Prospects for Bioenergy Development Potential from Dedicated Energy Crops in Ecuador: An Agroecological Zoning Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crop Selection
Crop | Suitable to Be Produced Near the Equator (0° Latitude) | Yield t/ha/Year DM | Gross CV (DB) MJ kg | Gross Energy Potential GJ/ha/Year | Sources |
---|---|---|---|---|---|
Miscanthus (Miscanthus spp.) | X | 16.20 | 17.49 | 283.34 | [58] |
Switchgrass (Panicum virgatum L.) | X | 10.20 | 18.00 | 183.60 | [58,60] |
Reed canarygrass (Phalaris arundinacea L.) | 5.50 | 17.83 | 98.06 | [59] | |
Virginia mallow (Sida hermaphrodita) | 12.15 | 16.10 | 195.59 | [83] | |
Cardoon (Cynara cardunculus) | 13.50 | 15.00 | 202.50 | [57] | |
Tall Wheatgrass (Thino pyrumponticum) | 13.00 | 15.79 | 205.27 | [90] | |
Bamboo (Bamboosa balcooa) | X | 21.00 | 19.40 | 407.40 | [75,91] |
Hemp (Cannabis Sativa) | X | 12.8 | 18.80 | 240.64 | [64,88,92] |
Giant reed (Arundo donax L.) | X | 25.00 | 16.89 | 422.25 | [63,93] |
Cup plant (Silphium perfoliatum L.) | 6.70 | 17.19 | 115.17 | [84] |
Crop | Suitable to Be Produced Near the Equator (0° Latitude) | Yield t/ha/Year DM | Gross CV (DB) MJ/kg | Energy Potential GJ/ha/Year | Sources |
---|---|---|---|---|---|
Eucalyptus (Eucalyptus globulus) | x | 19.8 | 18.00 | 356.4 | [71,82,94] |
Poplar hybrid | 13 | 19.13 | 248.69 | [95,96,97] | |
Willow (Salix spp.) | 18.6 | 19.33 | 359.5 | [98,99] | |
Pine (Pinus patula) | x | 6.5 | 19.30 | 125.45 | [65,100,101,102] |
2.1.1. Bamboo
2.1.2. Hemp
2.1.3. Eucalyptus
2.1.4. Giant Reed
2.1.5. Pine
2.1.6. Miscanthus
2.2. Agroecological Zoning
2.2.1. Agroclimatic Requirements of the Selected Crops
Common Name | Giant Reed | Hemp | Miscanthus | Bamboo | Eucalyptus | Pine |
---|---|---|---|---|---|---|
Scientific Name | Arundo donax L. | Cannabis sativa | Miscanthus spp. | Bambusa balcooa | Eucalyptus globulus | Pinus patula |
family | Poaceae | Cannabaceae | Poaceae | Poaceae | Myrtaceae | Pinaceae |
Slope (%) | 0 to 5 | 2 to 25 | 0 to 25 | 0 to 40 | 2 to 25 | 2 to 25 |
Soil Texture * | 1 to 13 | 2,3,4,5,8,9,10,11 | 3,4,5,7,8,9,10 | 8 to 12 | 3,4,5,7,8,9,10,11,12 | 2 to 11 |
Effective soil Depth ** | 2 to 5 | 4 to 5 | 4 to 5 | 4 to 5 | 4 to 5 | 4 to 5 |
Soil drainage | Excessive, good, moderate, poorly drained | Good, moderate | Good, moderate | Good, moderate | Good, moderate | Good, moderate |
Soil stony | No stones, very few stones, few stones | No stones, very few stones, few stones | No stones, very few stones, few stones | No stones, very few stones, few stones | No stones, very few stones, few stones | No stones, very few stones, |
Optimal pH | >5.5 to 8.5 | >5.5 to 7 | >5.5 to 7 | 5 to 6.5 | 5.5 to 7 | 5 to 6.5 |
Optimal Temperature (°C) | 16 to 24 | 6 to 26 | 12 to 25 | 22 to 28 | 10.8 to 18 | 10 to 19 |
Precipitation (mm) | 300–2000 | 600–1500 | 600 to 1400 | 500 to 1500 | 700 to 1200 | |
Salinity (dS/m) | <2 to 16 | <2 | <2 | <2 | <2 | <2 |
Sources | [43,112,113] | [64,104,105,114] | [61,66,108,115] | [75,76,80] | [72,73,116] | [85,117,118] |
2.2.2. Excluded Systems
Agricultural Production Areas
Export Crops
Food Sovereignty Crops
Pastures
Ecologically Important Zones
Ecologically Important Zones outside PANE
Anthropic Zones
Areas of Water Sources
Zones Classified as Miscellaneous
2.2.3. Map Overlay
2.3. Gross Energy Estimation
Configuration | Steam Power Plants (Backpressure Turbines) 20–25 MW | Steam Power Plants (Condensing Turbines) 5–50 MW | Externally Fired Gas Turbines 5–25 MW (Simple Cycle) | Externally Fired Gas Turbines 10–30 MW (Combined Cycle) | Biomass-Integrated Gasification 40–60 MW Simple Cycle | Combined Cycle 90–100 MW Combined Cycle |
---|---|---|---|---|---|---|
Lower limit Efficiency (%) | 10 | 22 | 25 | 30 | 21 | 35 |
Upper limit Efficiency (%) | 20 | 28 | 30 | 40 | 25 | 40 |
3. Results
3.1. Results per Crop
3.1.1. Bamboo
3.1.2. Hemp
3.1.3. Eucalyptus
3.1.4. Giant Reed
3.1.5. Pine
3.1.6. Miscanthus
3.2. Energy Yield Estimation per Crop
3.3. Energy Yield Estimation per Province
4. Discussion
4.1. Ecuadorian Context
4.2. Critical Factors for Zoning Studies
4.2.1. Land Management
4.2.2. Food Security
4.2.3. Indirect Land Use Change
4.2.4. Ecological Risks
4.2.5. Climate Change and Greenhouse Gas Emissions
4.3. Limitations and Recommendations for Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chan, E.Y. Climate Change Is the World’s Greatest Threat–In Celsius or Fahrenheit? J. Environ. Psychol. 2018, 60, 21–26. [Google Scholar] [CrossRef]
- Smith, P.; Porter, J.R. Bioenergy in the IPCC Assessments. GCB Bioenergy 2018, 10, 428–431. [Google Scholar] [CrossRef]
- Unther Fischer, G.; Schrattenholzer, L. Global Bioenergy Potentials through 2050. Biomass Bioenergy 2001, 20, 151–159. [Google Scholar] [CrossRef] [Green Version]
- FAO. IIASA GAEZ v3.0 Global Agro-Ecological Zones. Available online: https://webarchive.iiasa.ac.at/Research/LUC/GAEZv3.0/ (accessed on 20 March 2021).
- IPCC. Decision 13/CMP.1, COP 11, Montreal, Canada. Modalities for the Accounting of Assigned Amounts under Article 7, Paragraph 4, of the Kyoto Protocol. 2006. Available online: http://www.ciesin.columbia.edu/repository/entri/docs/cop/Kyoto_COP001_013.pdf (accessed on 12 February 2020).
- Morone, P.; Yilan, G. A Paradigm Shift in Sustainability: From Lines to Circles. Acta Innov. 2020, 36, 5–16. [Google Scholar] [CrossRef]
- Manzanares, P. The Role of Biorefinering Research in the Development of a Modern Bioeconomy. Acta Innov. 2020, 37, 47–56. [Google Scholar] [CrossRef]
- Fiallos-Cárdenas, M.; Pérez-Martínez, S.; Ramirez, A.D. Prospectives for the Development of a Circular Bioeconomy around the Banana Value Chain. Sustain. Prod. Consum. 2022, 30, 541–555. [Google Scholar] [CrossRef]
- Popp, J.; Lakner, Z.; Harangi-Rákos, M.; Fári, M. The Effect of Bioenergy Expansion: Food, Energy, and Environment. Renew. Sustain. Energy Rev. 2014, 32, 559–578. [Google Scholar] [CrossRef] [Green Version]
- Fajardy, M.; Mac Dowell, N. Can BECCS Deliver Sustainable and Resource Efficient Negative Emissions? Energy Environ. Sci. 2017, 10, 1389–1426. [Google Scholar] [CrossRef] [Green Version]
- Arasto, A.; Tsupari, E.; Kärki, J.; Sormunen, R.; Korpinen, T.; Hujanen, S. Feasibility of Significant CO2 Emission Reductions in Thermal Power Plants–Comparison of Biomass and CCS. Energy Procedia 2014, 63, 6745–6755. [Google Scholar] [CrossRef] [Green Version]
- Namany, S.; Al-Ansari, T.; Govindan, R. Optimisation of the Energy, Water, and Food Nexus for Food Security Scenarios. Comput. Chem. Eng. 2019, 129, 106513. [Google Scholar] [CrossRef]
- Bauer, N.; Rose, S.K.; Fujimori, S.; van Vuuren, D.P.; Weyant, J.; Wise, M.; Cui, Y.; Daioglou, V.; Gidden, M.J.; Kato, E.; et al. Global Energy Sector Emission Reductions and Bioenergy Use: Overview of the Bioenergy Demand Phase of the EMF-33 Model Comparison. Clim. Change 2020, 163, 1553–1568. [Google Scholar] [CrossRef]
- Ministry of Environment of Ecuador. Primera Contribución Determinada a Nivel Nacional Para el Acuerdo de París Bajo la Convención Marco de Naciones Unidas Sobre Cambio Climático; MAE: Quito, Ecuador, 2019; p. 44.
- Carvajal, P.E.; Li, F.G.N.; Soria, R.; Cronin, J.; Anandarajah, G.; Mulugetta, Y. Large Hydropower, Decarbonisation and Climate Change Uncertainty: Modelling Power Sector Pathways for Ecuador. Energy Strategy Rev. 2019, 23, 86–99. [Google Scholar] [CrossRef]
- Ramirez, A.D.; Boero, A.; Rivela, B.; Melendres, A.M.; Espinoza, S.; Salas, D.A. Life Cycle Methods to Analyze the Environmental Sustainability of Electricity Generation in Ecuador: Is Decarbonization the Right Path? Renew. Sustain. Energy Rev. 2020, 134, 110373. [Google Scholar] [CrossRef]
- Ramirez, A.D.; Rivela, B.; Boero, A.; Melendres, A.M. Lights and Shadows of the Environmental Impacts of Fossil-Based Electricity Generation Technologies: A Contribution Based on the Ecuadorian Experience. Energy Policy 2019, 125, 467–477. [Google Scholar] [CrossRef]
- Villamar, D.; Soria, R.; Rochedo, P.; Szklo, A.; Imperio, M.; Carvajal, P.; Schaeffer, R. Long-Term Deep Decarbonisation Pathways for Ecuador: Insights from an Integrated Assessment Model. Energy Strategy Rev. 2021, 35, 100637. [Google Scholar] [CrossRef]
- Arcentales-Bastidas, D.; Silva, C.; Ramirez, A.D. The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex. Energies 2022, 15, 5421. [Google Scholar] [CrossRef]
- Ministerio de Energía. Ecuadorian Electricity Master Plan; Ministerio de Energía: Quito, Ecuador, 2019; ISBN 9789942221537.
- CAF. Concepto de Implementación del Mecanismo Sectorial de Mitigación en el Sector de los Residuos en Ecuador; CAF: Quito, Ecuador, 2015; ISBN 9789804221408. [Google Scholar]
- Amaya, J.; Jervis, F.; Moreira, C. Waste-To-Energy Incineration: Evaluation of Energy Potential for Urban Domestic Waste in Guayaquil. Iber. J. Inf. Syst. Technol. 2019, E23, 392–404. [Google Scholar]
- Erique Obaco, G.E. Viabilidad económica del reemplazo de la gasolina eco país por la gasolina extra en el sector automotriz; 70 hojas; EPN: Quito, Ecuador, 2017. [Google Scholar]
- Parra, C.R.; Correa, A.; Navas-Gracia, L.M.; Narvaez, R.A.; Rivadeneira, D.; Ramirez, A.D. Bioenergy on Islands: An Environmental Comparison of Continental Palm Oil vs. Local Waste Cooking Oil for Electricity Generation. Appl. Sci. 2020, 10, 3806. [Google Scholar] [CrossRef]
- Muñoz, M.; Herrera, I.; Lechón, Y.; Caldés, N.; Iglesias, E. Environmental Assessment of Electricity Based on Straight Jatropha Oil on Floreana Island, Ecuador. Bioenergy Res. 2018, 11, 123–138. [Google Scholar] [CrossRef]
- Mun, L.A.; Graefe, S.; Dufour, D.; Gonzalez, A.; Mora, P.; Solı, H. Energy and Carbon Footprints of Ethanol Production Using Banana and Cooking Banana Discard: A Case Study from Costa Rica and Ecuador. Biomass Bioenergy 2011, 35, 2640–2649. [Google Scholar] [CrossRef]
- Chiriboga, G.; De La Rosa, A.; Molina, C.; Velarde, S.; Carvajal, C.G. Energy Return on Investment (EROI) and Life Cycle Analysis (LCA) of Biofuels in Ecuador. Heliyon 2020, 6, e04213. [Google Scholar] [CrossRef] [PubMed]
- MEER. Atlas Bioenergético del Ecuador, 1st ed.; MEER: Quito, Ecuador, 2015.
- ESRI. What Is GIS. Available online: https://www.esri.com/en-us/what-is-gis/overview (accessed on 8 February 2020).
- Resende, R.T.; Kuki, K.N.; Corrêa, T.R.; Zaidan, Ú.R.; Mota, P.H.S.; Telles, L.A.A.; Gonzales, D.G.E.; Motoike, S.Y.; Resende, M.D.V.; Leite, H.G.; et al. Data-Based Agroecological Zoning of Acrocomia Aculeata: GIS Modeling and Ecophysiological Aspects into a Brazilian Representative Occurrence Area. Ind. Crops Prod. 2020, 154, 112749. [Google Scholar] [CrossRef]
- Falasca, S.L.; del Fresno, C.M.; Waldman, C. Halophytes Energy Feedstocks: Possibilities for Argentina. Int. J. Energy Environ. Econ. 2014, 22, 597–630. [Google Scholar]
- Van Duren, I.; Voinov, A.; Arodudu, O.; Firrisa, M.T. Where to Produce Rapeseed Biodiesel and Why? Mapping European Rapeseed Energy Efficiency. Renew. Energy 2015, 74, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Bharti, A.; Paritosh, K.; Mandla, V.R.; Chawade, A.; Vivekanand, V. Gis Application for the Estimation of Bioenergy Potential from Agriculture Residues: An Overview. Energies 2021, 14, 898. [Google Scholar] [CrossRef]
- Natarajan, K.; Latva-Käyrä, P.; Zyadin, A.; Pelkonen, P. New Methodological Approach for Biomass Resource Assessment in India Using GIS Application and Land Use/Land Cover (LULC) Maps. Renew. Sustain. Energy Rev. 2016, 63, 256–268. [Google Scholar] [CrossRef]
- Gil, M.V.; Blanco, D.; Carballo, M.T.; Calvo, L.F. Carbon Stock Estimates for Forests in the Castilla y León Region, Spain. A GIS Based Method for Evaluating Spatial Distribution of Residual Biomass for Bio-Energy. Biomass Bioenergy 2011, 35, 243–252. [Google Scholar] [CrossRef]
- Hiloidhari, M.; Baruah, D.C.; Singh, A.; Kataki, S.; Medhi, K.; Kumari, S.; Ramachandra, T.V.; Jenkins, B.M.; Thakur, I.S. Emerging Role of Geographical Information System (GIS), Life Cycle Assessment (LCA) and Spatial LCA (GIS-LCA) in Sustainable Bioenergy Planning. Bioresour. Technol. 2017, 242, 218–226. [Google Scholar] [CrossRef]
- Bao, K.; Padsala, R.; Coors, V.; Thrän, D.; Schröter, B. A Method for Assessing Regional Bioenergy Potentials Based on Gis Data and a Dynamic Yield Simulation Model. Energies 2020, 13, 6488. [Google Scholar] [CrossRef]
- Nguyen, H.T.G.; Lyttek, E.; Lal, P.; Wieczerak, T.; Burli, P. Assessment of switchgrass-based bioenergy supply using GIS-based fuzzy logic and network optimization in Missouri (USA). Energies 2020, 13, 4516. [Google Scholar]
- Wu, Y.; Liu, S. Impacts of Biofuels Production Alternatives on Water Quantity and Quality in the Iowa River Basin. Biomass Bioenergy 2012, 36, 182–191. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, S.; Li, Z. Identifying Potential Areas for Biofuel Production and Evaluating the Environmental Effects: A Case Study of the James River Basin in the Midwestern United States. GCB Bioenergy 2012, 4, 875–888. [Google Scholar] [CrossRef] [Green Version]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Edrisi, S.A.; Abhilash, P.C. Exploring Marginal and Degraded Lands for Biomass and Bioenergy Production: An Indian Scenario. Renew. Sustain. Energy Rev. 2016, 54, 1537–1551. [Google Scholar] [CrossRef]
- Fagnano, M.; Impagliazzo, A.; Mori, M.; Fiorentino, N. Agronomic and Environmental Impacts of Giant Reed (Arundo donax L.): Results from a Long-Term Field Experiment in Hilly Areas Subject to Soil Erosion. Bioenergy Res. 2015, 8, 415–422. [Google Scholar] [CrossRef]
- Mehmood, M.A.; Ibrahim, M.; Rashid, U.; Nawaz, M.; Ali, S.; Hussain, A.; Gull, M. Biomass Production for Bioenergy Using Marginal Lands. Sustain. Prod. Consum. 2017, 9, 3–21. [Google Scholar] [CrossRef]
- Yang, L.; Lu, M.; Carl, S.; Mayer, J.A.; Cushman, J.C.; Tian, E.; Lin, H. Biomass Characterization of Agave and Opuntia as Potential Biofuel Feedstocks. Biomass Bioenergy 2015, 76, 43–53. [Google Scholar] [CrossRef]
- Pande, C.B.; Moharir, K.N.; Kumar Singh, S.; Varade, A.M.; Elbeltagi, A.; Khadri, S.F.R.; Choudhari, P. Estimation of Crop and Forest Biomass Resources in a Semi-Arid Region Using Satellite Data and GIS. J. Saudi Soc. Agric. Sci. 2021, 20, 302–311. [Google Scholar] [CrossRef]
- Janssen, R.; Rutz, D.D. Sustainability of Biofuels in Latin America: Risks and Opportunities. Energy Policy 2011, 39, 5717–5725. [Google Scholar] [CrossRef]
- Lozano-García, D.F.; Santibañez-Aguilar, J.E.; Lozano, F.J.; Flores-Tlacuahuac, A. GIS-Based Modeling of Residual Biomass Availability for Energy and Production in Mexico. Renew. Sustain. Energy Rev. 2020, 120. [Google Scholar] [CrossRef]
- Parra, C. Jatropha Plantation Zoning as Fedstock for Biofuel Production within a Sustainability Framework in Ecuador, Case Study in Manabi Province (Unpublished Report); University of Calgary: Calgary, AB, USA, 2012. [Google Scholar] [CrossRef]
- Falasca, S.L.; Ulberich, A.C.; Pitta-alvarez, S. ScienceDirect Possibilities for Growing Kenaf (Hibiscus cannabinus L.) in Argentina as Biomass Feedstock under Dry-Subhumid and Semiarid Climate Conditions. Biomass Bioenergy 2014, 64, 70–80. [Google Scholar] [CrossRef]
- Moreno Izquierdo, V.J.; Benitez, L.P.L.; Reyes Pozo, M.D.; Haro Prado, R.; Cruz, G. Aptitud agroecológica de tres cultivos estratégicos (maíz, arroz y caña de azúcar) en 14 cantones de la cuenca baja del río Guayas. Pro Sciences Revista de Producción Ciencias e Investigación 2018, 2, 15–24. [Google Scholar] [CrossRef]
- Ochoa, P.A.; Chamba, Y.M.; Arteaga, J.G.; Capa, E.D. Estimation of Suitable Areas for Coffee Growth Using a GIS Approach and Multicriteria Evaluation in Regions with Scarce Data. Appl. Eng. Agric. 2017, 33, 841–848. [Google Scholar] [CrossRef] [Green Version]
- Corporación para la Investigación Energética. Atlas Solar Del Ecuador Con Fines De Generación Eléctrica; CONELEC: Quito, Ecuador, 2008. [Google Scholar]
- MEER. Atlas Eólico del Ecuador Con Fines de Generación Eléctrica; MEER: Quito, Ecuador, 2013.
- Cevallos-Sierra, J.; Ramos-Martin, J. Spatial Assessment of the Potential of Renewable Energy: The Case Of Ecuador. Renew. Sustain. Energy Rev. 2018, 81, 1154–1165. [Google Scholar] [CrossRef]
- Maltsoglou, I.; Kojakovic, A.; Rincón, L.E.; Felix, E.; Branca, G.; Valle, S.; Gianvenuti, A.; Rossi, A.; Thulstrup, A.; Thofern, H. Combining Bioenergy and Food Security: An Approach and Rapid Appraisal to Guide Bioenergy Policy Formulation. Biomass Bioenergy 2014, 79, 80–95. [Google Scholar] [CrossRef]
- Angelini, L.G.; Ceccarini, L.; Nassi o Di Nasso, N.; Bonari, E. Long-Term Evaluation of Biomass Production and Quality of Two Cardoon (Cynara cardunculus L.) Cultivars for Energy Use. Biomass Bioenergy 2009, 33, 810–816. [Google Scholar] [CrossRef]
- Iqbal, Y.; Gauder, M.; Claupein, W.; Graeff-Hönninger, S.; Lewandowski, I. Yield and Quality Development Comparison between Miscanthus and Switchgrass over a Period of 10 Years. Energy 2015, 89, 268–276. [Google Scholar] [CrossRef]
- Lord, R.A. Reed Canarygrass (Phalaris arundinacea) Outperforms Miscanthus or Willow on Marginal Soils, Brownfield and Non-Agricultural Sites for Local, Sustainable Energy Crop Production. Biomass Bioenergy 2015, 78, 110–125. [Google Scholar] [CrossRef] [Green Version]
- Sadaka, S.; Sharara, M.A.; Ashworth, A.; Keyser, P.; Allen, F.; Wright, A. Characterization of Biochar from Switchgrass Carbonization. Energies 2014, 7, 548. [Google Scholar] [CrossRef]
- NRCS; USDA. Planting and Managing Giant Miscanthus as a Biomass Energy Crop; NRCS: Washington, DC, USA, 2016.
- McKendry, P. Energy Production from Biomass (Part 1): Overview of Biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Testa, R.; Foderà, M.; Di Trapani, A.M.; Tudisca, S.; Sgroi, F. Giant Reed as Energy Crop for Southern Italy: An Economic Feasibility Study. Renew. Sustain. Energy Rev. 2016, 58, 558–564. [Google Scholar] [CrossRef]
- Finnan, J.; Styles, D. Hemp: A More Sustainable Annual Energy Crop for Climate and Energy Policy. Energy Policy 2013, 58, 152–162. [Google Scholar] [CrossRef]
- Gonzalez, R.; Phillips, R.; Saloni, D.; Jameel, H.; Abt, R.; Pirraglia, A.; Wright, J. Biomass to Energy in the Southern United States: Supply Chain and Delivered Cost. Bioresources 2011, 6, 2954–2976. [Google Scholar] [CrossRef]
- McCalmont, J.P.; Hastings, A.; McNamara, N.P.; Richter, G.M.; Robson, P.; Donnison, I.S.; Clifton-Brown, J. Environmental Costs and Benefits of Growing Miscanthus for Bioenergy in the UK. GCB Bioenergy 2017, 9, 489–507. [Google Scholar] [CrossRef] [PubMed]
- Dohleman, F.G.; Long, S.P. More Productive than Maize in the Midwest: How Does Miscanthus Do It? Plant Physiol. 2009, 150, 2104–2115. [Google Scholar] [CrossRef] [Green Version]
- Acuña, E.; Espinosa, M.; Cancino, J.; Rubilar, R.; Muñoz, F. Estimating the Bioenergy Potential of Pinus Radiata Plantations in Chile. Cienc. Investig. Agrar. 2010, 37, 93–102. [Google Scholar] [CrossRef]
- Gulledge, J.; Schimel, J.P. Low-Concentration Kinetics of Atmospheric CH4 Oxidation in Soil and Mechanism of NH4+ Inhibition. Appl. Environ. Microbiol. 1998, 64, 4291–4298. [Google Scholar] [CrossRef] [Green Version]
- Schwerz, F.; Neto, D.D.; Caron, B.O.; Nardini, C.; Sgarbossa, J.; Eloy, E.; Behling, A.; Elli, E.F.; Reichardt, K. Biomass and Potential Energy Yield of Perennial Woody Energy Crops under Reduced Planting Spacing. Renew. Energy 2020, 153, 1238–1250. [Google Scholar] [CrossRef]
- Feria, M.J.; Rivera, A.; Ruiz, F.; Grandal, E.; García Domínguez, J.C.; Pérez, A.; López, F. Energetic Characterization of Lignocellulosic Biomass from Southwest Spain. Int. J. Green Energy 2011, 8, 631–642. [Google Scholar] [CrossRef] [Green Version]
- Instituto Forestal Nacional de Paraguay. Rentabilidad de la Inversión en Plantación de Eucalyptus con Fines Maderables. Instituto Forestal Nacional. 2014. Available online: http://www.infona.gov.py/application/files/8514/3204/8894/Rentabilidad_de_la_inversion_forestal_220414.pdf (accessed on 2 February 2022).
- Abanto, H.A. Evaluación del Crecimiento de Plantaciones Forestales de Eucalyptus Globulus Labill en Tres Comunidades de la Microcuenca de Achamayo en Concepción, Junín. 2017, 100. Available online: https://repositorio.lamolina.edu.pe/handle/20.500.12996/2112 (accessed on 10 August 2021).
- Taylor, G.; Donnison, I.S.; Murphy-Bokern, D.; Morgante, M.; Bogeat-Triboulot, M.B.; Bhalerao, R.; Hertzberg, M.; Polle, A.; Harfouche, A.; Alasia, F.; et al. Sustainable Bioenergy for Climate Mitigation: Developing Drought-Tolerant Trees and Grasses. Ann. Bot. 2019, 124, 513–520. [Google Scholar] [CrossRef] [Green Version]
- Darabant, A.; Haruthaithanasan, M.; Atkla, W.; Phudphong, T.; Thanavat, E.; Haruthaithanasan, K. Bamboo Biomass Yield and Feedstock Characteristics of Energy Plantations in Thailand. Energy Procedia 2014, 59, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Arun Jyoti, N.; Lal, R.; Das, A.K. Ethnopedology and Soil Quality of Bamboo (Bambusa Sp.) Based Agroforestry System. Sci. Total Environ. 2015, 521–522, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.-Z.; Fu, M.-Y.; Xie, J.-Z.; Yang, X.-S.; Li, Z.-C. Ecological Functions of Bamboo Forest: Research and Application. J. Res. Harbin 2005, 16, 143–147. [Google Scholar] [CrossRef]
- Benton, A. Priority Species of Bamboo. In Bamboo; Springer: Cham, Switzerland, 2015; pp. 31–41. [Google Scholar] [CrossRef]
- Yen, T.M.; Ji, Y.J.; Lee, J.S. Estimating Biomass Production and Carbon Storage for a Fast-Growing Makino Bamboo (Phyllostachys makinoi) Plant Based on the Diameter Distribution Model. Ecol. Manag. 2010, 260, 339–344. [Google Scholar] [CrossRef]
- Pulavarty, A. Salt Tolerance Screening of Bamboo Genotypes (Bamboo Sps.) Using Growth and Organic Osmolytes Accumulation as Effective Indicators. World Bamboo Congr. 2015, 10, 1–16. [Google Scholar]
- García, C.A.; Betancourt, R.; Cardona, C.A. Stand-Alone and Biorefinery Pathways to Produce Hydrogen through Gasification and Dark Fermentation Using Pinus Patula. J. Environ. Manag. 2017, 203, 695–703. [Google Scholar] [CrossRef]
- Sachs, R.M.; Gilpin, D.W.; Mock, T. Short-Rotation Eucalyptus as a Biomass Fuel. Calif. Agric. Berkeley 1980, 34, 18–20. [Google Scholar]
- Nahm, M.; Morhart, C. Virginia Mallow (Sida hermaphrodita (L.) Rusby) as Perennial Multipurpose Crop: Biomass Yields, Energetic Valorization, Utilization Potentials, and Management Perspectives. GCB Bioenergy 2018, 10, 393–404. [Google Scholar] [CrossRef] [Green Version]
- Šiaudinis, G.; Jasinskas, A.; Šarauskis, E.; Steponavičius, D.; Karčauskiene, D.; Liaudanskiene, I. The Assessment of Virginia Mallow (Sida Hermaphrodita Rusby) and Cup Plant (Silphium perfoliatum L.) Productivity, Physico-Mechanical Properties and Energy Expenses. Energy 2015, 93, 606–612. [Google Scholar] [CrossRef]
- Ecuador Forestal Pine Data Sheet. 2017. Available online: http://www.ecuadorforestal.org/download/contenido/pino.pdf (accessed on 13 December 2021).
- Routa, J.; Kellomäki, S.; Strandman, H. Effects of Forest Management on Total Biomass Production and CO2 Emissions from Use of Energy Biomass of Norway Spruce and Scots Pine. Bioenergy Res. 2012, 5, 733–747. [Google Scholar] [CrossRef]
- Prade, T.; Svensson, S.E.; Andersson, A.; Mattsson, J.E. Biomass and Energy Yield of Industrial Hemp Grown for Biogas and Solid Fuel. Biomass Bioenergy 2011, 35, 3040–3049. [Google Scholar] [CrossRef]
- Kolodziej, J.; Wladyka-Przybylak, M.; Mankowski, J.; Grabowska, L. Heat of Combustion of Hemp and Briquettes Made of Hemp Shives. In Proceedings of the International Scientific Conference Renewable Energy and Energy Efficiency, Jelgava, Latvia, 28–30 May 2012; pp. 163–166. [Google Scholar]
- Merfield, C.N. Industrial Hemp and Its Potential for New Zealand. Leadership. 1999. Available online: http://www.merfield.com/research/2003/hemp/hemp.pdf (accessed on 4 September 2021).
- Martyniak, D.; Żurek, G.; Prokopiuk, K. Biomass Yield and Quality of Wild Populations of Tall Wheatgrass [Elymus elongatus (Host.) Runemark]. Biomass Bioenergy 2017, 101, 21–29. [Google Scholar] [CrossRef]
- Kleinhenz, V.; Midmore, D.J. Aspects of Bamboo Agronomy; Central Queensland University North Rockhampton, Queensland, Australia. 2001. Available online: https://www.volkerkleinhenz.com/publications/aspects-of-bamboo-agronomy/aspects-of-bamboo-agronomy.pdf (accessed on 30 June 2021).
- Matango Proaño, F. Evaluación de tres variedades de cañamo (Cannabis sativa Var. sativa) bajo tres densidades de siembra para la obtención de fibra. Bachelor’s Thesis, Pontificia Universidad Católica del Ecuador, Escuela de Ciencias Agrícolas y Ambientales, Ibarra, Ecuador, 2005. Available online: https://repositorio.iniap.gob.ec/jspui/handle/41000/536 (accessed on 5 March 2022).
- Angelini, L.G.; Ceccarini, L.; Bonari, E. Biomass Yield and Energy Balance of Giant Reed (Arundo donax L.) Cropped in Central Italy as Related to Different Management Practices. Eur. J. Agron. 2005, 22, 375–389. [Google Scholar] [CrossRef]
- Pacheco Mantilla, E.D. Estudio de Factibilidad Para La Producción de Eucalipto (Eucalyptus Grandis) En Muisne–Esmeraldas- Ecuador. Bachelor’s Thesis, USFQ, Quito, Ecuador, 2010; pp. 2–48. [Google Scholar]
- Griu, T.; Lunguleasa, A. The Use of the White Poplar (Populus alba L.) Biomass as Fuel. J. Res. Harbin 2016, 27, 719–725. [Google Scholar] [CrossRef]
- Volk, T.A.; Berguson, B.; Daly, C.; Halbleib, M.D.; Miller, R.; Rials, T.G.; Abrahamson, L.P.; Buchman, D.; Buford, M.; Cunningham, M.W.; et al. Poplar and Shrub Willow Energy Crops in the United States: Field Trial Results from the Multiyear Regional Feedstock Partnership and Yield Potential Maps Based on the PRISM-ELM Model. GCB Bioenergy 2018, 10, 735–751. [Google Scholar] [CrossRef]
- Zalesny, R.S.; Stanturf, J.A.; Gardiner, E.S.; Perdue, J.H.; Young, T.M.; Coyle, D.R.; Headlee, W.L.; Bañuelos, G.S.; Hass, A. Ecosystem Services of Woody Crop Production Systems. Bioenergy Res. 2016, 9, 465–491. [Google Scholar] [CrossRef] [Green Version]
- Stolarski, M.J.; Szczukowski, S.; Tworkowski, J.; Klasa, A. Yield, Energy Parameters and Chemical Composition of Short-Rotation Willow Biomass. Ind. Crops Prod. 2013, 46, 60–65. [Google Scholar] [CrossRef]
- Kulig, B.; Gacek, E.; Wojciechowski, R.; Oleksy, A.; Kołodziejczyk, M.; Szewczyk, W.; Klimek-Kopyra, A. Biomass Yield and Energy Efficiency of Willow Depending on Cultivar, Harvesting Frequency and Planting Density. Plant Soil Environ. 2019, 65, 377–386. [Google Scholar] [CrossRef] [Green Version]
- Huhtinen, M. Wood Biomass as a Fuel/Material for 5EURES Training Sessions. 2006. Available online: https://www.studocu.com/ph/document/bicol-university/probability-and-statistics/5eures-wood-properties-pdf/11527049 (accessed on 12 June 2021).
- Dahik, C.Q.; Crespo, P.; Stimm, B.; Mosandl, R.; Cueva, J.; Hildebrandt, P.; Weber, M. Impacts of Pine Plantations on Carbon Stocks of Páramo Sites in Southern Ecuador. Carbon Balance Manag. 2021, 5, 1–15. [Google Scholar] [CrossRef]
- Pacheco, E.; Díaz, M.; Quizhpe, W.; Asanza, J.; Jadán, Á. Valoración Financiera de Una Plantación de Pinus Patula Schiede Ex Schltdl. & Cham, En La Microcuenca Zamora Huayco–Loja, Ecuador. Researchgate Net 2017, 1, 77–88. [Google Scholar]
- Gantait, S.; Pramanik, B.R.; Banerjee, M. Optimization of Planting Materials for Large Scale Plantation of Bambusa Balcooa Roxb.: Influence of Propagation Methods. J. Saudi Soc. Agric. Sci. 2018, 17, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Cherney, J.H.; Small, E. Industrial Hemp in North America: Production, Politics and Potential. Agronomy 2016, 6, 58. [Google Scholar] [CrossRef] [Green Version]
- Meijer, W.J.; van der Werf, H.M.; Mathijssen, E.W.; van den Brink, P.W. Constraints to Dry Matter Production in Fibre Hemp (Cannabis sativa L.). Eur. J. Agron. 1995, 4, 109–117. [Google Scholar] [CrossRef]
- Prade, T.; Svensson, S.E.; Mattsson, J.E. Energy Balances for Biogas and Solid Biofuel Production from Industrial Hemp. Biomass Bioenergy 2012, 40, 36–52. [Google Scholar] [CrossRef]
- Maucieri, C.; Borin, M.; Barbera, A.C. Role of C3 Plant Species on Carbon Dioxide and Methane Emissions in Mediterranean Constructed Wetland. Ital. J. Agron. 2014, 9, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Teagasc Miscanthus Best Practice Guidelines 2010, Agri-Food and Bioscience Institute, Hillsborough, Northern Ireland. February 2015. Available online: https://www.teagasc.ie/media/website/publications/2011/Miscanthus_Best_Practice_Guidelines.pdf (accessed on 5 September 2021).
- Couto, W. Adaptación de La Metodología de Zonificación Agro Ecológica de La FAO Para Aplicaciones a Diferentes Niveles de Zonificación En Países de América Latina y El Caribe 3; FAO: Santiago, Chile, 2016. [Google Scholar]
- QGIS QGIS A Free and Open Source Geographic Information System. Available online: https://www.qgis.org/en/site/ (accessed on 3 March 2021).
- Velasteguí Coloma, C.A. Evaluación de tres dosis de fertilizante en plantación de Pinus radiata D. Don en la escuela de formación de soldados del Ecuador, parroquia Pisque, cantón Ambato. Agrionomist. Master’s Thesis, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador, 2017. [Google Scholar]
- IEE Instituto Espacial Ecuatoriano. Available online: http://www.ideportal.iee.gob.ec/ (accessed on 7 July 2021).
- Central Bank of Ecuador Statistical Information. Available online: https://contenido.bce.fin.ec/home1/estadisticas/bolmensual/IEMensual.jsp (accessed on 9 June 2019).
- Viteri, M. Combinación Biológica De Dos Especies En Humedales Vegetales Sucesivos Como Biofiltros Para La Descontaminación De Aguas Residuales En La Planta De Tratamiento El Peral Ep-Emapa Ambato; Universidad Técnica De Ambato: Tungurahua, Ecuador, 2014. [Google Scholar]
- CONABIO. Método de Evaluación Rápida de Invasividad (MERI) Para Especies Exóticas En México Arundo donax (L.); CONABIO: Mexico City, Mexico, 2015.
- Fassio, A.; Rodríguez, M.J.; Ceretta, S. Cáñamo (Cannabis sativa L.); INIA: Montevideo, Uruguay, 2013. [Google Scholar]
- Muñoz, F.; Cancino, J. Antecedentes de Miscanthus x Giganteus Para La Producción de Bioenergía; Universidad de Concepción, Concepción: Concepción, Chile, 2014; p. 62. [Google Scholar]
- Gobierno de Chile Corfo Sistema de Gestión Forestal. Available online: http://www.gestionforestal.cl/pt_02/plantaciones/txt/ReqEcol/REGLO.htm (accessed on 8 May 2020).
- Mag Sistema de Información Pública Agropecuaria. Available online: http://sipa.agricultura.gob.ec/index.php/precios-mayoristas (accessed on 8 August 2021).
- Secretaría Técnica Planifica Ecuador Archivos de Información Geográfica. Available online: https://sni.gob.ec/coberturas (accessed on 8 September 2019).
- USDA. Soil Survey Manual, 4th ed.; Soil Science Division Staff, Ed.; USDA: Washington, DC, USA, 1993.
- Franco, A.; Giannini, N. Perspectives for the Use of Biomass as Fuel in Combined Cycle Power Plants. Int. J. Therm. Sci. 2005, 44, 163–177. [Google Scholar] [CrossRef]
- Zang, G.; Zhang, J.; Jia, J.; Lora, E.S.; Ratner, A. Life Cycle Assessment of Power-Generation Systems Based on Biomass Integrated Gasification Combined Cycles. Renew. Energy 2020, 149, 336–346. [Google Scholar] [CrossRef]
- Elsido, C.; Martelli, E.; Kreutz, T. Heat Integration and Heat Recovery Steam Cycle Optimization for a Low-Carbon Lignite/Biomass-to-Jet Fuel Demonstration Project. Appl. Energy 2019, 239, 1322–1342. [Google Scholar] [CrossRef]
- Narvaez, R.A.; Vargas, G.; Espinoza, F. Potencial of Waste-to-Energy Implementation in Ecuador. Int. J. Energy Eng. 2013, 3, 279–286. [Google Scholar] [CrossRef]
- IIGE. Escenarios de Prospectiva Energética Para Ecuador 2050. 2016, MEER, Quito-Ecuador. Available online: https://isbn.cloud/9789942862044/escenarios-de-prospectiva-energetica-para-ecuador-a-2050/ (accessed on 10 November 2021).
- Batidzirai, B.; Smeets, E.M.W.; Faaij, A.P.C. Harmonising Bioenergy Resource Potentials—Methodological Lessons from Review of State of the Art Bioenergy Potential Assessments. Renew. Sustain. Energy Rev. 2012, 16, 6598–6630. [Google Scholar] [CrossRef]
- Aragon, N.; Wagner, M.; Wang, M.; Broadbent, A.M.; Parker, N.; Georgescu, M. Sustainable Land Management for Bioenergy Crops. Energy Procedia 2017, 125, 379–388. [Google Scholar] [CrossRef]
- Hasegawa, T.; Sands, R.D.; Brunelle, T.; Cui, Y.; Frank, S.; Fujimori, S.; Popp, A. Food Security under High Bioenergy Demand toward Long-Term Climate Goals. Clim. Change 2020, 163, 1587–1601. [Google Scholar] [CrossRef]
- Ahlgren, S.; Cowie, A.L. Bioenergy and Land Use Change—State of the Art. WIREs Energy Environ. 2012, 2, 282–303. [Google Scholar] [CrossRef]
- Searchinger, T. Use of U.S. Croplands for Biofuels Increases Greenhouse Gases through Emissions from Land-Use Change. Science 2013, 1238, 10–13. [Google Scholar] [CrossRef]
- Zilberman, D. Indirect Land Use Change: Much Ado about (Almost) Nothing. GCB Bioenergy 2016, 9, 485–488. [Google Scholar] [CrossRef] [Green Version]
- Neil, D.; Zanchi, G.; Pena, N. A Method for Estimating the Indirect Land Use Change from Bioenergy Activities Based on the Supply and Demand of Agricultural-Based Energy. Biomass Bioenergy 2013, 59, 3–15. [Google Scholar] [CrossRef]
- Stanturf, J.A.; Vance, E.D.; Fox, T.R.; Kirst, M. Eucalyptus beyond Its Native Range: Environmental Issues in Exotic Bioenergy Plantations. Int. J. For. Res. 2013, 2013, 1–5. [Google Scholar] [CrossRef]
- Dvorak, W.S. Water Use in Plantations of Eucalypts and Pines: A Discussion Paper from a Tree Breeding Perspective. Int. For. Rev. 2012, 14, 110–119. [Google Scholar] [CrossRef]
- Gerbens-Leenes, W.; Hoekstra, A.Y.; Van Der Meer, T.H. The Water Footprint of Bioenergy. Proc. Natl. Acad. Sci. USA 2009, 106, 10219–10223. [Google Scholar] [CrossRef] [Green Version]
- Isebrands, J.G.; Richardson, J. Poplars and Willows: Trees for Society and the Environment; CAB International; FAO: Rome, Italy, 2014. [Google Scholar]
- Bulgarelli, D.; Schlaeppi, K.; Spaepen, S.; van Themaat, E.V.L.; Schulze-Lefert, P. Poplar and Willow News. Newsl. Int. Poplar Comm. 2016, 64, 5–6. [Google Scholar]
- Yeasmin, L.; Ali, M.N.; Gantait, S.; Chakraborty, S. Bamboo: An Overview on Its Genetic Diversity and Characterization. 3 Biotech 2015, 5, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Icaza, D.; Borge-Diez, D.; Galindo, S.P. Analysis and Proposal of Energy Planning and Renewable Energy Plans in South America: Case Study of Ecuador. Renew Energy 2022, 182, 314–342. [Google Scholar] [CrossRef]
Technology | Gross Energy Potential MWh/Year | Bamboo | Hemp | Eucalyptus | Giant Reed | Pine | Miscanthus | Total |
2,677,144 | 1,593,878 | 3,915,503 | 10,061,004 | 1,554,688 | 5,853,166 | 25,655,384 | ||
Steam power plants (backpressure turbines) 20–25 MW | Lower limit 10% (efficiency) | 267,714 | 159,388 | 391,550 | 1,006,100 | 155,469 | 585,317 | 2,565,538 |
Upper limit 20% (efficiency) | 535,429 | 318,776 | 783,101 | 2,012,201 | 310,938 | 1,170,633 | 5,131,077 | |
Steam power plants (condensing turbines) 5–50 MW | Lower limit 22% (efficiency) | 588,972 | 350,653 | 861,411 | 2,213,421 | 342,031 | 1,287,697 | 5,644,184 |
Upper limit 28% (efficiency) | 749,600 | 446,286 | 1,096,341 | 2,817,081 | 435,313 | 1,638,886 | 7,183,507 | |
Externally fired gas turbines 5–25 MW (simple cycle) | Lower limit 25% (efficiency) | 669,286 | 398,470 | 978,876 | 2,515,251 | 388,672 | 1,463,291 | 6,413,846 |
Upper limit 30% (efficiency) | 803,143 | 478,163 | 1,174,651 | 3,018,301 | 466,406 | 1,755,950 | 7,696,615 | |
Externally fired gas turbines 10–30 MW (combined cycle) | Lower limit 30% (efficiency) | 803,143 | 478,163 | 1,174,651 | 3,018,301 | 466,406 | 1,755,950 | 7,696,615 |
Upper limit 40% (efficiency) | 1,070,858 | 637,551 | 1,566,201 | 4,024,402 | 621,875 | 2,341,266 | 10,262,153 | |
Biomass integrated gasification 40–60 MW simple cycle | Lower limit 21% (efficiency) | 562,200 | 334,714 | 822,256 | 2,112,811 | 326,485 | 1,229,165 | 5,387,631 |
Upper limit 25% (efficiency) | 669,286 | 398,470 | 978,876 | 2,515,251 | 388,672 | 1,463,291 | 6,413,846 | |
Combined cycle 90–100 MW combined cycle | Lower limit 35% (efficiency) | 937,001 | 557,857 | 1,370,426 | 3,521,352 | 544,141 | 2,048,608 | 8,979,384 |
Upper limit 40% (efficiency) | 1,070,858 | 637,551 | 1,566,201 | 4,024,402 | 621,875 | 2,341,266 | 10,262,153 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parra, C.R.; Ramirez, A.D.; Navas-Gracia, L.M.; Gonzales, D.; Correa-Guimaraes, A. Prospects for Bioenergy Development Potential from Dedicated Energy Crops in Ecuador: An Agroecological Zoning Study. Agriculture 2023, 13, 186. https://doi.org/10.3390/agriculture13010186
Parra CR, Ramirez AD, Navas-Gracia LM, Gonzales D, Correa-Guimaraes A. Prospects for Bioenergy Development Potential from Dedicated Energy Crops in Ecuador: An Agroecological Zoning Study. Agriculture. 2023; 13(1):186. https://doi.org/10.3390/agriculture13010186
Chicago/Turabian StyleParra, Christian R., Angel D. Ramirez, Luis Manuel Navas-Gracia, David Gonzales, and Adriana Correa-Guimaraes. 2023. "Prospects for Bioenergy Development Potential from Dedicated Energy Crops in Ecuador: An Agroecological Zoning Study" Agriculture 13, no. 1: 186. https://doi.org/10.3390/agriculture13010186
APA StyleParra, C. R., Ramirez, A. D., Navas-Gracia, L. M., Gonzales, D., & Correa-Guimaraes, A. (2023). Prospects for Bioenergy Development Potential from Dedicated Energy Crops in Ecuador: An Agroecological Zoning Study. Agriculture, 13(1), 186. https://doi.org/10.3390/agriculture13010186