In Vitro Antimicrobial Activity of Plant Species against the Phytopathogens Ralstonia solanacearum, Phytophthora infestans, and Neopestalotiopsis javaensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Extraction
2.2. Isolation and Characterization of Agricultural Microorganisms
2.2.1. Ralstonia solanacearum
2.2.2. Phytophthora infestans
2.2.3. Neopestalotiopsis javaensis
2.3. Antimicrobial Activity of Plant Extracts
2.3.1. Bacteria and Culture Conditions
2.3.2. Determination of Minimum Inhibitory Concentrations (MICs)
2.3.3. Antifungal Assays
2.3.4. Statistical Analysis
3. Results and Discussion
3.1. Characterization of the Phytopathogens
3.1.1. Characterization of Ralstonia solanacearum
3.1.2. Characterization of Phytophthora infestans
3.1.3. Characterization of Neopestalotiopsis javaensis
3.2. Antimicrobial Activity of Extract against Phytopathogens
3.2.1. Antibacterial Activity of Extracts against Ralstonia solanacearum
3.2.2. Antifungal Activity against Phytophthora infestans and Neopestalotiopsis javaensis
4. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rohne Till, E. The Role of Agriculture in Economic Development. In Agriculture for Economic Development in Africa; Springer International Publishing: Cham, Switzerland, 2022; pp. 9–17. [Google Scholar]
- Karam, M.Á.; Ramírez, G.; Montes, L.P.B.; Galván, J.M. Plaguicidas y Salud de La Población. Cienc. Ergo-Sum Rev. Cient. Multidiscip. Prospect. 2004, 11, 246–254. [Google Scholar]
- Del Puerto Rodríguez, A.M.; Suárez Tamayo, S.; Palacio Estrada, D.E. Efectos de Los Plaguicidas Sobre El Ambiente y La Salud. Rev. Cubana Hig. Epidemiol. 2014, 52, 372–387. [Google Scholar]
- Worldatlas. 17 Most Ecologically Diverse Countries on Earth. Available online: http://www.worldatlas.com/articles/ecologically-megadiverse-countries-of-the-world.html (accessed on 21 December 2022).
- De la Torre, L.; Navarrete, H.; Muriel, P.; Macías, M.J.; Balslev, H. Enciclopedia de Las Plantas Útiles Del Ecuador; Herbario QCA de La Escuela de Ciencias Biológicas de La Pontificia Universidad Católica Del Ecuador y Herbario AAU Del Departamento de Ciencias Biológicas de La Universidad de Aarhus: Aarhus, Denmark, 2008; Volume 55, Available online: https://www.researchgate.net/profile/Hugo-Navarrete-4/publication/310828407_Enciclopedia_de_las_Plantas_Utiles_del_Ecuador/links/583897f608ae3a74b49d1ca5/Enciclopedia-de-las-Plantas-Utiles-del-Ecuador.pdf (accessed on 15 September 2023).
- Panda, S.; Mohanta, Y.; Padhi, L.; Park, Y.-H.; Mohanta, T.; Bae, H. Large Scale Screening of Ethnomedicinal Plants for Identification of Potential Antibacterial Compounds. Molecules 2016, 21, 293. [Google Scholar] [CrossRef]
- Haas, B.J.; Kamoun, S.; Zody, M.C.; Jiang, R.H.Y.; Handsaker, R.E.; Cano, L.M.; Grabherr, M.; Kodira, C.D.; Raffaele, S.; Torto-Alalibo, T.; et al. Genome Sequence and Analysis of the Irish Potato Famine Pathogen Phytophthora infestans. Nature 2009, 461, 393–398. [Google Scholar] [CrossRef]
- Zaker, M. Natural Plant Products as Eco-Friendly Fungicides for Plant Diseases Control-A Review. Agriculturists 2016, 14, 134–141. [Google Scholar] [CrossRef]
- Teillier, S.; Amarilla, L.D.; Anton, A.M. Contribución A La Flora Vascular De La República Argentina: Familia Ericaceae. Darwiniana Nueva Ser. 2019, 7, 68–92. [Google Scholar] [CrossRef]
- Romero-Saritama, J.M.; Cueva-Ojeda, D.N. Tamaño de Semillas y Germinación de Pernettya prostrata (Ericaceae): Una Especie de Páramo Andino. Caldasia 2020, 42, 326–329. [Google Scholar] [CrossRef]
- Romoleroux, K.; Cárate-Tandalla, D.; Erler, R.; Navarrete, H. Pernettya prostrata En: Plantas Vasculares de Los Bosques de Polylepis En Los Páramos de Oyacachi. Version 2019.0. 2019. Available online: https://Bioweb.Bio/Floraweb/Polylepis/FichaEspecie/Pernettya%20prostrata (accessed on 15 September 2023).
- Mezey, K. Pernettya prostrata: Var. Pentlandii. Rev. la Fac. Med. Vet. y Zootec. 1943, 12, 40–58. [Google Scholar]
- Tene, V.; Malagón, O.; Finzi, P.V.; Vidari, G.; Armijos, C.; Zaragoza, T. An Ethnobotanical Survey of Medicinal Plants Used in Loja and Zamora-Chinchipe, Ecuador. J. Ethnopharmacol. 2007, 111, 63–81. [Google Scholar] [CrossRef]
- Chaves, Ó.M. Retraso Del Enverdecimiento En Las Hojas Nuevas de Pernettya prostrata (Ericaceae): Posibles Funciones Adaptativas. Pensam. Actual 2007, 7, 96–104. [Google Scholar]
- The New York Botanical Garden. 2005. Available online: https://www.nybg.org/bsci/res/lut2/pernettya_prostrata.html (accessed on 11 December 2022).
- Li, J.; Li, F.; Lu, Y.-Y.; Su, X.-J.; Huang, C.-P.; Lu, X.-W. A New Dilactone from the Seeds of Gaultheria Yunnanensis. Fitoterapia 2010, 81, 35–37. [Google Scholar] [CrossRef]
- Wang, L.-Q.; Ding, B.-Y.; Qin, G.-W.; Lin, G.; Cheng, C.-F. Grayanoids from Pieris formosa. Phytochemistry 1998, 49, 2045–2048. [Google Scholar] [CrossRef]
- Wang, L.-Q.; Qin, G.-W.; Chen, S.-N.; Li, C.-J. Three Diterpene Glucosides and a Diphenylamine Derivative from Pieris Formosa. Fitoterapia 2001, 72, 779–787. [Google Scholar] [CrossRef]
- Szulc, Z.M.; Mayroo, N.; Bai, A.; Bielawski, J.; Liu, X.; Norris, J.S.; Hannun, Y.A.; Bielawska, A. Novel Analogs of D-e-MAPP and B13. Part 1: Synthesis and Evaluation as Potential Anticancer Agents. Bioorg. Med. Chem. 2008, 16, 1015–1031. [Google Scholar] [CrossRef]
- Rincón Aguilar, C.M.; Patiño Ladino, O.J.; Plazas González, E.A.; Bulla Nieto, M.E.; Torres, G.R.; Puyana Hegedu, M. Estudio Químico Preliminar y Evaluación de La Actividad Antioxidante, Antialimentaria y Tóxica, de La Especie Pernettya prostrata (Ericaceae) Preliminary Chemical Study and Evaluation of Antioxidant, Antifeedant and Toxic Activity of the Species Pernettya. Rev. Cuba. Plantas Med. 2014, 19, 138–150. [Google Scholar]
- Romoleroux, K.; Bastidas-León, E.; Espinel-Ortiz, D. Guía de Mpras Del Ecuador; Pontificia Universidad Católica del Ecuador: Quito, Ecuador, 2018; ISBN 978-9978-77-360-4. [Google Scholar]
- Hummer, K.E. Rubus Pharmacology: Antiquity to the Present. HortScience 2010, 45, 1587–1591. [Google Scholar] [CrossRef]
- Määttä-Riihinen, K.R.; Kamal-Eldin, A.; Törrönen, A.R. Identification and Quantification of Phenolic Compounds in Berries of Fragaria and Rubus Species (Family Rosaceae). J. Agric. Food Chem. 2004, 52, 6178–6187. [Google Scholar] [CrossRef]
- Quave, C.L.; Plano, L.R.W.; Pantuso, T.; Bennett, B.C. Effects of Extracts from Italian Medicinal Plants on Planktonic Growth, Biofilm Formation and Adherence of Methicillin-Resistant Staphylococcus Aureus. J. Ethnopharmacol. 2008, 118, 418–428. [Google Scholar] [CrossRef]
- Muhammad, R.; Mansoor, A.; Najmur, R. Antimicrobial Screening Of Fruit, Leaves, Root and Stem of Rubus Fruticosus. J. Med. Plants Res. 2011, 5, 5920–5924. [Google Scholar]
- Zubeda, C.H.R. Isolation and characterization of Ralstonia solanacearum from infected tomato plants of soan skesar valley of punjab. Pak. J. Bot. 2011, 6, 2979–2985. [Google Scholar]
- Schaad, N.W.; Jones, J.B.; Chun, W. Laboratory Guide for Identification of Plant Pathogenic Bacteria, 3rd ed.; APS Press: St. Paul, MN, USA, 2001; ISBN 0-89054-263-5. [Google Scholar]
- Shields, P.; Cathcart, L. Oxidase Test Protocol. Am. Soc. Microbiol. 2016, 1–9. Available online: https://asm.org/getattachment/00ce8639-8e76-4acb-8591-0f7b22a347c6/oxidase-test-protocol-3229.pdf?fbclid=IwAR3Y0UGSj7mlg-G20q4ZNqFmNItCvZSrXtauhRVQ0q69_uMa7B7HIeco43M (accessed on 15 September 2023).
- Lehman, D. Triple Sugar Iron Agar Protocols. Am. Soc. Microbiol. 2005, 1–7. Available online: https://asm.org/ASM/media/Protocol-Images/Triple-Sugar-Iron-Agar-Protocols.pdf?ext=.pdf (accessed on 15 September 2023).
- MacWilliams, M.P. Citrate Test Protocol; American Society for Microbiology: Washington, DC, USA, 2009. [Google Scholar]
- Shimelash, D.; Dessie, B. Novel Characteristics of Phytophthora infestans Causing Late Blight on Potato in Ethiopia. Curr. Plant Biol. 2020, 24, 100172. [Google Scholar] [CrossRef]
- Fernández Maura, Y.; Lachenaud, P.; Decock, C.; Rodríguez, A.D.; Romero, N.A. Characterization of Phytophthora, the Etiological Agent of Black Pod Rots of Cocoa Cob in Cuba and French Guiana. Rev. Cent. Agrícola 2018, 45, 17–26. [Google Scholar]
- Maharachchikumbura, S.S.N.; Hyde, K.D.; Groenewald, J.Z.; Xu, J.; Crous, P.W. Pestalotiopsis Revisited. Stud. Mycol. 2014, 79, 121–186. [Google Scholar] [CrossRef]
- Darapanit, A.; Boonyuen, N.; Leesutthiphonchai, W.; Nuankaew, S.; Piasai, O. Identification, Pathogenicity and Effects of Plant Extracts on Neopestalotiopsis and Pseudopestalotiopsis Causing Fruit Diseases. Sci. Rep. 2021, 11, 22606. [Google Scholar] [CrossRef]
- Arivudainambi, U.S.E.; Anand, T.D.; Shanmugaiah, V.; Karunakaran, C.; Rajendran, A. Novel Bioactive Metabolites Producing Endophytic Fungus Colletotrichum Gloeosporioides against Multidrug-Resistant Staphylococcus Aureus. FEMS Immunol. Med. Microbiol. 2011, 61, 340–345. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Cuenca-Estrella, M.; Lass-Flörl, C.; Hope, W. EUCAST Technical Note on the EUCAST Definitive Document EDef 7.2: Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Yeasts EDef 7.2 (EUCAST-AFST). Clin. Microbiol. Infect. 2012, 18, E246–E247. [Google Scholar] [CrossRef]
- Bernal, M.; Guzman, M. El Antibiograma de Discos. Normalización de La Técnica de Kirby-Bauer. Biomedica 1984, 4, 112–121. [Google Scholar] [CrossRef]
- Langa-Lomba, N.; Buzón-Durán, L.; Sánchez-Hernández, E.; Martín-Ramos, P.; Casanova-Gascón, J.; Martín-Gil, J.; González-García, V. Antifungal Activity against Botryosphaeriaceae Fungi of the Hydro-Methanolic Extract of Silybum Marianum Capitula Conjugated with Stevioside. Plants 2021, 10, 1363. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2022. Available online: https://www.r-project.org/ (accessed on 5 April 2023).
- Genin, S.; Denny, T.P. Pathogenomics of the Ralstonia solanacearum Species Complex. Annu. Rev. Phytopathol. 2012, 50, 67–89. [Google Scholar] [CrossRef] [PubMed]
- González, I.; Arias, Y.; Peteira, B. Interacción Planta-Bacterias Fitopatógenas: Caso de Estudio Ralstonia solanacearum-Plantas Hospedantes. Rev. protección Veg. 2009, 24, 69–80. [Google Scholar]
- Abd-El-Khair, H.; Haggag, W.M. Application of Some Egyptian Medicinal Plant Extracts against Potato Late and Early Blights. Res. J. Agric. Biol. Sci 2007, 3, 166–175. [Google Scholar]
- Mazumdar, P.; Singh, P.; Kethiravan, D.; Ramathani, I.; Ramakrishnan, N. Late Blight in Tomato: Insights into the Pathogenesis of the Aggressive Pathogen Phytophthora infestans and Future Research Priorities. Planta 2021, 253, 119. [Google Scholar] [CrossRef] [PubMed]
- Pauwelyn, E.; Huang, C.-J.; Ongena, M.; Leclère, V.; Jacques, P.; Bleyaert, P.; Budzikiewicz, H.; Schäfer, M.; Höfte, M. New Linear Lipopeptides Produced by Pseudomonas Cichorii SF1-54 Are Involved in Virulence, Swarming Motility, and Biofilm Formation. Mol. Plant-Microbe Interact. 2013, 26, 585–598. [Google Scholar] [CrossRef]
- Fry, W.E.; Birch, P.R.J.; Judelson, H.S.; Grünwald, N.J.; Danies, G.; Everts, K.L.; Gevens, A.J.; Gugino, B.K.; Johnson, D.A.; Johnson, S.B.; et al. Five Reasons to Consider Phytophthora infestans a Reemerging Pathogen. Phytopathology 2015, 105, 966–981. [Google Scholar] [CrossRef]
- Haverkort, A.J.; Boonekamp, P.M.; Hutten, R.; Jacobsen, E.; Lotz, L.A.P.; Kessel, G.J.T.; Visser, R.G.F.; van der Vossen, E.A.G. Societal Costs of Late Blight in Potato and Prospects of Durable Resistance Through Cisgenic Modification. Potato Res. 2008, 51, 47–57. [Google Scholar] [CrossRef]
- Everett, K.R.; Rees-George, J.; Pushparajah, I.P.S.; Manning, M.A.; Fullerton, R.A. Molecular Identification of Sphaceloma Perseae (Avocado Scab) and Its Absence in New Zealand. J. Phytopathol. 2011, 159, 106–113. [Google Scholar] [CrossRef]
- Zhang, L.; Qin, M.; Yin, J.; Liu, X.; Zhou, J.; Zhu, Y.; Liu, Y. Antibacterial Activity and Mechanism of Ginger Extract against Ralstonia solanacearum. J. Appl. Microbiol. 2022, 133, 2642–2654. [Google Scholar] [CrossRef]
- Kankamol, C.; Srikamb, W. Antimicrobial Activities of Aloe Vera Rind Extracts against Plant Pathogenic Bacteria and Fungi. Agric. Nat. Resour. 2021, 55, 715–723. [Google Scholar]
- Mehmood, B.; Azad, A.; Rahim, N.; Arif, S.; Khan, M.R.; Hussain, A.; Tariq-Khan, M.; Younis, M.T.; Bashir, A.; Ahmed, S.; et al. Management of Late Blight of Potato Caused by Phytophthora infestans through Botanical Aqueous Extracts. Int. J. Phytopathol. 2022, 11, 35–42. [Google Scholar] [CrossRef]
- Thuerig, B.; Ramseyer, J.; Hamburger, M.; Ludwig, M.; Oberhänsli, T.; Potterat, O.; Schärer, H.-J.; Tamm, L. Efficacy of a Magnolia Officinalis Bark Extract against Grapevine Downy Mildew and Apple Scab under Controlled and Field Conditions. Crop Prot. 2018, 114, 97–105. [Google Scholar] [CrossRef]
- Soto-García, M.; Rosales-Castro, M. Efecto Del Solvente y de La Relación Masa/Solvente, Sobre La Extracción de Compuestos Fenólicos y La Capacidad Antioxidante de Extractos de Corteza de Pinus Durangensis y Quercus Sideroxyla. Maderas. Cienc. y Tecnol. 2016, 18, 701–714. [Google Scholar] [CrossRef]
- Bolouri, P.; Salami, R.; Kouhi, S.; Kordi, M.; Asgari Lajayer, B.; Hadian, J.; Astatkie, T. Applications of Essential Oils and Plant Extracts in Different Industries. Molecules 2022, 27, 8999. [Google Scholar] [CrossRef] [PubMed]
- Gonelimali, F.D.; Lin, J.; Miao, W.; Xuan, J.; Charles, F.; Chen, M.; Hatab, S.R. Antimicrobial Properties and Mechanism of Action of Some Plant Extracts against Food Pathogens and Spoilage Microorganisms. Front. Microbiol. 2018, 9, 1639. [Google Scholar] [CrossRef]
- Agwunobi, D.O.; Pei, T.; Wang, K.; Yu, Z.; Liu, J. Effects of the Essential Oil from Cymbopogon Citratus on Mortality and Morphology of the Tick Haemaphysalis Longicornis (Acari: Ixodidae). Exp. Appl. Acarol. 2020, 81, 37–50. [Google Scholar] [CrossRef]
- Abbey, J.A.; Percival, D.; Abbey, L.; Asiedu, S.K.; Prithiviraj, B.; Schilder, A. Biofungicides as Alternative to Synthetic Fungicide Control of Grey Mould (Botrytis Cinerea)—Prospects and Challenges. Biocontrol Sci. Technol. 2019, 29, 207–228. [Google Scholar] [CrossRef]
- Qi, P.-Y.; Zhang, T.-H.; Wang, N.; Feng, Y.-M.; Zeng, D.; Shao, W.-B.; Meng, J.; Liu, L.-W.; Jin, L.-H.; Zhang, H. Natural Products-Based Botanical Bactericides Discovery: Novel Abietic Acid Derivatives as Anti-Virulence Agents for Plant Disease Management. J. Agric. Food Chem. 2023, 71, 5463–5475. [Google Scholar] [CrossRef]
Concentration/Control | % Inhibition | |
---|---|---|
Pernettya prostrata Extract | Rubus roseus Extract | |
45.00 mg/mL | 69.25 ± 2.83 a | 66.24 ± 3.16 a |
22.50 mg/mL | 30.08 ± 1.89 b | 51.44 ± 1.35 b |
Control (+) gentamicin 7 mg/mL | 92.22 ± 1.9 | 92.22 ± 1.9 |
Control (−) | + | + |
Vehicle control | + | + |
Media control | + | + |
Concentration/Control | % Mycelial Growth Inhibition | |
---|---|---|
Pernettya prostrata Extract | Rubus roseus Extract | |
500.00 mg/mL | 28.65 ± 0.96 a | 34.89 ± 0.74 a |
250.00 mg/mL | 27.54 ± 1.74 a | 29.86 ± 1.22 b |
125.00 mg/mL | 26.13 ± 1.15 ab | 17.28 ± 1.31 c |
62.50 mg/mL | 22.44 ± 1.43 bc | 15.39 ± 1.20 c |
31.25 mg/mL | 22.15 ± 1.88 c | 14.34 ± 1.05 c |
Control (+) Oxicloruro de cobre 8 mg/mL | - | - |
Control (−) | + | + |
Vehicle control | + | + |
Media control | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ordóñez, Y.F.; Ruano, J.; Avila, P.; Berutti, L.; Guerrero, P.C.; Ordóñez, P.E. In Vitro Antimicrobial Activity of Plant Species against the Phytopathogens Ralstonia solanacearum, Phytophthora infestans, and Neopestalotiopsis javaensis. Agriculture 2023, 13, 2029. https://doi.org/10.3390/agriculture13102029
Ordóñez YF, Ruano J, Avila P, Berutti L, Guerrero PC, Ordóñez PE. In Vitro Antimicrobial Activity of Plant Species against the Phytopathogens Ralstonia solanacearum, Phytophthora infestans, and Neopestalotiopsis javaensis. Agriculture. 2023; 13(10):2029. https://doi.org/10.3390/agriculture13102029
Chicago/Turabian StyleOrdóñez, Yadira F., Josué Ruano, Pamela Avila, Lennys Berutti, Paola Chavez Guerrero, and Paola E. Ordóñez. 2023. "In Vitro Antimicrobial Activity of Plant Species against the Phytopathogens Ralstonia solanacearum, Phytophthora infestans, and Neopestalotiopsis javaensis" Agriculture 13, no. 10: 2029. https://doi.org/10.3390/agriculture13102029