Investigating the Variation between Lignin Content and the Fracture Characteristics in Capsicum annuum Mutant Stems
Abstract
1. Introduction
2. Materials and Methods
2.1. Mutant Lines Involved in the Experiment
2.2. Determining the Lignin Content of the Stems
2.3. Determining the Rigidity of the Stems Using 3-Point Bending Fracture
2.4. Gene Expression
2.5. Statistical Analysis
3. Results
3.1. Comparative Analysis of Lignin Content and Breaking Value
3.2. Difference in Expression Levels of the Genes Playing a Role in Lignin Biosynthesis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Koukounaras, A. Advanced greenhouse horticulture: New technologies and cultivation practices. Horticulturae 2020, 7, 1. [Google Scholar] [CrossRef]
- Roychowdhury, R.; Tah, J. Mutagenesis—A potential approach for crop improvement. In Crop Improvement New Approaches and Modern Techniques; Springer: Berlin/Heidelberg, Germany, 2013; pp. 149–187. [Google Scholar] [CrossRef]
- Gautam, R.; Singh, P.K.; Kumar, P.; Selvakumar, R.; Singh, M.C.; Dhital, S.; Rani, M.; Sharma, V.K.; Jnapika, K.H.; Kumar, J. Advances in soilless cultivation technology of horticultural crops: Review. Indian J. Agric. Sci. 2021, 91, 503–508. [Google Scholar] [CrossRef]
- Xin, T.; Tian, H.; Ma, Y.; Wang, S.; Yang, L.; Li, X.; Zhang, M.; Chen, C.; Wang, H.; Li, H.; et al. Targeted creation of new mutants with compact plant architecture using CRISPR/Cas9 genome editing by an optimized genetic transformation procedure in cucurbit plants. Hortic. Res. 2022, 9, uhab086. [Google Scholar] [CrossRef] [PubMed]
- Nagai, K.; Mori, Y.; Ishikawa, S.; Furuta, T.; Gamuyao, R.; Niimi, Y.; Hobo, T.; Fukuda, M.; Kojima, M.; Takebayashi, Y.; et al. Antagonistic regulation of the gibberellic acid response during stem growth in rice. Nature 2020, 584, 109–114. [Google Scholar] [CrossRef]
- Leroux, O. Collenchyma: A versatile mechanical tissue with dynamic cell walls. Ann. Bot. 2020, 110, 1083–1098. [Google Scholar] [CrossRef]
- Zhong, R.; Taylor, J.J.; Ye, Z.H. Disruption of interfascicular fiber differentiation in an Arabidopsis mutant. Plant Cell 1997, 9, 2159–2170. [Google Scholar] [CrossRef] [PubMed]
- Driesen, E.; De Proft, M.; Saeys, W. Soil moisture levels affect the anatomy and mechanical properties of basil stems (Ocimum basilicum L.). Plants 2021, 10, 1320. [Google Scholar] [CrossRef]
- Kanahama, T.; Tsugawa, S.; Sato, M. Rigidity control mechanism by turgor pressure in plants. Sci. Rep. 2023, 13, 2063. [Google Scholar] [CrossRef]
- Dunn, G.J.; Briggs, K.G. Variation in culm anatomy among barley cultivars differing in lodging resistance. Can. J. Bot. 1989, 67, 1838–1843. [Google Scholar] [CrossRef]
- Huber, H.; de Brouwer, J.; von Wettberg, E.J.; During, H.J.; Anten, N.P.R. More cells, bigger cells or simply reorganization? Alternative mechanisms leading to changed internode architecture under contrasting stress regimes. New Phytol. 2014, 201, 193–204. [Google Scholar] [CrossRef]
- Bonawitz, N.D.; Kim, J.I.; Tobimatsu, Y.; Ciesielski, P.N.; Anderson, N.A.; Ximenes, E.; Maeda, J.; Ralph, J.; Donohoe, B.S.; Ladisch, M.; et al. Disruption of Mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant. Nature 2014, 509, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, A. Plant growth hormones in plants under low-temperature stress: A Review. In Physiological Processes in Plants under Low Temperature Stress; Springer: Berlin/Heidelberg, Germany, 2022; pp. 517–627. [Google Scholar] [CrossRef]
- Neutelings, G. Lignin variability in plant cell walls: Contribution of new models. Plant Sci. 2011, 181, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.; Ennos, A.R.; Turner, S.R. Cloning and characterization of irregular xylem4 (irx4): A severely lignin-deficient mutant of Arabidopsis. Plant J. 2001, 26, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Frei, M. Lignin: Characterization of a multifaceted crop component. Sci. World J. 2013, 2013, 436517. [Google Scholar] [CrossRef] [PubMed]
- Sewalt, V.J.; Ni, W.; Blount, J.W.; Jung, H.G.; Masoud, S.A.; Howles, P.A.; Dixon, R.A. Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase. Plant Physiol. 1997, 115, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Si, J.; Cui, X.; Peng, H.; Chen, X.; Xing, H.; Dou, D. The soybean cinnamate 4-hydroxylase gene GmC4H1 contributes positively to plant defense via increasing lignin content. Plant Growth Regul. 2019, 88, 139–149. [Google Scholar] [CrossRef]
- Meng, L.; Zhou, R.; Liang, L.; Zang, X.; Lin, J.; Wang, Q.; Wang, L.; Wang, W.; Li, Z.; Ren, P. 4-Coumarate-CoA ligase (4-CL) enhances flavonoid accumulation, lignin synthesis, and fruiting body formation in Ganoderma lucidum. Gene 2024, 899, 148147. [Google Scholar] [CrossRef]
- Song, J.L.; Wang, Z.Y.; Wang, Y.H.; Du, J.; Wang, C.Y.; Zhang, X.Q.; Chen, S.; Huang, X.L.; Xie, X.M.; Zhong, T.X. Overexpression of Pennisetum purpureum CCoAOMT contributes to lignin deposition and drought tolerance by promoting the accumulation of flavonoids in transgenic tobacco. Front. Plant Sci. 2022, 13, 884456. [Google Scholar] [CrossRef]
- Kim, Y.H.; Huh, G.H. Overexpression of cinnamyl alcohol dehydrogenase gene from sweetpotato enhances oxidative stress tolerance in transgenic Arabidopsis. Vitr. Cell. Dev. Biol. Plant 2019, 55, 172–179. [Google Scholar] [CrossRef]
- Bakeer, B.; Taha, I.; El-Mously, H.; Shehata, S.A. On the characterisation of structure and properties of sorghum stalks. Ain Shams Eng. J. 2013, 4, 265–271. [Google Scholar] [CrossRef]
- Wu, T.; Wang, X.; Kito, K. Effects of pressures on the mechanical properties of corn straw bio-board. Eng. Agric. Environ. Food 2015, 8, 123–129. [Google Scholar] [CrossRef]
- Chandio, F.A.; Changying, J.; Tagar, A.A.; Mari, I.A.; Guangzhao, T.; Cuong, D.M. Comparison of mechanical properties of wheat and rice straw influenced by loading rates. Afr. J. Biotechnol. 2013, 12, 1068–1077. [Google Scholar]
- Jiang, P.; Li, Y.; Li, J.; Meng, H.; Peng, X.; Zhang, B.; He, J.; Kan, Z. Experimental research on the bending and fracture characteristics of cotton stalk. Trans. ASABE 2021, 64, 1771–1779. [Google Scholar] [CrossRef]
- Galedar, M.N.; Jafari, A.; Mohtasebi, S.S.; Tabatabaeefar, A.; Sharifi, A.; O’dogherty, M.J.; Rafiee, S.; Richard, G. Effects of moisture content and level in the crop on the engineering properties of alfalfa stems. Biosyst. Eng. 2008, 101, 199–208. [Google Scholar] [CrossRef]
- Ismail, M.R.; Yassen, A.A.; Afify, M.S. Mechanical properties of rice straw fiber-reinforced polymer composites. Fibers Polym. 2011, 12, 648–656. [Google Scholar] [CrossRef]
- Gokul, K.; Prabhu, T.R.; Rajasekaran, T. Processing and evaluation of mechanical properties of sugarcane fiber reinforced natural composites. Trans. Indian Inst. Met. 2017, 70, 2537–2546. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, Q.; Xu, Y.; Li, P.; Chen, C.; Wu, S. Mechanical Testing of Tomato Plant Stem in Relation to Structural Composition. Agric. Res. 2016, 5, 236–245. [Google Scholar] [CrossRef]
- Ertsey-Peregi, K.; Füstös, Z.; Palotás, G.; Csilléry, G. Morphological and anatomical characterisation of the fragile plant-frx pepper mutant. In Proceedings of the XVIth EUCARPIA Capsicum and Eggplant Working Group Meeting in Memoriam Dr. Alain Palloix, Kecskemét, Hungary, 12–14 September 2016; Diamond Congress Ltd.: Budapest, Hungary, 2016; pp. 415–419. [Google Scholar]
- Csilléry, G. Alkalmasak-e a tti és a Pcx Mutánsok a Döntött Szárú Paprikatermesztésre? In XXVII. Növénynemesítési Tudományos Napok; Karsai, I., Bóna, L., Veisz, O., Polgár, Z., Mihály, R., Balla, K., Eds.; Összefoglaló Kötet; ELKH Agrártudományi Kutatóközpont Mezőgazdasági Intézet: Martonvásár, Hungary, 2021; pp. 1–66. [Google Scholar]
- Bergh, B.O.; Lippert, L.F. Six new mutant genes in the pepper: Capsicum annuum L. J. Hered. 1964, 55, 296–300. [Google Scholar] [CrossRef]
- Moreira-Vilar, F.C.; Siqueira-Soares, R.D.C.; Finger-Teixeira, A.; de Oliveira, D.M.D.; Ferro, A.P.; da Rocha, G.J.; Ferrarese, M.L.L.; Santos, W.D.; Ferrarese-Filho, O. The acetyl bromide method is faster, simpler and presents best recovery of lignin in different herbaceous tissues than Klason and thioglycolic acid methods. PLoS ONE 2014, 9, e110000. [Google Scholar] [CrossRef]
- Kokubo, A.; Kuraishi, S.; Sakurai, N. Culm Strength of Barley: Correlation among maximum bending stress, cell wall dimensions, and cellulose content. Plant Physiol. 1989, 91, 876–882. [Google Scholar] [CrossRef]
- Sakamoto, S.; Kamimura, N.; Tokue, Y.; Nakata, M.T.; Yamamoto, M.; Hu, S.; Masai, E.; Mitsuda, N.; Kajita, S. Identification of enzymatic genes with the potential to reduce biomass recalcitrance through lignin manipulation in Arabidopsis. Biotechnol. Biofuels 2020, 13, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, T. Lignin structure and morphological distribution in plant cell walls. In Lignin biodegradation: Microbiology, Chemistry, and Potential Applications; CRC Press: Boca Raton, FL, USA, 2018; pp. 2–19. [Google Scholar] [CrossRef]
- Zhong, R.; Cui, D.; Ye, Z.H. Secondary cell wall biosynthesis. New Phytol. 2019, 221, 1703–1723. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jin, M.; Luo, Y.; Chang, Y.; Zhu, J.; Li, Y.; Wang, Z. Effects of irrigation on stem lignin and breaking strength of winter wheat with different planting densities. Field Crops Res. 2022, 282, 108518. [Google Scholar] [CrossRef]
- Andersson-Gunnerås, S.; Mellerowicz, E.J.; Love, J.; Segerman, B.; Ohmiya, Y.; Coutinho, P.M.; Nilsson, P.; Henrissat, B.; Moritz, T.; Sundberg, B. Biosynthesis of cellulose-enriched tension wood in Populus: Global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. Plant J. 2006, 45, 144–165. [Google Scholar] [CrossRef]
- Pedersen, J.F.; Vogel, K.P.; Funnell, D.L. Impact of reduced lignin on plant fitness. Crop Sci. 2005, 45, 812–819. [Google Scholar] [CrossRef]
- Shen, Y.; Adnan, M.; Ma, F.; Kong, L.; Wang, M.; Jiang, F.; Hu, Q.; Yao, W.; Zhou, Y.; Zhang, M.; et al. A high-throughput phenotyping method for sugarcane rind penetrometer resistance and breaking force characterization by near-infrared spectroscopy. Plant Methods 2023, 19, 101. [Google Scholar] [CrossRef]
- Sabina, S.; Jithesh, M.N. Mechanical rubbing of tomato internode influence stem growth, improve tensile strength but negatively impact flavonoid levels. Adv. Hortic. Sci. 2020, 34, 373–380. [Google Scholar]
- Kamran, M.; Cui, W.; Ahmad, I.; Meng, X.; Zhang, X.; Su, W.; Chen, J.; Ahmad, S.; Fahad, S.; Han, Q.; et al. Effect of paclobutrazol, a potential growth regulator on stalk mechanical strength, lignin accumulation and its relation with lodging resistance of maize. Plant Growth Regul. 2018, 84, 317–332. [Google Scholar] [CrossRef]
- Zhang, C.B.; Chen, L.H.; Jiang, J. Why fine tree roots are stronger than thicker roots: The role of cellulose and lignin in relation to slope stability. Geomorphology 2014, 206, 196–202. [Google Scholar] [CrossRef]
- Köhler, L.; Spatz, H.C. Micromechanics of plant tissues beyond the linear-elastic range. Planta 2002, 215, 33–40. [Google Scholar] [CrossRef]
Primer | Sequence | TM (°C) | Expected Fragment Size |
---|---|---|---|
CaPAL Fw | gcagagtcattgaaaggtagcc | 55.9 °C | 168 bp |
CaPAL R | tgcatcctcagataactccact | 55.4 °C | |
CaC4H Fw | attatcctagcgctgccaattc | 56 °C | 219 bp |
CaC4H R | tatcagatttctccagagcccc | 55.3 °C | |
Ca4CL Fw | acctgatgtgaaaatccagcct | 56.7 °C | 178 bp |
Ca4CL R | gcaacacatcaacacgtcttca | 56.1 °C | |
CaCCoAMOT Fw | gttggtggactgattggctatg | 55.9 °C | 160 bp |
CaCCoAMOT R | gaagctggcagatttcgattct | 55.4 °C | |
CaCAD Fw | cgatgttaagcgcttcaaagtt | 54.1 °C | 157 bp |
CaCAD R | agtaactgtaccatccgtgtct | 55.2 °C |
Sample | Place | Lignin [% DW] | Breaking Force [N] |
---|---|---|---|
’Garai Fehér’ | Bottom | 8.06 ± 0.40 a | 24.85 ± 2.42 a |
Middle | 8.08 ± 0.23 a | 20.38 ± 1.96 a | |
Top | 10.31 ± 0.52 b | 11.29 ± 1.20 b | |
frx | Bottom | 3.17 ± 0.29 a | 7.63 ± 0.53 a |
Middle | 2.53 ± 0.25 a | 11.51 ± 1.17 b | |
Top | 3.05 ± 0.30 a | 5.88 ± 0.37 a | |
tti | Bottom | 7.98 ± 0.27 a | 11.65 ± 1.12 a |
Middle | 8.49 ± 0.33 a | 8.76 ± 0.80 a | |
Top | 8.36 ± 0.46 a | 3.89 ± 0.35 b | |
pfi | Bottom | 4.33 ± 0.37 a | 4.50 ± 0.36 a |
Middle | 4.63 ± 0.37 a | 2.32 ± 0.14 b | |
Top | 7.39 ± 0.26 b | 1.15 ± 0.10 c |
Lignin [% DW] | Breaking Force [N] | |
---|---|---|
Genotype (G) | 186.112 | 109.031 |
Stem region (Sr) | 20.851 | 38.400 |
G × Sr | 6.081 | 6.855 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pápai, B.; Kovács, Z.; Tóth-Lencsés, K.A.; Bedő, J.; Chan, K.N.; Kovács-Weber, M.; Pap, T.I.; Csilléry, G.; Szőke, A.; Veres, A. Investigating the Variation between Lignin Content and the Fracture Characteristics in Capsicum annuum Mutant Stems. Agriculture 2024, 14, 1771. https://doi.org/10.3390/agriculture14101771
Pápai B, Kovács Z, Tóth-Lencsés KA, Bedő J, Chan KN, Kovács-Weber M, Pap TI, Csilléry G, Szőke A, Veres A. Investigating the Variation between Lignin Content and the Fracture Characteristics in Capsicum annuum Mutant Stems. Agriculture. 2024; 14(10):1771. https://doi.org/10.3390/agriculture14101771
Chicago/Turabian StylePápai, Bánk, Zsófia Kovács, Kitti Andrea Tóth-Lencsés, Janka Bedő, Khin Nyein Chan, Mária Kovács-Weber, Tibor István Pap, Gábor Csilléry, Antal Szőke, and Anikó Veres. 2024. "Investigating the Variation between Lignin Content and the Fracture Characteristics in Capsicum annuum Mutant Stems" Agriculture 14, no. 10: 1771. https://doi.org/10.3390/agriculture14101771
APA StylePápai, B., Kovács, Z., Tóth-Lencsés, K. A., Bedő, J., Chan, K. N., Kovács-Weber, M., Pap, T. I., Csilléry, G., Szőke, A., & Veres, A. (2024). Investigating the Variation between Lignin Content and the Fracture Characteristics in Capsicum annuum Mutant Stems. Agriculture, 14(10), 1771. https://doi.org/10.3390/agriculture14101771