Influence of Magnesium and Biostimulant on the Consumption Value and Harmful Nitrogen Compounds Content of Potato Tubers after Storage
Abstract
:1. Introduction
2. Materials and Methods
- -
- Evaluation date (A):immediately after harvest, after 6 months of storage;
- -
- Magnesium fertilization (B), MgO doses: 0, 30, 60, 90 kg ha−1;
- -
- Application of biostimulant (C): 0, 1.5, 3.0 L ha−1.
- Tendency to overcook (1 pt—unchanged surface, 4 pts—overcooked surface);
- Texture (1 pt—firm, 4 pts—soft);
- Mealiness (1 pt—not floury, 4 pts—loose);
- Moisture (1 pt—moist, 4 pts—dry);
- Flesh structure (1 pt—tender, 4 pts—rough).
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Devaux, A.; Kromann, P.; Ortiz, O. Potatoes for Sustainable Global Food Security. Potato Res. 2014, 57, 185–199. [Google Scholar] [CrossRef]
- Alamar, M.C.; Tosetti, R.; Landahl, S.; Bermejo, A.; Terry, L.A. Assuring potato tuber quality during storage: A future perspective. Front. Plant Sci. 2017, 8, 2034. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, F.; Wu, Y.; Hu, H.; Dai, X. Progress of potato staple food research and industry development in China. J. Integr. Agric. 2017, 16, 2924–2932. [Google Scholar] [CrossRef]
- Dederko-Kantowicz, P.; Przewodowski, W. Health-promoting properties of potatoes. Ziemn. Polski 2021, 31, 47–53. [Google Scholar]
- Tkaczyńska, A.; Rytel, E. Effect of red and purple flesh potato varieties on enzymatic darkening of tubers and antioxidant properties. Food Sci. Technol. Qual. 2022, 29, 85–99. [Google Scholar] [CrossRef]
- Zgórska, K. Use of potatoes for food and industrial purposes. Inż. Przetw. Spoż. 2013, 3, 5–9. [Google Scholar]
- Tian, J.; Chen, J.; Ye, X.; Chen, S. Health benefits of the potato affected by domestic cooking: A review. Food Chem. 2016, 202, 165–175. [Google Scholar] [CrossRef]
- Zarzecka, K.; Gugała, M. Selected Qualitative Characteristics of Edible Potato Tubers from the Podlasie Region. Bromtol. Chem. Toksykol. 2011, 44, 38–42. [Google Scholar]
- Singh, J.; Kaur, L.; Rao, M.A. Textural characteristics of raw and cooked potatoes. In Advances in Potato Chemistry and Technology; Singh, J., Kaur, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 475–501. [Google Scholar] [CrossRef]
- Lenartowicz, T.; Grudzińska, M.; Erlichowski, T. New potato varieties 2020. Ziemn. Polski 2020, 30, 3–5. [Google Scholar]
- Moens, L.; Van Wambekea, J.; De Laeta, E.; Van Ceunebroeckb, J.C.; Goosc, P.; Van Loeya, A.M.; Hendrickxa, M. Effect of postharvest storage on potato (Solanum tuberosum L.) texture after pulsed electric field and thermal treatments. IFSET 2021, 74, 102826. [Google Scholar] [CrossRef]
- Liszka-Skoczylas, M. Effect of potato plants (Solanum tuberosum L.) fertilization on content and quality of starch in tubers. Food Sci. Technol. Qual. 2020, 27, 31–46. [Google Scholar] [CrossRef]
- Belenkov, A.; Peliy, P.; Vasyukova, A.; Burlutskiy, V.; Borodina, E.; Diop, A.; Moskin, A. Impact of various cultivation technologies on productivity of potato (Solanum tuberosum) in central non-Cenozoic zone of Russia. Res. Crops 2020, 21, 512–519. [Google Scholar] [CrossRef]
- Nasir, M.W.; Toth, Z. Effect of Drought Stress on Potato Production: A Review. Agronomy 2022, 12, 635. [Google Scholar] [CrossRef]
- Torabian, S.; Farhangi-Abriz, S.; Qin, R.; Noulas, C.; Sathuvalli, V.; Charlton, B.; Loka, D.A. Potassium: A Vital Macronutrient in Potato Production-A Review. Agronomy 2021, 11, 543. [Google Scholar] [CrossRef]
- Abou Chehade, L.; Al Chami, Z.; De Pascali, S.A.; Cavoski, I.; Fanizzi, F.P. Biostimulants from food processing by-products: Agronomic, quality and metabolic impacts on organic tomato (Solanum lycopersicum L.). J. Sci. Food Agric. 2018, 98, 1426–1436. [Google Scholar] [CrossRef]
- Rouphael, Y.; Giordano, M.; Cardarelli, M.; Cozzolino, E.; Mori, M.; Kyriacou, M.; Colla, G. Plant-and seaweed-based extracts increase yield but differentially modulate nutritional quality of greenhouse spinach through biostimulant action. Agronomy 2018, 8, 126. [Google Scholar] [CrossRef]
- Selladurai, R.; Purakayastha, T.J. Effect of humic acid multinutrient fertilizers on yield and nutrient use efficiency of potato. J. Plant Nutr. 2016, 39, 949–956. [Google Scholar] [CrossRef]
- Szczepanek, M.; Pobereżny, J.; Wszelaczyńska, E.; Gościnna, K. Effect of Biostimulants and Storage on Discoloration Potential of Carrot. Agronomy 2020, 10, 1894. [Google Scholar] [CrossRef]
- Wszelaczyńska, E.; Pobereżny, J.; Kozera, W.; Knapowski, T.; Pawelzik, E.; Spychaj-Fabisiak, E. Effect of Magnesium Supply and Storage Time on Anti-Nutritive Compounds in Potato Tubers. Agronomy 2020, 10, 339. [Google Scholar] [CrossRef]
- Cakmak, I.; Yazici, A.M. Magnesium: A forgotten element in crop production. Better Crops 2010, 94, 23–25. [Google Scholar]
- Pawelzik, E.; Möller, K. Sustainable potato production worldwide: The challenge to assess conventional and organic production systems. Potato Res. 2014, 57, 273–290. [Google Scholar] [CrossRef]
- Senbayram, M.; Gransee, A.; Wahle, V.; Thiel, H. Role of magnesium fertilisers in agriculture: Plant–soil continuum. Crop Pasture Sci. 2015, 66, 1219–1229. [Google Scholar] [CrossRef]
- Hassan, H.; Abdelaziz, S.M.; Mohamed, H.A.I.; Gaafer, M.A.; El-Tawashy, M.K.F. Ameliorative Impact of Calcium-Magnesium and Calcium-Zinc Rich Products on Potato Growth, Tuber Yield and Quality in Newly Reclaimed Soil. J. Plant Prod. 2023, 14, 219–223. [Google Scholar] [CrossRef]
- Gerendás, J.; Führs, H. The significance of magnesium for crop quality. Plant Soil 2013, 368, 101–128. [Google Scholar] [CrossRef]
- Wierzbowska, J.; Cwalina-Ambroziak, B.; Glosek, M.; Sienkiewicz, S. Effect of biostimulators on yield and selected chemical properties of potato tubers. J. Elem. 2015, 20, 3. [Google Scholar] [CrossRef]
- Caradonia, F.; Ronga, D.; Tava, A.; Francia, E. Plant Biostimulants in Sustainable Potato Production: An Overview. Potato Res. 2022, 65, 83–104. [Google Scholar] [CrossRef]
- Černý, I.; Pacuta, V.; Feckova, J.; Golian, J. Effect of year and Atonik application on the selected sugar beet production and quality parameters. J. Cent. Eur. Agric. 2002, 3, 15–22. [Google Scholar]
- Sawicka, B.; Michałek, W.; Pszczółkowski, P. Uwarunkowania potencjału plonowania średnio późnych i późnych odmian ziemniaka w warunkach środkowo—Wschodniej Polski. Biul. IHAR 2011, 259, 219–228. [Google Scholar] [CrossRef]
- Wszelaczyńska, E.; Pobereżny, J.; Keutgen, A.J.; Keutgen, N.; Gościnna, K.; Milczarek, D.; Tatarowska, B.; Flis, B. Antinutritional Nitrogen Compounds Content in Potato (Solanum tuberosum L.) Tubers Depending on the Genotype and Production System. Agronomy 2022, 12, 2415. [Google Scholar] [CrossRef]
- Voronov, E.V.; Terekhova, O.B.; Shashkarov, L.G.; Mefodiev, G.A.; Eliseeva, L.V.; Filippova, S.V.; Samarkin, A. Formation of yield and commodity qualities of potatoes, depending on the varietal characteristics. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Macau, China, 21–24 July 2019. [Google Scholar] [CrossRef]
- Hunjek, D.D.; Pranjić, T.; Repajić, M.; Levaj, B. Fresh-cut potato quality and sensory: Effect of cultivar, age, processing, and cooking during storage. J. Food Sci. 2020, 85, 2296–2309. [Google Scholar] [CrossRef]
- Retmańska, K.; Pobereżny, J.; Wszelaczyńska, E.; Gościnna, K.; Ropińska, P. Organoleptic characteristics and the total glycoalkaloid content of edible potato tubers depending on a cultivation technology and storage. J. Elem. 2023, 28, 7–25. [Google Scholar] [CrossRef]
- Czerko, Z.; Grudzińska, M. Influence of weather and storage conditions on sprouting of potato tubers. Biul. IHAR 2014, 271, 119–127. [Google Scholar] [CrossRef]
- Krochmal-Marczak, B.; Sawicka, B.; Krzysztofik, B.; Danilcenko, H.; Jariene, E. The Effects of Temperature on the Quality and Storage Stalibity of Sweet Potato (Ipomoea batatas L. [Lam]) Grown in Central Europe. Agronomy 2020, 10, 1665. [Google Scholar] [CrossRef]
- PN-ISO 10390; Chemical and Agricultural Analysis: Determining Soil pH. Polish Standards Committee: Warsa, Poland, 1997.
- Pietrzak, S.; Hołaj-Krzak, J.T. The content and stock of organic carbon in the soils of grasslands in Poland and the possibility of increasing its sequestration. J. Water Land Dev. 2022, 54, 68–76. [Google Scholar] [CrossRef]
- Trawczyński, C. Balance of nitrogen, phosphorus and potassium of the second rotation of crop rotation in organic production system on light soil. Fragm. Agron. 2015, 32, 87–96. [Google Scholar]
- PN-R-04023; Chemical and Agricultural Analysis-Determination of the Content of Available Phosphorus in Mineral Soil. Polish Standards Committee: Warsaw, Poland, 1996.
- PN-R-04022; Chemical and Agricultural Analysis-Determination of the Content Available Potassium in Mineral Soils. Polish Standards Committee: Warsaw, Poland, 1996.
- PN-R-04020; Chemical and Agricultural Analysis-Determination of the Content Available Magnesium. Polish Standards Committee: Warsaw, Poland, 1994.
- Roztropowicz, S.; Czerko, Z.; Głuska, A.; Goliszewski, W.; Gruczek, T.; Lis, B.; Lutomirska, B.; Nowacki, W.; Wierzejska-Bujakowska, A.; Zarzyńska, K.; et al. Methodology of observation, measurement and sampling in agrotechnical potato experiments. IHAR Radzików Branch Wyd. IHAR Jadwisin Pol. 1999, 37–39. [Google Scholar]
- PN-ES ISO 8586:2014-03; Sensory Analysis—General Guidelines for Selection, Training and Monitoring of Selected Evaluators and Sensory Evaluation Experts. Polish Standards Committee: Warsaw, Poland, 2014.
- Zgórska, K.; Czerko, Z.; Grudzińska, M. Effect of storage conditions on some culinary and technological characteristics of tubers of selected potato varieties. Zesz. Probl. Postępów Nauk Rol. 2006, 511, 567–578. [Google Scholar]
- Grudzińska, M.; Czerko, Z. Essential oils of peppermint and caraway as natural sprout inhibitors in potato tubers during storage and their effect on sensory quality after cooking. Ann. Umcs Sect. E Agric. 2016, LXXI, 1–12. [Google Scholar] [CrossRef]
- Komolka, P.; Górecka, D. Effect of heat treatment on structure of selected vegetables and fruit. Inż. Żywności 2017, 2, 67–73. [Google Scholar]
- Pyryt, B.; Kolenda, H. Characteristics of sensory quality of cooked tubers depending on potato variety and cooking method. Bromatol. Chem. Toksykol. 2009, 3, 386–390. [Google Scholar]
- Rytel, A.; Tajner-Czopek, A.; Kita, A.; Lisinska, G. Consistency of cooked potatoes and fried products depending on polysaccharide content. Zesz. Probl. Postępów Nauk Rol. 2006, 511, 601–609. [Google Scholar]
- Escuredo, O.; Seijo-Rodriguez, A.; Rodríguez-Flores, M.S.; Míguez, M.; Seijo, M.C. Influence of weather conditions on the physicochemical characteristics of potato tubers. Plant Soil Environ. 2018, 64, 317–323. [Google Scholar] [CrossRef]
- Trawczyński, C. Assessment of storage losses of tubers of new potato varieties depending on different weather conditions during vegetation. Agron. Sci. 2021, 76, 7–18. [Google Scholar] [CrossRef]
- Pardo, J.E.; Alvarruiz, A.; Perez, J.I.; Gomez, R.; Varon, R. Physical-chemical and sensory quality evaluation of potato varieties (Solanum tuberosum L.). J. Food Qual. 2000, 23, 149–160. [Google Scholar] [CrossRef]
- Felenji, H.; Aharizad, S.; Afsharmanesh, G.R.; Ahmadizadeh, M. Evaluating correlation and factor analysis of morphological traits in potato cultivars in fall cultivation of Jiroft Area. AEJAES 2011, 11, 679–684. [Google Scholar]
- Lopes, E.C.; Jadoski, S.O.; Saitos, L.R.; Ramos, M.S. Plant morphological characteristics and yield of potato cv. Ágata in function to fungicides application. Rev. Bras. Cienc. Agrar. 2013, 6, 37–46. [Google Scholar] [CrossRef]
- Zarzecka, K.; Gugała, M.; Mystkowska, I.; Baranowska, A.; Sikorska, A. Sensory quality of potato tubers depending on ugmax application. Fragm. Agronom. 2017, 34, 117–125. [Google Scholar]
- Zarzecka, K.; Gugała, M.; Dołęga, H.; Mystkowska, I.; Baranowska, A.; Zarzecka, M. Effects of biostimulants and herbicides on palatability and flesh darkening of potato tubers. Zesz. Probl. Postępów Nauk Rol. 2016, 585, 169–177. [Google Scholar]
- Wszelaczyńska, E.; Pobereżny, J. Effect of bioelements (N, K, Mg) and long-term storage of potato tubers on quantitative and qualitative losses part 1. Natural losses. J. Elem. 2011, 16, 135–142. [Google Scholar] [CrossRef]
- Keutgen, A.J.; Pobereżny, J.; Wszelaczyńska, E.; Murawska, B.; Spychaj-Fabisiak, E. Effect of storage on darkening processes of potato (Solanumtuberosum L.) tubers and their health-promoting properties. Inż. Ap. Chem. 2014, 53, 86–88. [Google Scholar]
- Lachman, J.; Hamouz, K.; Dvořák, P.; Orsák, M. The effect of selected factors on the content of protein and nitrates in potato tubers. Plant Soil Environ. 2005, 51, 431–438. [Google Scholar] [CrossRef]
- Karooki, A.K.; Yavarzadeh, M.; Akbarian, M.; Askari, A.A. Effects of Nanofertilizers (Mg and Fe) and Planting Data on Productivity and Quality of Potato Tubers in Cold Desert Climate. Rev. Agrogeoambiental 2021, 13, 107–116. [Google Scholar] [CrossRef]
- He, D.; Chen, X.; Zhang, Y.; Huang, Z.; Yin, J.; Weng, X.; Wu, L. Magnesium is a nutritional tool for the yield and quality of oolong tea (Camellia sinensis L.) and reduces reactive nitrogen loss. Sci. Hortic. 2023, 308, 111590. [Google Scholar] [CrossRef]
- Bienia, B.; Sawicka, B.; Krochmal-Marczak, B. Culinary quality of tubers of selected potato varieties depending on the foliar fertilization used. Acta Sci. Pol. Agric. 2020, 19, 123–236. [Google Scholar] [CrossRef]
- Gouda, A.E.A.I.; Gahwash, M.N.M.A.; Abdel-Kader, A.E. Response of potato growth and yield to some stimulating compounds. J. Plant Prod. Mansoura Univ. 2015, 6, 1293–1302. [Google Scholar] [CrossRef]
- Naumann, M.; Koch, M.; Thiel, H. The Importance of Nutrient Management for Potato Production Part II: Plant Nutrition and Tuber Quality. Potato Res. 2020, 63, 121–137. [Google Scholar] [CrossRef]
- Wszelaczyńska, E.; Pobereżny, J.; Gościnna, K. Determination of the effect of abiotic stress on the oxidative potential of edible potato tubers. Sci. Rep. 2023, 13, 9999. [Google Scholar] [CrossRef]
- Krzysztofik, B.; Sułkowski, K. Changes of the chemical composition of potato tubers during storage and their impact on the selected properties of crisps. Inżynieria Rol. 2013, 4, 161–169. [Google Scholar]
- Yang, Y.; Achaerandio, I.; Pujolà, M. Effect of the intensity of cooking methods on the nutritional and physical properties of potato tubers. Food Chem. 2016, 197, 1301–1310. [Google Scholar] [CrossRef]
- Wadas, W. Nutritional Value and Sensory Quality of New Potatoes in Response to Silicon Application. Agriculture 2023, 13, 542. [Google Scholar] [CrossRef]
- Liang, S.; Li, Y.; Zhang, M.; Gao, X.; Feng, S.; Wang, Z. Influence of nutritional components on colour, texture characteristics and sensory properties of cooked potatoes. CYTA J. Food 2023, 21, 141–150. [Google Scholar] [CrossRef]
- Buratti, S.; Cappa, C.; Benedetti, S.; Giovanelli, G. Influence of Cooking Conditions on Nutritional Properties and Sensory Characteristics Interpreted by E-Senses: Case-Study on Selected Vegetables. Foods 2020, 9, 607. [Google Scholar] [CrossRef] [PubMed]
- Jayanty, S.S.; Diganta, K.; Raven, B. Effects of Cooking Methods on Nutritional Content in Potato Tubers. Am. J. Potato Res. 2019, 96, 183–194. [Google Scholar] [CrossRef]
- Haverkort, A.J.; Linnemann, A.R.; Struik, P.C.; Wiskerke, J.S.C. On Processing Potato. 4. Survey of the Nutritional and Sensory Value of Products and Dishes. Potato Res. 2023, 66, 429–468. [Google Scholar] [CrossRef]
Parameter | Unit | Amount | Abundance |
---|---|---|---|
pH H2O | - | 6.6 | Slightly acidic |
pH KCl | - | 6.1 | Slightly acidic |
Organic carbon | (g kg−1) | 8.75 | - |
Total nitrogen | (g kg−1) | 0.78 | - |
Absorbable forms of phosphor | (mg kg−1) | 27.0 | Poor |
Absorbable forms of potassium | (mg kg−1) | 49.0 | Very poor |
Absorbable forms of magnesium | (mg kg−1) | 23.0 | Very poor |
Month | Air Temperature (°C) | Rainfall (mm) | ||||||
---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2017 | 1996–2014 | 2015 | 2016 | 2017 | 1996–2014 | |
April | 7.5 | 8.3 | 6.8 | 8.1 | 15.6 | 28.7 | 40.8 | 28.7 |
May | 12.4 | 14.7 | 13.4 | 13.2 | 21.6 | 51.4 | 56.3 | 61.1 |
June | 15.6 | 17.7 | 16.8 | 16.3 | 33.0 | 98.1 | 54.3 | 53.1 |
July | 18.5 | 18.3 | 17.7 | 18.7 | 50.4 | 133.8 | 118.9 | 87.1 |
August | 20.9 | 16.4 | 14.3 | 17.8 | 20.3 | 55.3 | 19.4 | 67.0 |
September | 13.8 | 14.3 | 13.0 | 13.0 | 52.4 | 19.4 | 78.4 | 66.5 |
Average | 14.8 | 15.0 | 13.7 | 14.5 | 32.2 | 64.5 | 61.4 | 60.6 |
Utility- Consumption Type | Tendency to Overcook | Texture | Mealiness | Moisture | Flesh Structure |
---|---|---|---|---|---|
A | 1 | 1 | 1–2 | 1–2 | 1 |
B | 1–2 | 1–2 | 2 | 2 | 1–2 |
C | 3 | 2–3 | 3 | 3 | 2–3 |
D | 4 | 3–4 | 4 | 4 | 3–4 |
MgO Fertilization Doses (kg ha−1) (B*) | Potato Tuber Evaluation Date (A*) | ||||
---|---|---|---|---|---|
Tendency to Overcook | Texture | Mealiness | Moisture | Flesh Structure | |
Without biostimulant application—control (C*) | |||||
0 | 2.0 ± 0.50 | 1.9 ± 0.10 | 1.1 ± 0.12 | 1.5 ± 0.00 | 1.5 ± 0.00 |
30 | 1.8 ± 0.25 | 1.7 ± 0.29 | 1.1 ± 0.12 | 1.5 ± 0.00 | 1.5 ± 0.00 |
60 | 1.5 ± 0.50 | 1.6 ± 0.17 | 1.2 ± 0.17 | 1.3 ± 0.25 | 1.5 ± 0.25 |
90 | 1.3 ± 0.25 | 1.6 ± 0.15 | 1.1 ± 0.12 | 1.3 ± 0.25 | 1.1 ± 0.17 |
Average | 1.6 ± 0.00 | 1.7 ± 0.10 | 1.1 ± 0.00 | 1.4 ± 0.10 | 1.4 ± 0.06 |
Biostimulant application—1.5 l ha−1 (C) | |||||
0 | 1.9 ± 0.40 | 1.8 ± 0.25 | 1.1 ± 0.10 | 1.5 ± 0.50 | 1.5 ± 0.50 |
30 | 1.8 ± 0.25 | 1.6 ± 0.15 | 1.0 ± 0.00 | 1.5 ± 0.50 | 1.2 ± 0.29 |
60 | 1.8 ± 0.25 | 1.3 ± 0.25 | 1.0 ± 0.00 | 1.0 ± 0.00 | 1.0 ± 0.00 |
90 | 1.5 ± 0.00 | 1.8 ± 0.25 | 1.0 ± 0.00 | 1.0 ± 0.00 | 1.0 ± 0.00 |
Average | 1.7 ± 0.10 | 1.6 ± 0.20 | 1.0 ± 0.06 | 1.3 ± 0.25 | 1.2 ± 0.17 |
Biostimulant application—3.0 l ha−1 (C) | |||||
0 | 2.3 ± 0.25 | 2.0 ± 0.00 | 1.2 ± 0.12 | 1.5 ± 0.00 | 1.5 ± 0.50 |
30 | 2.0 ± 0.00 | 1.7 ± 0.00 | 1.0 ± 0.00 | 1.5 ± 0.15 | 1.3 ± 0.15 |
60 | 1.8 ± 0.25 | 1.5 ± 0.50 | 1.0 ± 0.00 | 1.0 ± 0.00 | 1.3 ± 0.00 |
90 | 1.3 ± 0.25 | 1.5 ± 0.50 | 1.0 ± 0.00 | 1.0 ± 0.00 | 1.0 ± 0.00 |
Average | 1.8 ± 0.20 | 1.7 ± 0.25 | 1.0 ± 0.06 | 1.3 ± 0.06 | 1.3 ± 0.10 |
Average | |||||
0 | 2.0 ± 0.35 | 1.9 ± 0.10 | 1.1 ± 0.06 | 1.5 ± 0.20 | 1.5 ± 0.00 |
30 | 1.8 ± 0.15 | 1.7 ± 0.12 | 1.0 ± 0.06 | 1.5 ± 0.20 | 1.3 ± 0.10 |
60 | 1.7 ± 0.00 | 1.4 ± 0.25 | 1.1 ± 0.06 | 1.1 ± 0.10 | 1.3 ± 0.10 |
90 | 1.3 ± 0.15 | 1.6 ± 0.30 | 1.0 ± 0.06 | 1.1 ± 0.10 | 1.0 ± 0.06 |
Average | 1.7 ± 0.10 | 1.7 ± 0.21 | 1.1 ± 0.00 | 1.3 ± 0.10 | 1.3 ± 0.01 |
NIR0.05 (Tukey test) Tendency to overcook: A*—ns 1 B*—0.31 C*—0.16 B/A—ns A/B—ns B/C—ns A/C—ns C/B—ns B/C—ns Texture: A—ns B—0.23 C—ns B/A—ns A/B—ns B/C—ns A/C—ns C/B—ns B/C—ns Mealiness: A—ns B—ns C—ns B/A—ns A/B—ns B/C—ns A/C—ns C/B—ns B/C—ns Moisture: A—ns B—ns C—ns B/A—0.22 A/B—0.49 B/C—ns A/C—ns C/B—ns B/C—ns Flesh structure: A—ns B—0.13 C—ns B/A—ns A/B—ns B/C—ns A/C—ns C/B—ns B/C—ns |
Tendency to Overcook | Texture | Mealiness | Moisture | Flesh Structure | NO3− | |
---|---|---|---|---|---|---|
Texture | 0.526 | |||||
Mealiness | ns | 0.429 | ||||
Moisture | ns | 0.673 | 0.412 | |||
Flesh structure | 0.379 | 0.576 | 0.510 | 0.729 | ||
NO3− | ns | ns | 0.492 | 0.569 | 0.562 | |
NO2− | ns | ns | 0.555 | 0.545 | 0.602 | 0.838 |
Tendency to Overcook | Texture | Mealiness | Moisture | Flesh Structure | NO3− | |
---|---|---|---|---|---|---|
Texture | 0.446 | |||||
Mealiness | ns | 0.473 | ||||
Moisture | ns | 0.339 | ns | |||
Flesh structure | 0.586 | 0.566 | ns | 0.707 | ||
NO3− | 0.430 | 0.390 | 0.342 | 0.588 | 0.472 | |
NO2− | ns | ns | 0.318 | 0.639 | 0.387 | 0.818 |
MgO Fertilization Doses (kg ha−1) (B*) | Potato Tuber Evaluation Date (A*) | ||||
---|---|---|---|---|---|
Tendency to Overcook | Texture | Mealiness | Moisture | Flesh Structure | |
Without biostimulant application—control (C*) | |||||
0 | 1.9 ± 0.10 | 2.1 ± 0.10 | 1.2 ± 0.06 | 1.8 ± 0.00 | 1.8 ± 0.00 |
30 | 1.8 ± 0.12 | 1.8 ± 0.12 | 1.1 ± 0.06 | 1.8 ± 0.25 | 1.4 ± 0.12 |
60 | 1.6 ± 0.06 | 1.6 ± 0.17 | 1.3 ± 0.00 | 1.6 ± 0.15 | 1.4 ± 0.10 |
90 | 1.5 ± 0.15 | 1.6 ± 0.15 | 1.2 ± 0.20 | 1.4 ± 0.10 | 1.2 ± 0.10 |
Average | 1.7 ± 0.06 | 1.8 ± 0.00 | 1.2 ± 0.10 | 1.6 ± 0.12 | 1.4 ± 0.06 |
Biostimulant application—1.5 l ha−1 (C) | |||||
0 | 2.3 ± 0.29 | 2.0 ± 0.06 | 1.2 ± 0.15 | 1.8 ± 0.25 | 1.8 ± 0.25 |
30 | 1.8 ± 0.10 | 1.8 ± 0.12 | 1.1 ± 0.12 | 1.5 ± 0.10 | 1.5 ± 0.15 |
60 | 1.9 ± 0.12 | 1.8 ± 0.17 | 1.2 ± 0.15 | 1.2 ± 0.10 | 1.2 ± 0.00 |
90 | 1.5 ± 0.00 | 1.3 ± 0.12 | 1.1 ± 0.17 | 1.3 ± 0.25 | 1.2 ± 0.21 |
Average | 1.9 ± 0.10 | 1.7 ± 0.06 | 1.1 ± 0.06 | 1.4 ± 0.06 | 1.4 ± 0.17 |
Biostimulant application—3.0 l ha−1 (C) | |||||
0 | 2.0 ± 0.00 | 2.3 ± 0.12 | 1.3 ± 0.06 | 1.3 ± 0.25 | 1.5 ± 0.20 |
30 | 1.8 ± 0.25 | 1.8 ± 0.12 | 1.1 ± 0.12 | 1.4 ± 0.12 | 1.5 ± 0.00 |
60 | 1.7 ± 0.15 | 1.8 ± 0.12 | 1.1 ± 0.23 | 1.7 ± 0.20 | 1.5 ± 0.06 |
90 | 1.5 ± 0.50 | 1.5 ± 0.29 | 1.1 ± 0.15 | 1.4 ± 0.12 | 1.3 ± 0.25 |
Average | 1.7 ± 0.15 | 1.8 ± 0.06 | 1.2 ± 0.06 | 1.4 ± 0.10 | 1.4 ± 0.00 |
Average | |||||
0 | 2.1 ± 0.06 | 2.1 ± 0.06 | 1.2 ± 0.06 | 1.6 ± 0.20 | 1.7 ± 0.00 |
30 | 1.8 ± 0.15 | 1.8 ± 0.25 | 1.1 ± 0.10 | 1.5 ± 0.06 | 1.5 ± 0.06 |
60 | 1.7 ± 0.00 | 1.7 ± 0.10 | 1.2 ± 0.00 | 1.5 ± 0.06 | 1.4 ± 0.06 |
90 | 1.5 ± 0.20 | 1.4 ± 0.06 | 1.1 ± 0.12 | 1.4 ± 0.06 | 1.2 ± 0.15 |
Average | 1.8 ± 0.06 | 1.8 ± 0.06 | 1.2 ± 0.06 | 1.5 ± 0.00 | 1.4 ± 0.06 |
NIR0.05 (Tukey Test) According to Table 4 |
Tendency to Overcook | Texture | Mealiness | Moisture | Flesh Structure | Utility-Consumption Type | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a/h * | a/s ** | a/h | a/s | a/h | a/s | a/h | a/s | a/h | a/s | a/h | a/s |
1.7 | 1.8 | 1.7 | 1.8 | 1.1 | 1.2 | 1.3 | 1.5 | 1.3 | 1.4 | B/A | B/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pobereżny, J.; Retmańska, K.; Wszelaczyńska, E.; Nogalska, A. Influence of Magnesium and Biostimulant on the Consumption Value and Harmful Nitrogen Compounds Content of Potato Tubers after Storage. Agriculture 2023, 13, 2052. https://doi.org/10.3390/agriculture13112052
Pobereżny J, Retmańska K, Wszelaczyńska E, Nogalska A. Influence of Magnesium and Biostimulant on the Consumption Value and Harmful Nitrogen Compounds Content of Potato Tubers after Storage. Agriculture. 2023; 13(11):2052. https://doi.org/10.3390/agriculture13112052
Chicago/Turabian StylePobereżny, Jarosław, Katarzyna Retmańska, Elżbieta Wszelaczyńska, and Anna Nogalska. 2023. "Influence of Magnesium and Biostimulant on the Consumption Value and Harmful Nitrogen Compounds Content of Potato Tubers after Storage" Agriculture 13, no. 11: 2052. https://doi.org/10.3390/agriculture13112052
APA StylePobereżny, J., Retmańska, K., Wszelaczyńska, E., & Nogalska, A. (2023). Influence of Magnesium and Biostimulant on the Consumption Value and Harmful Nitrogen Compounds Content of Potato Tubers after Storage. Agriculture, 13(11), 2052. https://doi.org/10.3390/agriculture13112052