Insecticidal Potential of Matricaria chamomilla’s Essential Oil and Its Components (E)-β-Farnesene, Germacrene D, and α-Bisabolol Oxide A against Agricultural Pests, Malaria, and Zika Virus Vectors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Floral Processing and Oil Extraction
2.2. GC–MS Examination
2.3. Target Agricultural and Medical Pests
2.4. Larval Toxicity of Agricultural and Medical Pests
2.5. Biotoxicity of Non-Target Fauna (NTF)
2.6. Data Analysis
3. Results
3.1. GC–MS Analysis of M. Chamomilla EO
3.2. Larval Death Effect of M. chamomilla EO
3.3. Non-Target Effects of EOs and Mc-MPCs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nicoletti, M. Insect-Borne Diseases in 21st Century; AcademicPress: London, UK, 2020. [Google Scholar]
- Elumalai, K.; Mahboob, S.; Al-Ghanim, K.A.; Al-Misned, F.; Pandiyan, J.; Baabu, P.M.K.; Govindarajan, M. Entomofaunal survey and larvicidal activity of greener silver nanoparticles: A perspective for novel eco-friendly mosquito control. Saudi J. Biol. Sci. 2020, 27, 2917–2928. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Singhvi, R. Effects of chemical fertilizers and pesticides on human health and environment: A review. Int. J. Agric. Environ. Biotechnol. 2017, 10, 675–680. [Google Scholar] [CrossRef]
- Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A.S.; Kaushal, J. An extensive review on the consequences of chemical pesticides on human health and environment. J. Clean. Prod. 2021, 283, 124657. [Google Scholar] [CrossRef]
- Kalyabina, V.P.; Esimbekova, E.N.; Kopylova, K.V.; Kratasyuk, V.A. Pesticides: Formulants, distribution pathways and effects on human health—A review. Toxicol. Rep. 2021, 8, 1179–1192. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, M. Evaluation of Andrographis paniculata burm.f. (Family:Acanthaceae) extracts against Culex quinquefasciatus (say.) and Aedes aegypti (Linn.) (Diptera: Culicidae). Asian Pac. J. Trop. Med. 2011, 4, 176–181. [Google Scholar] [CrossRef] [Green Version]
- Benelli, G.; Chandramohan, B.; Murugan, K.; Madhiyazhagan, P.; Kovendan, K.; Panneerselvam, C.; Dinesh, D.; Govindarajan, M.; Higuchi, A.; Toniolo, C.; et al. Neem cake as a promising larvicide and adulticide against the rural malaria vector Anopheles culicifacies (Diptera: Culicidae): A HPTLC fingerprinting approach. Nat. Prod. Res. 2017, 31, 1185–1190. [Google Scholar] [CrossRef]
- Kamaraj, C.; Rahuman, A.A.; Bagavan, A. Antifeedant and larvicidal effects of plant extracts against Spodoptera litura (F.), Aedes aegypti L. and Culex quinquefasciatus Say. Parasitol. Res. 2008, 103, 325–331. [Google Scholar] [CrossRef]
- Krishnappa, K.; Elumalai, K. Chemical composition, larvicidal and ovicidal activities of essential oil from Clausena excavata against armyworm, Spodoptera litura (Fab.) (Lepidoptera:Noctuidae). Asian Pac. J. Trop. Biomed. 2012, 2, 1–6. [Google Scholar]
- Misra, H.P. Role of Botanicals, Biopesticides and Bioagents in Integrated Pest Management, in Odisha Review; College of Agriculture: Bhubaneswar, India, 2014; pp. 62–67. [Google Scholar]
- Namin, F.R.; Naseria, B.; Razmjouc, J. Nutritional performance and activity of some digestive enzymes of the cotton bollworm, Helicoverpa armigera, in response to seven tested bean cultivars. J. Insect. Sci. 2014, 14, 1–18. [Google Scholar] [CrossRef]
- Paulraj, M.G.; Ignacimuthu, S.; Gandhi, M.R.; Shaajahan, A.; Ganesan, P.; Packiam, S.M.; Al-Dhabi, N.A. Comparative studies of Tripolyphosphate and Glutaraldehyde cross-linked chitosan-botanical pesticide nanoparticles and their agricultural applications. Int. J. Biol. Macromol. 2017, 104, 1813–1819. [Google Scholar] [CrossRef]
- Elumalai, A.; Backiyaraj, M.; Kasinathan, D.; Mathivanan, T.; Krishnappa, K.; Elumalai, K. Pesticidal activity of Rivina humilis L. (Phytolaccaceae) against important agricultural polyphagous field pest Spodoptera litura (Fab.) (Lepidoptera:Noctuidae. J. Coast. Life Med. 2014, 2, 652–658. [Google Scholar]
- Selin-Rani, S.; Senthil-Nathan, S.; Revathi, K.; Chandrasekaran, R.; Thanigaivel, A.; Vasantha-Srinivasan, P.; Ponsankar, A.; Edwin, E.; Pradeepa, V. Toxicity of Alangium salvifolium Wang chemical constituents against the tobacco cutworm Spodoptera litura Fab. Pest. Biochem. Physiol. 2016, 126, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Manimegalai, T.; Raguvaran, K.; Kalpana, M.; Maheswaran, R. Green synthesis of silver nanoparticle using Leonotis nepetifolia and their toxicity against vector mosquitoes of Aedes aegypti and Culex quinquefasciatus and agricultural pests of Spodoptera litura and Helicoverpa armigera. Environ. Sci. Pollut. Res. 2020, 27, 43103–43116. [Google Scholar] [CrossRef] [PubMed]
- Krishnappa, K.; Dhanasekaran, S.; Elumalai, K. Larvicidal, ovicidal and pupicidal activities of Gliricidia sepium (Jacq.) (Leguminosae) against the malarial vector, Anopheles stephensi Liston (Culicidae: Diptera). Asian Pac. J. Trop. Med. 2012, 5, 598–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Govindarajan, M.; Rajeswary, M. Repellent properties of Pithecellobium dulce (Roxb.) Benth. (Family: Fabaceae) against filariasis vector, Culex quinquefasciatus Say (Diptera: Culicidae). J. Med. Herb. Ethnomed. 2015, 1, 103–107. [Google Scholar] [CrossRef]
- Govindarajan, M.; Hoti, S.L.; Benelli, G. Facile fabrication of eco-friendly nano-mosquitocides: Biophysical characterization and effectiveness on neglected tropical mosquito vectors. Enzy. Micro. Tech. 2016, 95, 155–163. [Google Scholar] [CrossRef]
- Benelli, G.; Govindarajan, M.; Kadaikunnan, S.; Alharbi, N.S. What kind of reducing botanical? High mosquitocidal efficacy of a silver nanocomposite synthesized using a leaf aqueous extract of Fumaria indica. J. Clust. Sci. 2017, 28, 637–643. [Google Scholar] [CrossRef]
- Rekha, R.; Vaseeharan, B.; Vijayakumar, S.; Abinaya, M.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Al-Anbr, M.N. Crustin-capped selenium nanowires against microbial pathogens and Japanese encephalitis mosquito vectors–Insights on their toxicity and internalization. J. Trace Elem. Med. Biol. 2019, 51, 191–203. [Google Scholar] [CrossRef]
- Albaba, S.U.; Nzelibe, H.C.; Inuwa, H.M.; Chintem, D.G.W.; Abdullahi, A.S.; Dingwoke, J.E. Larvicidal activity of Chromolaena odorata leaf extracts against Aedes vittatus mosquito. Inter. J. App. Res. Stud. 2015, 4, 1–6. [Google Scholar]
- Chen, L.H.; Wilson, M.E. Dengue and chikungunya infections in travelers. Curr. Opin. Infect. Dis. 2010, 23, 438–444. [Google Scholar] [CrossRef]
- Krishnappa, K.; Elumalai, K.; Dhanasekaran, S.; Gokulakrishnan, J. Larvicidal and phytochemical properties of Adansonia digitata against medically important human malarial vector mosquito Anopheles stephensi (Diptera:Culicidae). J. Vector Borne Dis. 2012, 49, 86–90. [Google Scholar] [PubMed]
- Thenmozhi, V.; Balaji, T.; Venkatasubramani, K.; Dhananjeyan, K.J.; Selvam, A.; Rajamannar, V.; Tyagi, B.K. Role of Anopheles subpictus Grassi in Japanese encephalitis virus transmission in Tirunelveli, South India. Indian J. Med. Res. 2016, 144, 477–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasan, B.; Mohammad, R.A.; Gholamreza, A.; Rasoul, Z.; Masoumeh, P.; Azam, B.; Fakhredin, T.; Seyed, H.M.K. Larvicidal properties of botanical extracts of Lawsonia inermis against Anopheles stephensi. Adv. Infect. Dis. 2014, 4, 178–185. [Google Scholar]
- Ishwarya, R.; Vaseeharan, B.; Anuradha, R.; Rekha, R.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Eco-friendly fabrication of Ag nanostructures using the seed extract of Pedalium murex, an ancient Indian medicinal plant: Histopathological effects on the Zika virus vector Aedes aegypti and inhibition of biofilm-forming pathogenic bacteria. J. Photochem. Photobiol. B Biol. 2017, 174, 133–143. [Google Scholar] [CrossRef]
- Govindarajan, M.; Benelli, G. One-pot green synthesis of silver nanocrystals using Hymenodictyon orixense: A cheap and effective tool against malaria, chikungunya and Japanese encephalitis mosquito vectors? RSC Adv. 2016, 6, 59021–59029. [Google Scholar] [CrossRef]
- Backiyaraj, M.; Elumalai, A.; Kasinathan, D.; Mathivanan, T.; Krishnappa, K.; Elumalai, K. Bioefficacy of Caesalpinia bonducella extracts against Tobacco cutworm, Helicoverpa armigera (Hub.) (Lepidoptera: Noctuidae). J. Coast. Life Med. 2014, 2, 382–388. [Google Scholar]
- Elumalai, K.; Krishnappa, K.; Pandiyan, J.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Barnard, D.R.; Vijayakumar, N.; Govindarajan, M. Characterization of secondary metabolites from Lamiaceae plant leaf essential oil: A novel perspective to combat medical and agricultural pests. Physiol. Mol. Plant Pathol. 2022, 117, 101752. [Google Scholar] [CrossRef]
- Benelli, G. Plant-mediated synthesis of nanoparticles: A newer and safer tool against mosquito-borne diseases? Asian Pac. J. Trop. Biomed. 2016, 6, 353–354. [Google Scholar] [CrossRef]
- Govindarajan, M.; Benelli, G. A facile one-pot synthesis of ecofriendly nanoparticles using Carissa carandas: Ovicidal and larvicidal potential on malaria, dengue and filariasis mosquito vectors. J. Clust. Sci. 2017, 28, 15–36. [Google Scholar] [CrossRef] [Green Version]
- Zahid, S.M.A.; Arshad, M.; Murtaza, G.; Ali, S.; Aaqib, M.; Yousaf, R.W.; Hussain, S. Synergistic effect of plant extracts with synthetic insecticides against citrus mealy bug Planococcus citri (Pseudococcodae:Homoptera). J. Agric. Soc. Stud. 2016, 1, 1–7. [Google Scholar]
- Benelli, G.; Pavela, R.; Canale, A.; Cianfaglione, K.; Ciaschetti, G.; Conti, F.; Nicoletti, M.; Senthil-Nathan, S.; Mehlhorn, H.; Maggi, F. Acute larvicidal toxicity of five essential oils (Pinus nigra, Hyssopus officinalis, Satureja montana, Aloysia citrodora and Pelargonium graveolens) against the filariasis vector Culex quinquefasciatus: Synergistic and antagonistic effects. Parasitol. Int. 2017, 66, 166–171. [Google Scholar] [CrossRef] [PubMed]
- El-Wakeil, N.E. Botanical pesticides and their mode of action. Gesunde. Pflanzen. 2013, 65, 125–149. [Google Scholar] [CrossRef]
- Alsalhi, M.S.; Elumalai, K.; Devanesana, S.; Govindarajan, M.; Krishnappa, K.; Maggi, F. The aromatic ginger Kaempferia galanga L. (Zingiberaceae) essential oil and its main compounds are effective larvicidal agents against Aedes vittatus and Anopheles maculatus without toxicity on the non-target aquatic fauna. Ind. Crop. Prod. 2020, 158, 113012. [Google Scholar] [CrossRef]
- Govindarajan, M.; Kadaikunnan, S.; Alharbi, N.S.; Benelli, G. Acute toxicity and repellent activity of the Origanum scabrum Boiss. & Heldr. (Lamiaceae) essential oil against four mosquito vectors of public health importance and its biosafety on non-target aquatic organisms. Environ. Sci. Pollut. Res. 2016, 23, 23228–23238. [Google Scholar]
- Baranitharan, M.; Krishnappa, K.; Elumalai, K.; Pandiyan, J.; Gokulakrishnan, J.; Kovendan, K.; Tamizhazhagan, V. Citrus limetta (Risso)—Borne compound as novel mosquitocides: Effectiveness against medical pest and acute toxicity on non-target fauna. S. Afr. J. Bot. 2020, 128, 218–224. [Google Scholar] [CrossRef]
- Krishnappa, K.; Baranitharan, M.; Elumalai, K.; Pandiyan, J. Larvicidal and repellant effects of Jussiaea repens (L.) leaf ethanol extract and its major phyto-constituent against important human vector mosquitoes (Diptera: Culicidae). Environ. Sci. Pollut. Rese. 2020, 27, 23054–23061. [Google Scholar] [CrossRef]
- Ali, A.; Tabanca, N.; Kurkcuoglu, M.; Duran, A.; Blythe, E.K.; Khan, I.A.; Baser, K.H. Chemical composition, larvicidal, and biting deterrent activity of essential oils of two subspecies of Tanacetum argenteum (Asterales: Asteraceae) and individual constituents against Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 2014, 51, 824–830. [Google Scholar] [CrossRef]
- Xin, C.L.; Qi, Y.L.; Ligang, Z.; Zhi, L.L. Larvicidal activity of essential oil derived from Illicium henryi Diels (Illiciaceae) leaf. Trop. J. Pharma. Res. 2015, 14, 111–116. [Google Scholar]
- Ali, A.; Tabanca, N.; Ozek, G.; Ozek, T.; Aytac, Z.; Bernier, U.R.; Agramonte, N.M.; Baser, K.H.C.; Khan, I.A. Essential Oils of Echinophora lamondiana (Apiales: Umbelliferae): A relationship between chemical profile and biting deterrence and larvicidal activity against mosquitoes (Diptera: Culicidae). J. Med. Entomol. 2015, 52, 93–100. [Google Scholar] [CrossRef]
- Maedeh, M.; Hamzeh, I.; Hossein, D.; Majid, A.; Reza, R.K. Bioactivity of essential oil from Zingiber officinale (Zingiberaceae) against three stored-product insect species. J. Essent. Oil Bear. Plants. 2012, 15, 122–133. [Google Scholar] [CrossRef]
- Sanei-Dehkordi, A.; Sedaghat, M.M.; Vatandoost, H.; Abai, M.R. Chemical Compositions of the peel essential oil of Citrus aurantium and its natural larvicidal activity against the malaria vector Anopheles stephensi (Diptera: Culicidae) in comparison with Citrus paradisi. J. Arthropod Borne Dis. 2016, 10, 577–585. [Google Scholar] [PubMed]
- Benelli, G.; Rajeswary, M.; Govindarajan, M. Towards green oviposition deterrents? Effectiveness of Syzygium lanceolatum (Myrtaceae) essential oil against six mosquito vectors and impact on four aquatic biological control agents. Environ. Sci. Pollut. Res. 2018, 25, 10218–10227. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, M.; Rajeswary, M.; Arivoli, S.; Tennyson, S.; Benelli, G. Larvicidal and repellent potential of Zingiber nimmonii (J. Graham) Dalzell (Zingiberaceae) essential oil: An eco-friendly tool against malaria, dengue, and lymphatic filariasis mosquito vectors? Parasitol. Res. 2016, 115, 1807–1816. [Google Scholar] [CrossRef]
- Benelli, G.; Govindarajan, M.; Rajeswary, M.; Senthilmurugan, S.; Vijayan, P.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M. Larvicidal activity of Blumea eriantha essential oil and its components against six mosquito species, including Zika virus vectors: The promising potential of (4E,6Z)-allo-ocimene, carvotanacetone and dodecyl acetate. Parasitol. Res. 2017, 116, 1175–1188. [Google Scholar] [CrossRef]
- Govindarajan, M.; Benelli, G. Artemisia absinthium-borne compounds as novel larvicides: Effectiveness against six mosquito vectors and acute toxicity on non-target aquatic organisms. Parasitol. Res. 2016, 115, 4649–4661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarma, R.; Adhikari, K.; Mahanta, S.; Khanikor, B. Insecticidal activities of Citrus aurantifolia essential oil against Aedes aegypti (Diptera: Culicidae). Toxicol. Rep. 2019, 14, 1091–1096. [Google Scholar] [CrossRef]
- Mahanta, S.; Sarma, R.; Khanikor, B. The essential oil of Lippia alba Mill (Lamiales: Verbenaceae) as mosquitocidal and repellent agent against Culex quinquefasciatus Say (Diptera: Culicidae) and Aedes aegypti Linn (Diptera: Culicidae). J. Basic Appl. Zool. 2019, 80, 64. [Google Scholar] [CrossRef] [Green Version]
- Amado, J.R.R.; Prada, A.L.; Diaz, J.G.; Souto, R.N.P.; Arranz, J.C.E.; de Souza, T.P. Development, larvicide activity, and toxicity in non-target species of the Croton linearis Jacq essential oil nanoemulsion. Environ. Sci. Pollut. Res. 2020, 27, 9410–9423. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.I. Text Book of Practical Organic Chemistry; The English Language Book Society and Longman: London, UK, 1978; p. 1368. [Google Scholar]
- WHO. Guidelines for Laboratory and Field Testing of Mosquito Larvicides. Communicable Disease Control, Prevention and Eradication, WHO Pesticide Evaluation Scheme. WHO/CDS/WHOPES/GCDPP/1.3; WHO: Geneva, Switzerland, 2005; Available online: https://apps.who.int/iris/bitstream/handle/10665/69101/WHO_CDS_WHOPES_GCDPP_2005.13.pdf;jsessionid=8C5384B7792F7DE9957BF90D576E3F11?sequence=1 (accessed on 31 May 2021).
- Sivagnaname, N.; Kalyanasundaram, M. Laboratory evaluation of methanolic extract of Atlantia monophylla (Family: Rutaceae) against immature stages of mosquitoes and non-target organisms. Mem. Inst. Oswaldo Cruz. 2004, 99, 115–118. [Google Scholar] [CrossRef] [Green Version]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–266. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis; Cambridge University: London, UK, 1971; pp. 68–78. [Google Scholar]
- Deo, P.G.; Hasan, S.B.; Majumdar, S.K. Toxicity and suitability of some insecticides for household use. Int. Pest Control. 1988, 30, 118–129. [Google Scholar]
- Gbolade, A.A.; Oyedele, A.O.; Sosan, M.B.; Adewayin, F.B.; Soyela, O.L. Mosquito repellent activities of essential oils from two Nigerian Ocimum species. J. Trop. Med. Plants 2000, 1, 146–148. [Google Scholar]
- Govindarajan, M. Evaluation of indigenous plant extracts against the malarial vector, Anopheles stephensi (Liston) (Diptera: Culicidae). Parasitol. Res. 2011, 109, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, M.; Rajeswary, M.; Benelli, G. δ-Cadinene, calarene and δ-4-carene from Kadsura heteroclita essential oil as novel larvicides against malaria, dengue and filariasis mosquitoes. Comb. Chem. High Throughput Screen. 2016, 19, 565–571. [Google Scholar] [CrossRef]
- Govindarajan, M.; Sivakumar, R.; Rajeswary, M.; Veerakumar, K. Mosquito larvicidal activity of thymol from essential oil of Coleus aromaticus Benth. against Culex tritaeniorhynchus, Aedes albopictus, and Anopheles subpictus (Diptera: Culicidae). Parasitol. Res. 2013, 112, 3713–3721. [Google Scholar] [CrossRef]
- Pereira Filho, A.A.; Pessoa, G.C.D.; Yamaguchi, L.F.; Stanton, M.A.; Serravite, A.M.; Pereira, R.H.M.; Neves, W.S.; Kato, M.J. Larvicidal activity of essential oils from piper species against strains of Aedes aegypti (Diptera: Culicidae) resistant to pyrethroids. Plant Sci. 2021, 12, 685864. [Google Scholar] [CrossRef]
- Hanem, K.; Doaa, E.S.; Abdelfattah, S.; Mustapha, D.; Mohamed, M.B. Larvicidal efficacy of fifteen plant essential oils against Culex pipiens L. mosquitoes in Egypt. Egypt. J. Vet. Sci. 2023, 54, 183–192. [Google Scholar]
- AlShebly, M.M.; AlQahtani, F.S.; Govindarajan, M.; Gopinath, K.; Vijayan, P.; Benelli, G. Toxicity of ar-curcumene and epi-β-bisabolol from Hedychium larsenii (Zingiberaceae) essential oil on malaria, chikungunya and St. Louis encephalitis mosquito vectors. Ecotoxicol. Environ. Saf. 2017, 137, 149–157. [Google Scholar] [CrossRef]
- Govindarajan, M.; Rajeswary, M.; Senthilmurugan, S.; Vijayan, P.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Larvicidal activity of the essential oil from Amomum subulatum Roxb. (Zingiberaceae) against Anopheles subpictus, Aedes albopictus and Culex tritaeniorhynchus (Diptera: Culicidae), and non-target impact on four mosquito natural enemies. Physiol. Mol. Plant Pathol. 2018, 101, 219–224. [Google Scholar] [CrossRef]
- Tiwary, M.; Naik, S.N.; Tewaryb, D.K.; Mittalc, P.K.; Yadavc, S. Chemical composition and larvicidal activities of the essential oil of Zanthoxylum armatum DC (Rutaceae) against three mosquito vectors. J. Vect. Born Dis. 2007, 44, 198–204. [Google Scholar]
- Khater, H.F.; Hanafy, A.; Abdel-Mageed, A.D.; Ramadan, M.Y.; El-Madawy, R.S. Control of the myiasis-producing fly, Lucilia sericata, with Egyptian essential oils. Int. J. Dermatol. 2011, 50, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Khater, H.F.; Ramadan, M.Y.; Mageid, A.D. In vitro control of the camel nasal botfly, Cephalopina titillator, with doramectin, lavender, camphor, and onion oils. Parasitol. Res. 2013, 112, 2503–2510. [Google Scholar] [CrossRef] [PubMed]
- Ruttanaphan, T.; Pluempanupat, W.; Aungsirisawat, C.; Boonyarit, P.; Goff, G.L.; Bullangpoti, V. Effect of Plant Essential Oils and Their Major Constituents on Cypermethrin Tolerance Associated Detoxification Enzyme Activities in Spodoptera litura (Lepidoptera: Noctuidae). J. Econ. Entomol. 2019, 23, 2167–2176. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Govindarajan, M.; AlSalhi, M.S.; Devanesan, S.; Maggi, F. High toxicity of camphene and γ-elemene from Wedelia prostrata essential oil against larvae of Spodoptera litura (Lepidoptera: Noctuidae). Environ. Sci. Pollut. Res. Int. 2018, 25, 10383–10391. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Govindarajan, M.; Rajeswary, M.; Vaseeharan, B.; Alyahya, S.A.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Maggi, F. Insecticidal activity of camphene, zerumbone and α-humulene from Cheilocostus speciosus rhizome essential oil against the Old-World bollworm, Helicoverpa armigera. Ecotoxicol. Environ. Saf. 2018, 148, 781–786. [Google Scholar] [CrossRef]
- Pavela, R. Essential oils from Foeniculum vulgare Miller as a safe environmental insecticide against the aphid Myzus persicae Sulzer. Environ. Sci. Pollut. Res. 2018, 25, 10904–10910. [Google Scholar] [CrossRef]
- Esan, V.; Elanchezhiyan, C.; Mahboob, S.; Al-Ghanim, K.A.; Al-Misned, F.; Ahmed, Z.; Elumalai, K.; Krishnappa, K.; Govindarajan, M. Toxicity of Trewia nudiflora-mediated silver nanoparticles on mosquito larvae and non-target aquatic fauna. Toxin. Rev. 2022, 41, 229–236. [Google Scholar] [CrossRef]
Peak | Compounds | RI Exp. a | RI Lit. b | Composition (%) | Mode of Identification c |
---|---|---|---|---|---|
1 | α-Thujene | 923 | 925 | 0.6 | RI, MS |
2 | α-Pinene | 934 | 933 | 2.1 | RI, MS |
3 | Sabinene | 970 | 968 | 0.9 | RI, MS |
4 | β-Pinene | 973 | 972 | 0.4 | RI, MS |
5 | Myrcene | 986 | 987 | 1.1 | RI, MS |
6 | α-Terpinene | 1013 | 1013 | 0.7 | RI, MS |
7 | ο-Cymene | 1021 | 1022 | 0.5 | RI, MS |
8 | Limonene | 1025 | 1024 | 0.8 | RI, MS |
9 | 1,8-Cineole | 1027 | 1026 | 0.4 | RI, MS |
10 | (Z)-β-Ocimene | 1034 | 1033 | 0.7 | RI, MS |
11 | (E)-β-Ocimene | 1045 | 1045 | 3.2 | RI, MS |
12 | γ-Terpinene | 1056 | 1056 | 0.9 | RI, MS |
13 | Terpinolene | 1086 | 1087 | 0.5 | RI, MS |
14 | Linalool | 1096 | 1096 | 0.4 | RI, MS |
15 | Menthone | 1156 | 1147 | 0.6 | RI, MS |
16 | Menthol | 1173 | 1165 | 0.8 | RI, MS |
17 | Methyl chavicol | 1196 | 1195 | 0.5 | RI, MS |
18 | Menthyl acetate | 1295 | 1293 | 0.3 | RI, MS |
19 | Tridecane | 1298 | 1300 | 0.4 | RI, MS |
20 | δ-Elemene | 1341 | 1338 | 1.8 | RI, MS |
21 | α-Isocomene | 1394 | 1386 | 0.5 | RI, MS |
22 | β-Elemene | 1396 | 1388 | 0.6 | RI, MS |
23 | (E)-Caryophyllene | 1426 | 1417 | 0.9 | RI, MS |
24 | β-Copaene | 1438 | 1430 | 0.6 | RI, MS |
25 | (E)-β-Farnesene | 1458 | 1457 | 24.3 | RI, MS |
26 | Germacrene D | 1486 | 1485 | 11.4 | RI, MS |
27 | β-Selinene | 1493 | 1486 | 0.9 | RI, MS |
28 | Bicyclogermacrene | 1501 | 1500 | 1.8 | RI, MS |
29 | (E,E)-α-Farnesene | 1507 | 1506 | 3.1 | RI, MS |
30 | γ-Cadinene | 1518 | 1514 | 0.2 | RI, MS |
31 | δ-Cadinene | 1526 | 1521 | 0.6 | RI, MS |
32 | (E)-Nerolidol | 1565 | 1563 | 0.9 | RI, MS |
33 | α-Bisabolol oxide B | 1662 | 1659 | 4.1 | RI, MS |
34 | α-Bisabolol | 1686 | 1685 | 3.2 | RI, MS |
35 | α-Bisabolone oxide A | 1688 | 1686 | 3.9 | RI, MS |
36 | Chamazulene | 1737 | 1734 | 5.3 | RI, MS |
37 | α-Bisabolol oxide A | 1751 | 1749 | 10.2 | RI, MS |
38 | (Z)-Spiroether | 1887 | 1878 | 4.8 | RI, MS |
39 | (E)-Spiroether | 1899 | 1890 | 0.6 | RI, MS |
95.5% |
Phytoconstituents | Concentration (µg/mL) | Mortality (%) ± SD | LC50 (µg/mL) (LCL-UCL) | LC90 (µg/mL) (LCL-UCL) | R Values | χ2 |
---|---|---|---|---|---|---|
Essential oil | 60 120 180 240 300 | 25.4 ± 1.2 33.3 ± 1.6 64.8 ± 1.4 75.7 ± 1.4 96.5 ± 1.2 | 146.82 (132.59–159.94) | 282.14 (261.12–310.28) | y = 1.46 + 0.01x | 7.650 * |
(E)-β-Farnesene | 8 16 24 32 40 | 33.4 ± 1.2 42.7 ± 1.4 72.1 ± 1.8 83.8 ± 1.6 100.0 ± 0.0 | 16.13 (8.16–21.14) | 33.42 (27.30–48.71) | y = 1.01 + 0.06x | 9.453 * |
Germacrene D | 10 20 30 40 50 | 31.4 ± 1.4 40.6 ± 1.8 64.8 ± 1.4 81.2 ± 1.4 97.4 ± 1.4 | 21.88 (19.25–24.21) | 45.35 (41.80–50.15) | y = 1.3 + 0.06x | 5.792 * |
α-Bisabolol oxide A | 12 24 36 48 60 | 25.6 ± 1.2 34.4 ± 1.4 58.5 ± 1.6 73.8 ± 1.2 94.7 ± 1.4 | 30.40 (27.42–33.16) | 59.45 (54.79–65.78) | y = 1.39 + 0.05x | 5.491 * |
Phytoconstituents | Concentration (µg/mL) | Mortality (%) ± SD | LC50 (µg/mL) (LCL-UCL) | LC90 (µg/mL) (LCL-UCL) | R Values | χ2 |
---|---|---|---|---|---|---|
Essential oil | 60 120 180 240 300 | 29.7 ± 1.2 35.9 ± 1.4 65.2 ± 1.6 76.4 ± 1.4 100.0 ± 0.0 | 138.25 (58.08–189.01) | 271.98 (213.80–477.73) | y = 1.07 + 7.51x | 15.052 * |
(E)-β-Farnesene | 8 16 24 32 40 | 33.3 ± 1.4 47.5 ± 1.6 72.6 ± 1.2 85.3 ± 1.8 100.0 ± 0.0 | 15.50 (13.38–17.31) | 32.72 (30.21–36.06) | y = 0.99 + 0.06x | 6.618 * |
Germacrene D | 10 20 30 40 50 | 30.3 ± 1.4 42.5 ± 1.4 68.6 ± 1.6 83.4 ± 1.2 97.2 ± 1.8 | 21.25 (18.64–23.53) | 43.89 (40.53–48.40) | y = 1.27 + 0.06x | 3.286 * |
α-Bisabolol oxide A | 12 24 36 48 60 | 27.2 ± 1.4 38.9 ± 1.4 65.5 ± 1.6 79.4 ± 1.6 94.6 ± 1.4 | 27.75 (24.65–30.53) | 56.32 (51.94–62.25) | y = 1.27 + 0.05x | 2.385 * |
Phytoconstituents | Concentration (µg/mL) | Mortality (%) ± SD | LC50 (µg/mL) (LCL-UCL) | LC90 (µg/mL) (LCL-UCL) | R Values | χ2 |
---|---|---|---|---|---|---|
Essential oil | 20 40 60 80 100 | 22.2 ± 1.2 34.4 ± 1.8 61.2 ± 1.6 72.4 ± 1.8 94.3 ± 1.4 | 51.52 (46.73–56.01) | 98.49 (90.99–108.61) | y = 1.45 + 0.03x | 4.561 * |
(E)-β-Farnesene | 3 6 9 12 15 | 33.7 ± 1.6 47.9 ± 1.4 74.4 ± 1.6 88.6 ± 1.8 100.0 ± 0.0 | 5.66 (4.89–6.32) | 11.80 (10.91–12.98) | y = 1.05 + 0.19x | 5.323 * |
Germacrene D | 5 10 15 20 25 | 34.4 ± 1.4 48.9 ± 1.6 78.5 ± 1.4 87.4 ± 1.4 97.5 ± 1.2 | 9.11 (7.67–10.31) | 20.27 (18.68–22.40) | y = 1.08 + 0.12x | 2.699 * |
α-Bisabolol oxide A | 6 12 18 24 30 | 31.9 ± 1.4 45.7 ± 1.2 72.3 ± 1.4 82.2 ± 1.4 94.3 ± 1.8 | 12.13 (10.31–13.66) | 27.25 (25.01–30.33) | y = 1.04 + 0.09x | 1.660 * |
Phytoconstituents | Concentration (µg/mL) | Mortality (%) ± SD | LC50 (µg/mL) (LCL-UCL) | LC90 (µg/mL) (LCL-UCL) | R Values | χ2 |
---|---|---|---|---|---|---|
Essential oil | 20 40 60 80 100 | 21.2 ± 1.4 34.3 ± 1.6 61.8 ± 1.8 70.6 ± 1.2 93.4 ± 1.4 | 52.28 (47.44–56.82) | 100.04 (92.34–110.47) | y = 1.44 + 0.03x | 4.821 * |
(E)-β-Farnesene | 3 6 9 12 15 | 32.7 ± 1.4 45.0 ± 1.4 68.2 ± 1.6 85.3 ± 1.4 100.0 ± 0.0 | 6.08 (5.31–6.74) | 12.53 (11.58–13.80) | y = 1.04 + 0.17x | 7.737 * |
Germacrene D | 5 10 15 20 25 | 27.4 ± 1.4 41.6 ± 1.8 67.7 ± 1.2 83.5 ± 1.0 98.6 ± 1.4 | 10.95 (9.77–12.02) | 21.48 (19.91–23.55) | y = 1.47 + 0.14x | 4.373 * |
α-Bisabolol oxide A | 6 12 18 24 30 | 26.4 ± 1.4 43.9 ± 1.6 68.7 ± 1.4 81.2 ± 1.8 96.4 ± 1.4 | 13.18 (11.65–14.54) | 26.77 (24.74–29.49) | y = 1.29 + 0.1x | 1.970 * |
Phytoconstituents | Concentration (µg/mL) | Mortality (%) ± SD | LC50 (µg/mL) (LCL-UCL) | LC90 (µg/mL) (LCL-UCL) | R Values | χ2 |
---|---|---|---|---|---|---|
Essential oil | 4000 8000 12,000 16,000 20,000 | 27.3 ± 1.8 42.8 ± 1.4 68.9 ± 1.4 80.4 ± 1.2 98.3 ± 1.6 | 8103.92 (7105.65–8975.10) | 16,523.20 (15,282.75–18,169.16) | y = 1.07 + 1.32x | 7.372 * |
(E)-β-Farnesene | 400 800 1200 1600 2000 | 26.5 ± 1.4 37.2 ± 1.6 60.2 ± 1.4 75.4 ± 1.8 100.0 ± 0.0 | 922.65 (637.71–1144.60) | 1715.78 (1436.83–2330.97) | y = 1.29 + 1.38x | 8.502 * |
Germacrene D | 500 1000 1500 2000 2500 | 23.2 ± 1.6 34.5 ± 1.4 60.3 ± 1.6 73.3 ± 1.2 98.6 ± 1.8 | 1204.23 (766.94–1542.01) | 2204.95 (1802.65–3259.21) | y = 1.31 + 1.06x | 11.744 * |
α-Bisabolol oxide A | 700 1400 2100 2800 3500 | 23.9 ± 1.6 31.5 ± 1.4 64.2 ± 1.6 73.2 ± 1.4 95.4 ± 1.8 | 1722.06 (1566.28–1867.07) | 3196.29 (2969.66–3494.83) | y = 1.6 + 9.45x | 7.163 * |
Phytoconstituents | Concentration (µg/mL) | Mortality (%) ± SD | LC50 (µg/mL) (LCL-UCL) | LC90 (µg/mL) (LCL-UCL) | R Values | χ2 |
---|---|---|---|---|---|---|
Essential oil | 4000 8000 12,000 16,000 20,000 | 32.4 ± 1.4 44.8 ± 1.6 68.4 ± 1.8 86.5 ± 1.4 100.0 ± 0.0 | 8799.01 (4622.01–11,532) | 17,745.02 (14,368.92–26,989.04) | y = 1.03 + 1.15x | 10.645 * |
(E)-β-Farnesene | 400 800 1200 1600 2000 | 25.4 ± 1.4 37.4 ± 1.8 64.6 ± 1.4 82.7 ± 1.6 100.0 ± 0.0 | 914.33 (439.80–1227.01) | 1768.56 (1406.97–2916.11) | y = 1.14 + 1.22x | 14.070 * |
Germacrene D | 500 1000 1500 2000 2500 | 24.2 ± 1.8 33.3 ± 1.4 64.8 ± 1.6 78.7 ± 1.4 100.0 ± 0.0 | 1185.05 (592.43–1587.49) | 2300.97 (1828.12–3845.47) | y = 1.1 + 8.88x | 13.742 * |
α-Bisabolol oxide A | 700 1400 2100 2800 3500 | 22.2 ± 1.8 34.2 ± 1.6 65.8 ± 1.4 76.4 ± 1.6 97.6 ± 1.8 | 1750.49 (1591.04–1899.49) | 3283.23 (3043.81–3601.54) | y = 1.56 + 9.08x | 5.791 * |
Treatment | Non-Target Organism (Terrestrial) | S. litura | H. armigera | Non-Target Organism (Aquatic) | Ae. vittatus | An. subpictus |
---|---|---|---|---|---|---|
Essential oil | S. sarasinorum | 55.19 | 58.61 | G. affinis | 170.78 | 168.30 |
(E)-β-Farnesene | S. sarasinorum | 57.20 | 59.52 | G. affinis | 161.54 | 150.38 |
Germacrene D | S. sarasinorum | 55.03 | 56.66 | G. affinis | 130.08 | 108.22 |
α-Bisabolol oxide A | S. sarasinorum | 56.64 | 62.05 | G. affinis | 144.31 | 132.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Ghanim, K.A.; Krishnappa, K.; Pandiyan, J.; Nicoletti, M.; Gurunathan, B.; Govindarajan, M. Insecticidal Potential of Matricaria chamomilla’s Essential Oil and Its Components (E)-β-Farnesene, Germacrene D, and α-Bisabolol Oxide A against Agricultural Pests, Malaria, and Zika Virus Vectors. Agriculture 2023, 13, 779. https://doi.org/10.3390/agriculture13040779
Al-Ghanim KA, Krishnappa K, Pandiyan J, Nicoletti M, Gurunathan B, Govindarajan M. Insecticidal Potential of Matricaria chamomilla’s Essential Oil and Its Components (E)-β-Farnesene, Germacrene D, and α-Bisabolol Oxide A against Agricultural Pests, Malaria, and Zika Virus Vectors. Agriculture. 2023; 13(4):779. https://doi.org/10.3390/agriculture13040779
Chicago/Turabian StyleAl-Ghanim, Khalid A., Kaliyamoorthy Krishnappa, Jeganathan Pandiyan, Marcello Nicoletti, Baskar Gurunathan, and Marimuthu Govindarajan. 2023. "Insecticidal Potential of Matricaria chamomilla’s Essential Oil and Its Components (E)-β-Farnesene, Germacrene D, and α-Bisabolol Oxide A against Agricultural Pests, Malaria, and Zika Virus Vectors" Agriculture 13, no. 4: 779. https://doi.org/10.3390/agriculture13040779