Participatory On-Farm Evaluation of Improved Groundnut Genotypes in the Guinea Savannah Agro-Ecological Zone of Ghana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Treatments, Experimental Design, Experimental Materials, Land Preparation, and Field Management
2.3. Data Collection and Analysis
2.3.1. Researcher-Managed Agronomic Data
2.3.2. Farmer Field Days, Farmer Participatory Evaluation, and Data Analysis
2.4. Economic Analysis
- B/C—Benefit Cost Ratio
- TB—Total Benefit
- TVC—Total Variable Cost
3. Results
3.1. Baseline Soil Analysis
3.2. Analysis of Variance
3.3. Relationship among Traits
3.4. Performance of the Genotypes
3.4.1. Number of Plants Established Two Weeks after Planting
3.4.2. Days to 50% Flowering
3.4.3. Days to Physiological Maturity
3.4.4. Number of Plants at Harvest
3.4.5. Number of Pods per Plant
3.4.6. Number of Seeds per Pod
3.4.7. Dry Pod Yield
3.4.8. Haulm Yield
3.4.9. Hundred-Seed Weight
3.4.10. Harvest Index
3.4.11. Principal Component Analysis and Cluster Analysis
3.4.12. Ranking of the Genotypes
3.4.13. Economic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Girei, A.; Dauna, Y.; Dire, B. An Economic Analysis of Groundnut (Arachis hypogea) Production in Hong Local Government Area of Adamawa State, Nigeria. J. Agric. 2013, 1, 84–89. Available online: http://sciencewebpublishing.net/jacr/archive/2013/December/pdf/Girei%20et%20al.pdf (accessed on 5 January 2023).
- Taphe, B.G.; Agbo, F.U.; Okorji, E.C. Resource productivity and technical efficiency of small-scale groundnut farmers in Taraba State, Nigeria. J. Biol. Agric. Healthc. 2015, 5, 25–35. [Google Scholar]
- United States Department of Agriculture. World Agricultural Production. Circular Series WAP 2–18. 2018. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/5q47rn72z/ws859g16b/rn301181z/worldag-production-02-08-2018.pdf (accessed on 23 January 2023).
- Gbèhounou, G.; Adango, E. Trap crops of Striga hermonthica: In vitro identification and effectiveness in situ. Crop Prot. 2003, 22, 395–404. [Google Scholar] [CrossRef]
- MoFA. Agriculture in Ghana Facts and Figures 2016. Available online: https://mofa.gov.gh/site/publications/research-reports/374-agriculture-in-ghana-facts-figures-2016 (accessed on 11 January 2023).
- FAOSTAT. FAOSTAT Online Database. 2016. Available online: www.fao.org/faostat/en/ (accessed on 30 October 2023).
- MoFA-SRID. Agriculture in Ghana: Facts and Figures 2017. In Statistics, Research, and Information Directorate (SRID); Ministry of Food and Agriculture (MoFA): Accra, Ghana, 2017. [Google Scholar]
- Angelucci, F.; Bazzucchi, A. Analysis of Incentives and Disincentives for Groundnuts in Ghana; Technical Notes Series; MAFAP, FAO: Rome, Italy, 2013; pp. 1–26. Available online: https://gatesopenresearch.org/documents/3-426 (accessed on 30 October 2023).
- Lal, C.; Radhakrishnan, T.; Mathur, R.K.; Manivel, P.; Samdur, M.Y.; Gor, H.K.; Chika, B.M. Evaluation of Groundnut Varieties for Yield and Quality Characters. Legume Res. 2006, 29, 102–105. [Google Scholar]
- Mokgehle, S.N.; Dakora, F.D.; Mathews, C. Variation in N2 fixation and N contribution by 25 groundnut (Arachis hypogaea L.) varieties grown in different agro-ecologies, measured using 15N natural abundance. Agric. Ecosyst. Environ. 2014, 195, 161–172. [Google Scholar] [CrossRef]
- Oteng-Frimpong, R.; Konlan, S.P.; Denwar, N.N. Evaluation of Selected Groundnut (Arachis hypogaea L.) Lines for Yield and Haulm Nutritive Quality Traits. Int. J. Agron. 2017, 2017, 7479309. [Google Scholar] [CrossRef]
- Singh, B.B.; Musa, A.; Ajeigbe, H.A.; Tarawali, S.A. Effect of Feeding Crop Residues of Different Cereals and Legumes on Weight Gain of Yankassa Rams. Int. J. Livest. Prod. 2011, 2, 17–23. Available online: http://www.academicjournals.org/IJLP (accessed on 30 October 2023).
- Ribadiya, N.K.; Savsani, H.H.; Patil, S.S.; Garg, D.D.; Gadariya, M.R.; Karangiya, V.K.; Gajera, A.P. Effect of feeding varying levels of groundnut haulms on feed intake and growth performance in broiler chickens. Vet. World 2015, 8, 139–142. [Google Scholar] [CrossRef]
- Ryan, J.; Spencer, D. Future Challenges and Opportunities for Agricultural R&D in the Semi-Arid Tropics. 2001. Available online: http://oar.icrisat.org/id/eprint/1107 (accessed on 5 January 2023).
- Ibrahim, M.; Florkowski, W.J.; Kolavalli, S. The Determinants of Farmer Adoption of Improved Peanut Varieties and Their Impact on Farm Income: Evidence from Northern Ghana. 2012. Available online: https://ideas.repec.org/p/ags/aaea12/125000.html (accessed on 30 October 2023).
- Doss, C.; Mwangi, W.; Verkuijl, H.; de Groote, H. Economics Working Paper 03-01. Adoption of Maize and Wheat Technologies in Eastern Africa: A Synthesis of the Findings of 22 Case Studies. Available online: www.cimmyt.org (accessed on 30 October 2023).
- Tadesse, D.; Ayalew, A.; Medhin, Z.G. Participatory on-farm evaluation of improved maize varieties in Chilga district of Northwestern Ethiopia. Int. J. Agric. For. 2014, 4, 402–407. [Google Scholar] [CrossRef]
- Bucheyeki, T.L.; Shenkalwa, E.M.; Mapunda, T.X.; Matata, L.W. On-Farm Evaluation of Promising Groundnut Varieties for Adaptation and Adoption in Tanzania. 2008. Available online: http://www.academicjournals.org/AJAR (accessed on 30 October 2023).
- Adjei-Nsiah, S.; Kuyper, T.W.; Leeuwis, C.; Abekoe, M.K.; Giller, K.E. Evaluating sustainable and profitable cropping sequences with cassava and four legume crops: Effects on soil fertility and maize yields in the forest/savannah transitional agro-ecological zone of Ghana. Field Crop. Res. 2007, 103, 87–97. [Google Scholar] [CrossRef]
- de Groote, H.; Siambi, M.; Friesen, D.; Diallo, A. Identifying Farmers’ Preferences for New Maize Varieties in Eastern Africa. In Quantitative Analysis of Data from Participatory Methods in Plant Breeding. Quant. Anal. Data Particip. Methods Plant Breed. 2002, 82–103. Available online: https://www.researchgate.net/publication/235733099 (accessed on 30 October 2023).
- EPA. EPA’s Report on the Environment (2003 Draft)|Environmental Assessment|US EPA. Available online: https://cfpub.epa.gov/ncea/cfm/eroe/recordisplay.cfm?deid=56830 (accessed on 11 January 2023).
- Tetteh, F.; Larbi, A.; Nketia, K.A.; Senayah, J.K.; Hoeschle-Zeledon, I.; Abdulrahman, N. Suitability of Soils for Cereal Cropping in Northern Ghana. 2016. Available online: http://africa-rising.net/ (accessed on 30 October 2023).
- Page, A.L.; Miller, R.H.; Keeney, D.R. Methods of Soil Analysis. Part 2; ASA Inc.: Madison, WI, USA, 2023. [Google Scholar]
- Bremner, J.M.; Keeney, D.R. Steam distillation methods for determination of ammonium, nitrate, and nitrite. Anal. Chim. Acta 1965, 32, 485–495. [Google Scholar] [CrossRef]
- Bray, R.H.; Kurtz, L.T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–45. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. Methods Soil Anal. Part 3 Chem. Methods 2015, 5, 539–579. [Google Scholar] [CrossRef]
- de Mendiburu, F.; Yaseen, M. Statistical Procedures for Agricultural Research. R Package Version 1.4.0. Agricolae. 2020. Available online: https://myaseen208.github.io/agricolae/https://cran.r-project.org/package=agricolae (accessed on 3 April 2023).
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Kaba, J.S.; Kumaga, F.K.; Ofori, K. Effect of Flower Production and Time of Flowering on Pod Yield of Peanut (Arachis hypogaea L.) Genotypes. 2014. Available online: www.iosrjournals.orgwww.iosrjournals.org (accessed on 30 October 2023).
- Coulibaly, M.A.; Ntare, B.R.; Gracen, V.E.; Danquah, E.Y.; Ofori, K.; Mahamane, A.S. Phenotyping groundnut genotypes to identify sources of earliness in niger. Int. J. Innov. Eng. Res. Technol. 2017, 4, 242. [Google Scholar]
- Martey, E.; Etwire, P.M.; Adogoba, D.S.; Tengey, T.K. Farmers’ preferences for climate-smart cowpea varieties: Implications for crop breeding programmes. Clim. Dev. 2022, 14, 105–120. [Google Scholar] [CrossRef]
- Sulochanamma, B.N.; Reddy, T.Y. Effect of Seed Size on Growth and Yield of Rainfed Groundnut. Legume Res.-Int. J. 2007, 30, 33–36. [Google Scholar]
- Swank, J.C.; Egli, D.B.; Pfeiffer, T.W. Seed Growth Characteristics of Soybean Genotypes Differing in Duration of Seed Fill. Crop Sci. 1987, 27, 85–89. [Google Scholar] [CrossRef]
- Khan, M.L.; Shankar, U. Effect of seed weight, light regime, and substratum microsite on germination and seedling growth of Quercus semiserrata Roxb. Only for academic use 118 Seed Germination and Seedling Growth in Oak. Trop. Ecol. 2001, 42, 117–125. Available online: https://www.researchgate.net/publication/236628018 (accessed on 30 October 2023).
- Elliott, R.H.; Mann, L.W.; Olfert, O.O. Effects of seed size and seed weight on seedling establishment, seedling vigour and tolerance of summer turnip rape (Brassica rapa) to flea beetles, Phyllotreta spp. Can. J. Plant Sci. 2007, 87, 385–393. [Google Scholar] [CrossRef]
- Talebi, R.; Fayaz, F.; Jelodar, N.A.B. Correlation and Path Coefficient Analysis of Yield and Yield Components of Chickpea (Cicer arientinum L.) under Dryland Conditions in the West of Iran. J. Plant Sci. 2007, 6, 1151–1154. Available online: https://agris.fao.org/agris-search/search.do?recordID=DJ2012050624 (accessed on 5 January 2023).
- Tambal, H.A.A.; Erskine, W.; Baalbaki, R.; Zaiter, H. Relationship of Flower and Pod Numbers Per Inflorescence with Seed Yield in Lentil. Exp. Agric. 2000, 36, 369–378. [Google Scholar] [CrossRef]
- Zhang, C.; Zheng, B.; He, Y. Improving Grain Yield via Promotion of Kernel Weight in High Yielding Winter Wheat Genotypes. Biology 2022, 11, 42. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Li, C.; Ma, B.; Shah, F.; Liu, Y.; Liao, Y. Genetic progress in wheat yield and associated traits in China since 1945 and future prospects. Euphytica 2014, 196, 155–168. [Google Scholar] [CrossRef]
- Lopes, M.S.; Reynolds, M.P.; Manes, Y.; Singh, R.P.; Crossa, J.; Braun, H.J. Genetic yield gains and changes in associated traits of CIMMYT spring bread wheat in a ‘Historic’ set representing 30 years of breeding. Crop Sci. 2012, 52, 1123–1131. [Google Scholar] [CrossRef]
- Rajanna, M.P.; Viswanatha, S.R.; Kulkarni, R.S.; Ramesh, S. Correlation and path analysis in soybean [Glycine max (L.) Merrill]. Crop Res. 2000, 20, 244–247. [Google Scholar]
- Martey, E.; Wiredu, A.N.; Oteng-Frimpong, R. Baseline Study of Groundnut in Northern Ghana Scholar; LAP Lambert Academic Publishing: Saarbrücken, Germany, 2015; Available online: https://www.researchgate.net/publication/321918124 (accessed on 30 October 2023).
- Ahiabor, B.D.K.; Fosu, M.; Atsu, E.; Tibo, I.; Sumaila, I. Integrated Soil Fertility Management for Increased Maize Production in the Degraded Farmlands of the Guinea Savanna Zone of Ghana Using Devil-Bean (Crotalaria retusa) and Fertilizer Nitrogen. Innov. Key Green Revolut. Afr. 2011, 183–189. [Google Scholar] [CrossRef]
- Nwankwo, I.I.M.; Akinbo, O.K.; Ikoro, A.I.; Orji, N.A.C.; Njoku, T.C. Evaluation of selected sweet potato landraces for high harvest index and high root yield indices for parental selection. Int. J. Agric. Policy Res. 2018, 6, 90–97. [Google Scholar] [CrossRef]
- Sharma-Natu, P.; Ghildiyal, M.C. Potential Targets for Improving Photosynthesis and Crop Yield. Curr. Sci. 2005, 88, 1918–1928. Available online: https://www.jstor.org/stable/24110618 (accessed on 7 January 2023).
- Asefa, G. The Role of Harvest Index in Improving Crop Productivity: A Review. J. Nat. Sci. Res. 2019, 31, 24–28. [Google Scholar] [CrossRef]
- Buah, S.S.J.; Kombiok, J.M.; Kanton, R.A.L.; Denwar, N.N.; Haruna, H.; Wiredu, A.N.; Abdulai, M.S. Participatory evaluation of drought tolerant maize varieties in the Guinea Savanna of Ghana using mother and baby trial design. J. Sci. Technol. 2013, 33, 12–23. [Google Scholar] [CrossRef]
- Getahun, A.; Atnaf, M.; Abady, S.; Degu, T.; Dilnesaw, Z. Participatory variety selection of soybean Glycine max (L.) Merrill) varieties under rainfed condition of Pawe district, north-western Ethiopia. Int. J. Appl. Sci. Math. 2016, 3, 40–43. [Google Scholar]
- Ojulong, H.; Letayo, E.; Sakwera, L.; Mgonja, F.; Sheunda, P.; Kibuka, J.; Otwani, D.; Audi, P.; Mgonja, M.; Manyasa, E.O. Participatory Variety Selection for Enhanced Promotion and adoption of improved finger millet varieties: A Case for Singida and Iramba Districts in Central Tanzania Formerly working with ICRISAT, but now with Alliance for a Green Revolution in Africa-Tanzania (AGRA-TZ). Afr. J. Rural. Dev. 2017, 2, 77–93. [Google Scholar]
- Worku, M.; De Groote, H.; Munyua, B.; Makumbi, D.; Owino, F.; Crossa, J.; Beyene, Y.; Mugo, S.; Jumbo, M.; Asea, G.; et al. On-Farm performance and farmers’ participatory assessment of new stress-tolerant maize hybrids in Eastern Africa. Field Crop. Res. 2020, 246, 107693. [Google Scholar] [CrossRef]
- Gwaze, F.R.; Mwale, M.; Chimonyo, M. Challenges encountered in conducting farmer-oriented livestock research among resource-limited farmers of Sub-Saharan Africa. Afr. J. Agric. Res. 2011, 6, 4840–4851. [Google Scholar]
- Amoako, O.A.; Adjebeng-Danquah, J.; Bidzakin, J.K.; Abdulai, H.; Kassim, B.Y.; Owusu, E.Y. Response of Improved Cowpea Varieties to Spacing in The Guinea Savannah Ecology of Ghana. J. Ghana Sci. Assoc. 2020, 19, 30–40. [Google Scholar]
Sources of Variation | Degrees of Freedom | NPLE | NPH | DF | DPM | NMP |
Replication | 2 | 650.90 | 203.57 | 0.19 | 3.76 | 11.61 |
Treatment | 6 | 359.87 *** | 175.27 * | 2.54 ** | 84.60 * | 53.99 *** |
Residual | 12 | 34.68 | 54.794 | 0.47 | 17.65 | 1.09 |
CV (%) | 3.14 | 4.06 | 2.58 | 4.4 | 3.96 | |
Sources of Variation | Degrees of Freedom | NSP | DPY | DHY | HSW | HI |
Replication | 2 | 0.01 | 32,897 | 60,999 | 9.78 | 10.183 |
Treatment | 6 | 0.024 NS | 1,093,068 *** | 282,527 *** | 38.50 ** | 35.192 *** |
Residual | 12 | 0.01 | 46,830 | 30,926 | 5.08 | 1.598 |
CV (%) | 6.07 | 5.50 | 5.70 | 5.83 | 2.26 |
Sources of Variation | Degrees of Freedom | NPLE | NPH | DF | DPM | NMP |
Replication | 2 | 3.00 | 18.47 | 0.90 | 0.33 | 4.91 |
Treatment | 6 | 169.86 ** | 162.44 ** | 8.60 *** | 79.60 * | 56.21 *** |
Residual | 12 | 26.667 | 25.09 | 0.79 | 20.06 | 3.17 |
CV (%) | 2.66 | 2.61 | 3.56 | 4.73 | 7.05 | |
Sources of Variation | Degrees of Freedom | NSP | DPY | DHY | HSW | HI |
Replication | 2 | 0.001 | 184,89 | 33,370 | 1.37 | 1.172 |
Treatment | 6 | 0.042 ** | 794,279 *** | 144,548 *** | 64.03 *** | 28.978 ** |
Residual | 12 | 0.007 | 94,081 | 11,399 | 2.178 | 4.87 |
CV (%) | 4.25 | 7.89 | 4.21 | 3.65 | 3.917 |
Genotype | Plant Stand | Earliness | Higher Pod Yield | Higher Haulm Yield | Higher Pod Number | Large Seed Size |
---|---|---|---|---|---|---|
ICGV 09926 | 3 | 7 | 6 | 5 | 7 | 4 |
ICGV 13864 | 7 | 3 | 2 | 2 | 2 | 2 |
ICGV-IS 13937 | 2 | 2 | 3 | 7 | 4 | 6 |
ICGV-IS 131090 | 6 | 4 | 4 | 1 | 3 | 5 |
ICGV-IS 13979 | 2 | 5 | 1 | 4 | 1 | 1 |
ICGV-IS 13842 | 5 | 1 | 5 | 3 | 5 | 3 |
Farmer’s variety | 4 | 6 | 7 | 6 | 6 | 7 |
2020 | 2021 | |||||||
---|---|---|---|---|---|---|---|---|
Varieties | Yield, kg ha−1 | Total Variable Cost USD | Net Returns USD | BC Ratio | Yield, kg ha−1 | Total Variable Cost USD | Net Returns USD | BC Ratio |
Farmer variety | 3236.53 | 725.45 | 1644.16 | 2.27 | 2966.28 | 699.15 | 1714.09 | 2.45 |
ICGV-IS 09926 | 3436.47 | 725.45 | 1790.54 | 2.47 | 3648.84 | 699.15 | 2269.39 | 3.25 |
ICGV-IS 131090 | 4479.97 | 725.45 | 2554.53 | 3.52 | 3975.19 | 699.15 | 2534.90 | 3.63 |
ICGV-IS 13842 | 3753.13 | 725.45 | 2022.38 | 2.79 | 3800.00 | 699.15 | 2392.37 | 3.42 |
ICGV-IS 13864 | 4693.67 | 725.45 | 2710.99 | 3.74 | 4401.55 | 699.15 | 2881.77 | 4.12 |
ICGV-IS 13937 | 3446.87 | 725.45 | 1798.15 | 2.47 | 3900.00 | 699.15 | 2473.73 | 3.54 |
ICGV-IS 13979 | 4488.03 | 725.45 | 2560.44 | 3.53 | 5022.48 | 699.15 | 3386.93 | 4.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amoako, O.A.; Oteng-Frimpong, R.; Yirzagla, J.; Kassim, Y.B.; Tengey, T.K.; Adogoba, D.S.; Mingle, M.; Alhassan, R.; Ibrahim, A.A. Participatory On-Farm Evaluation of Improved Groundnut Genotypes in the Guinea Savannah Agro-Ecological Zone of Ghana. Agriculture 2023, 13, 2249. https://doi.org/10.3390/agriculture13122249
Amoako OA, Oteng-Frimpong R, Yirzagla J, Kassim YB, Tengey TK, Adogoba DS, Mingle M, Alhassan R, Ibrahim AA. Participatory On-Farm Evaluation of Improved Groundnut Genotypes in the Guinea Savannah Agro-Ecological Zone of Ghana. Agriculture. 2023; 13(12):2249. https://doi.org/10.3390/agriculture13122249
Chicago/Turabian StyleAmoako, Ophelia Asirifi, Richard Oteng-Frimpong, Julius Yirzagla, Yussif Baba Kassim, Theophilus Kwabla Tengey, Desmond Sunday Adogoba, Mercy Mingle, Ramatu Alhassan, and Abdul Aleem Ibrahim. 2023. "Participatory On-Farm Evaluation of Improved Groundnut Genotypes in the Guinea Savannah Agro-Ecological Zone of Ghana" Agriculture 13, no. 12: 2249. https://doi.org/10.3390/agriculture13122249