date) | |
Agricultural Oil Supply and Protection Activities for Farmers (2022 to date) | |
Technology | Agricultural Technology Promotion (2008 to date) |
Agricultural Technology Service Action (2022 to date) | |
Science | Science and Technology to the Countryside (2006 to date) |
Agricultural Science and Technology Awards (2008 to date) | |
Energy | Rural Biogas “Safety Production Month” (2017 to date) |
Product Quality | Pollution-Free Agricultural Product Production Sites (2004–2017) |
Agricultural Product Quality Safety Improvement Projects (2008–2016) | |
“Three Products and One Standard” (2013–2021) | |
Agricultural Supply-Side Structural Reform (2016–2018) | |
Intelligent Early Warning and Monitoring of Crop Pests and Diseases (2017 to date) |
Carbon Sources | Carbon Emission Coefficient | Reference | |
---|---|---|---|
Fertilizers | 0.90 kg C/kg | West and Marland [50] | |
Pesticides | 4.93 kg C/kg | West and Marland | |
Agricultural plastic film | 5.18 kg C/kg | Wang and Zhang [51] | |
Irrigation | 266.48 kg C/ha | Duan et al. [52] | |
Fertilizers | 0.90 kg C/kg | West and Marland | |
Agricultural machinery | Agricultural machinery total power | 0.18 kg C/kw | West and Marland |
Total sown area | 16.47 kg C/ha | West and Marland |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhu, J.; Wang, K.; Zhang, J. Are Governmental Policies an Effective Way to Reduce Agricultural Carbon Emissions? An Empirical Study of Shandong in Main Grain Producing Areas of China. Agriculture 2024, 14, 1940. https://doi.org/10.3390/agriculture14111940
Zhang Y, Zhu J, Wang K, Zhang J. Are Governmental Policies an Effective Way to Reduce Agricultural Carbon Emissions? An Empirical Study of Shandong in Main Grain Producing Areas of China. Agriculture. 2024; 14(11):1940. https://doi.org/10.3390/agriculture14111940
Chicago/Turabian StyleZhang, Yuchen, Jianghong Zhu, Ke Wang, and Jianjun Zhang. 2024. "Are Governmental Policies an Effective Way to Reduce Agricultural Carbon Emissions? An Empirical Study of Shandong in Main Grain Producing Areas of China" Agriculture 14, no. 11: 1940. https://doi.org/10.3390/agriculture14111940
APA StyleZhang, Y., Zhu, J., Wang, K., & Zhang, J. (2024). Are Governmental Policies an Effective Way to Reduce Agricultural Carbon Emissions? An Empirical Study of Shandong in Main Grain Producing Areas of China. Agriculture, 14(11), 1940. https://doi.org/10.3390/agriculture14111940