An Integrated Assessment of Different Types of Environment-Friendly Technological Progress and Their Spatial Spillover Effects in the Chinese Agriculture Sector
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Model Construction
3.1.1. Measurement Model of Agricultural Environmental Friendly Technology Progress
3.1.2. Kernel Density Estimation Method
3.1.3. Spatial Autocorrelation
3.1.4. Spatial Dubin Model
3.1.5. Data Sources
3.2. Variable Selection and Data Interpretation
3.2.1. Variable Selection and Data Description
3.2.2. Variable Selection and Data Description of Spatial Spillover Effects
3.3. Model Validation
4. Results
4.1. Time Dynamic Evolution of Agricultural Environmental Friendly Technology Progress
4.2. Subsection Evolution of Spatial Characteristics of Agricultural Environmental Friendly Technology Progress
4.3. Subsection Spatial Spillover Effects of Agricultural Environmental Friendly Technology Progress
5. Discussions
6. Conclusions
- (i)
- From the perspective of time and space dimensions, China’s Agricultural Environmental friendly technology Progress (AGTP) showed an overall upward trend during the study period. Among them, from 2000 to 2012, the agricultural resource-saving technological progress (AEGTP) showed a slight technological regression trend, and from 2012 to 2019, it rebounded rapidly.
- (ii)
- From the perspective of type, the emission reduction environmental friendly technology progress (AEGTP) had similar spatial and temporal development patterns and wa only spatially similar to agricultural resource-saving technology progress. The distribution has a high degree of coincidence, and the aggregation area is more concentrated. Various influencing factors had a more significant impact on the emission reduction of agricultural environmentally friendly technology progress (ACGTP) than the agricultural resource-saving environmental friendly technology progress (AEGTP).
- (iii)
- From the perspective of the spatial spillover effect, labor level (labor), per capita agricultural gross product (PGDP), and agricultural internal structure (PS) were positively and significantly related to agricultural environmentally friendly technology progress and its different types. Agricultural price policy (PP), financial support policy (FIN), economic environmental regulation (EPR), and administrative environmental regulation (CER) had significant negative effects on the progress of agricultural environmentally friendly technology and its different types.
- (iv)
- However, as the aggregation characteristics of agricultural environmentally friendly technology progress are extremely obvious, most provinces with adjacent locations or provinces with similar economic development levels showed similar aggregation characteristics. High–high agglomeration areas are mainly concentrated in North China and East China, and low–low agglomeration areas are mainly concentrated in Northwest and Southwest China. Factors affecting the income level of rural residents include the selection of advanced agricultural production technology, the popularization and application, and the utilization efficiency of agricultural resources.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, F.; Yue, Q.; Engel, B.A.; Guo, S.; Guo, P.; Li, X. A Bi-Level Multiobjective Stochastic Approach for Supporting Environment-Friendly Agricultural Planting Strategy Formulation. Sci. Total Environ. 2019, 693, 133593. [Google Scholar] [CrossRef] [PubMed]
- Pathak, J.; Rajneesh; Maurya, P.K.; Singh, S.P.; Häder, D.-P.; Sinha, R.P. Cyanobacterial Farming for Environment Friendly Sustainable Agriculture Practices: Innovations and Perspectives. Front. Environ. Sci. 2018, 6, 7. [Google Scholar] [CrossRef]
- Kim, N.-R.; Cho, Y.-S.; Kim, S.-A. Satisfaction and Recognition Level of Environment-Friendly Agricultural Products in Cheongju Area. Korean J. Community Nutr. 2011, 16, 75–85. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Liu, Z. Effects of Climate Change on Paddy Expansion and Potential Adaption Strategies for Sustainable Agriculture Development across Northeast China. Appl. Geogr. 2022, 141, 102667. [Google Scholar] [CrossRef]
- Liu, D.; Zhu, X.; Wang, Y. China’s Agricultural Green Total Factor Productivity Based on Carbon Emission: An Analysis of Evolution Trend and Influencing Factors. J. Clean. Prod. 2021, 278, 123692. [Google Scholar] [CrossRef]
- Lefebvre, M.; Midler, E.; Bontems, P. Adoption of Environment-Friendly Agricultural Practices with Background Risk: Experimental Evidence. Environ. Resour. Econ. 2020, 76, 405–428. [Google Scholar] [CrossRef]
- Mao, K.; Jin, S.; Hu, Y.; Weeks, N.; Ye, L. Environmental Conservation or the Treadmill of Law: A Case Study of the Post-2014 Husbandry Waste Regulations in China. Int. J. Offender Ther. Comp. Criminol. 2022, 66, 296–326. [Google Scholar] [CrossRef]
- Chen, Z.; Sarkar, A.; Rahman, A.; Li, X.; Xia, X. Exploring the Drivers of Green Agricultural Development (GAD) in China: A Spatial Association Network Structure Approaches. Land Use Policy 2021, 112, 105827. [Google Scholar] [CrossRef]
- Chen, Z.; Sarkar, A.; Li, X.; Xia, X. Effects of Joint Adoption for Multiple Green Production Technologies on Welfare-a Survey of 650 Kiwi Growers in Shaanxi and Sichuan. Int. J. Clim. Change Strateg. Manag. 2021, 13, 229–249. [Google Scholar] [CrossRef]
- Wen, L.; Chatalova, L.; Gao, X.; Zhang, A. Reduction of Carbon Emissions through Resource-Saving and Environment-Friendly Regional Economic Integration: Evidence from Wuhan Metropolitan Area, China. Technol. Forecast. Soc. Change 2021, 166, 120590. [Google Scholar] [CrossRef]
- He, Z.; Zhang, R.; Wu, D. Evaluation of Resource-Saving and Environment-Friendly Agriculture Development Status Based on Hybrid Clustering; American Society of Civil Engineers: Chengdu, China, 26 April 2012; pp. 1962–1971. [Google Scholar] [CrossRef]
- Zhong, S.; Li, Y.; Li, J.; Yang, H. Measurement of Total Factor Productivity of Green Agriculture in China: Analysis of the Regional Differences Based on China. PLoS ONE 2021, 16, e0257239. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Feng, C.; Qin, J.; Wang, X.; Zhang, T. Measuring China’s Agricultural Green Total Factor Productivity and Its Drivers during 1998–2019. Sci. Total Environ. 2022, 829, 154477. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Huang, X.; Huang, J.; Gao, X.; Chen, L. Spatial-Temporal Characteristics of Agriculture Green Total Factor Productivity in China, 1998–2016: Based on More Sophisticated Calculations of Carbon Emissions. Int. J. Environ. Res. Public Health 2019, 16, 3932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Miao, J.; Zhu, Z. Measuring Green Total Factor Productivity of China’s Agricultural Sector: A Three-Stage SBM-DEA Model with Non-Point Source Pollution and CO2 Emissions. J. Clean. Prod. 2021, 318, 128543. [Google Scholar] [CrossRef]
- Sarkar, A.; Wang, H.; Rahman, A.; Qian, L.; Memon, W.H. Evaluating the Roles of the Farmer’s Cooperative for Fostering Environmentally Friendly Production Technologies-a Case of Kiwi-Fruit Farmers in Meixian, China. J. Environ. Manag. 2022, 301, 113858. [Google Scholar] [CrossRef]
- Chi, Y.; Zhou, W.; Wang, Z.; Hu, Y.; Han, X. The Influence Paths of Agricultural Mechanization on Green Agricultural Development. Sustainability 2021, 13, 12984. [Google Scholar] [CrossRef]
- Xu, P.; Jin, Z.; Tang, H. Influence Paths and Spillover Effects of Agricultural Agglomeration on Agricultural Green Development. Sustainability 2022, 14, 6185. [Google Scholar] [CrossRef]
- Li, F.; Yang, P.; Zhang, K.; Yin, Y.; Zhang, Y.; Yin, C. The Influence of Smartphone Use on Conservation Agricultural Practice: Evidence from the Extension of Rice-Green Manure Rotation System in China. Sci. Total Environ. 2022, 813, 152555. [Google Scholar] [CrossRef]
- Han, H.; Ding, T.; Nie, L.; Hao, Z. Agricultural Eco-Efficiency Loss under Technology Heterogeneity given Regional Differences in China. J. Clean. Prod. 2020, 250, 119511. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, H. Green Agricultural Development Based on Information Communication Technology and the Panel Space Measurement Model. Sustainability 2021, 13, 1147. [Google Scholar] [CrossRef]
- Chen, Z.; Li, X.; Xia, X. Measurement and Spatial Convergence Analysis of China’s Agricultural Green Development Index. Environ. Sci. Pollut. Res. 2021, 28, 19694–19709. [Google Scholar] [CrossRef] [PubMed]
- Sanders, R. A Market Road to Sustainable Agriculture? Ecological Agriculture, Green Food and Organic Agriculture in China. Dev. Change 2006, 37, 201–226. [Google Scholar] [CrossRef]
- Northrup, D.L.; Basso, B.; Wang, M.Q.; Morgan, C.L.S.; Benfey, P.N. Novel Technologies for Emission Reduction Complement Conservation Agriculture to Achieve Negative Emissions from Row-Crop Production. Proc. Natl. Acad. Sci. USA 2021, 118, e2022666118. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, X.; Bin, P. Agriculture Carbon-Emission Reduction and Changing Factors behind Agricultural Eco-Efficiency Growth in China. J. Clean. Prod. 2022, 334, 130193. [Google Scholar] [CrossRef]
- Wollenberg, E.; Richards, M.; Smith, P.; Havlík, P.; Obersteiner, M.; Tubiello, F.N.; Herold, M.; Gerber, P.; Carter, S.; Reisinger, A.; et al. Reducing Emissions from Agriculture to Meet the 2 °C Target. Glob. Change Biol. 2016, 22, 3859–3864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Liao, M.; Jiang, J. Research on Agricultural Carbon Emissions and Regional Carbon Emissions Reduction Strategies in China. Sustainability 2020, 12, 2627. [Google Scholar] [CrossRef] [Green Version]
- Fei, R.; Lin, B. Technology Gap and CO2 Emission Reduction Potential by Technical Efficiency Measures: A Meta-Frontier Modeling for the Chinese Agricultural Sector. Ecol. Indic. 2017, 73, 653–661. [Google Scholar] [CrossRef]
- Han, H.; Zhong, Z.; Guo, Y.; Xi, F.; Liu, S. Coupling and Decoupling Effects of Agricultural Carbon Emissions in China and Their Driving Factors. Environ. Sci. Pollut. Res. 2018, 25, 25280–25293. [Google Scholar] [CrossRef]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Policy and Technological Constraints to Implementation of Greenhouse Gas Mitigation Options in Agriculture. Agric. Ecosyst. Environ. 2007, 118, 6–28. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, J.; He, Y. Research on Spatial-Temporal Characteristics and Driving Factor of Agricultural Carbon Emissions in China. J. Integr. Agric. 2014, 13, 1393–1403. [Google Scholar] [CrossRef] [Green Version]
- Mostashari-Rad, F.; Nabavi-Pelesaraei, A.; Soheilifard, F.; Hosseini-Fashami, F.; Chau, K. Energy Optimization and Greenhouse Gas Emissions Mitigation for Agricultural and Horticultural Systems in Northern Iran. Energy 2019, 186, 115845. [Google Scholar] [CrossRef]
- Jantke, K.; Hartmann, M.J.; Rasche, L.; Blanz, B.; Schneider, U.A. Agricultural Greenhouse Gas Emissions: Knowledge and Positions of German Farmers. Land 2020, 9, 130. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, H.; Shi, H.; Zhang, J.; Wang, X.; Pan, S.; Yang, J. Increased Greenhouse Gas Emissions Intensity of Major Croplands in China: Implications for Food Security and Climate Change Mitigation. Glob. Change Biol. 2020, 26, 6116–6133. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.; Ma, H.; Irfan, M.; Ahmad, M. Does Carbon Dioxide, Methane, Nitrous Oxide, and GHG Emissions Influence the Agriculture? Evidence from China. Environ. Sci. Pollut. Res. 2020, 27, 28768–28779. [Google Scholar] [CrossRef] [PubMed]
- Sikora, J.; Niemiec, M.; Szeląg-Sikora, A.; Gródek-Szostak, Z.; Kuboń, M.; Komorowska, M. The Impact of a Controlled-Release Fertilizer on Greenhouse Gas Emissions and the Efficiency of the Production of Chinese Cabbage. Energies 2020, 13, 2063. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Liu, T.; Jiang, S.; Cao, C.; Li, C.; Chen, B.; Liu, J. Combined Effects of Straw Returning and Chemical N Fertilization on Greenhouse Gas Emissions and Yield from Paddy Fields in Northwest Hubei Province, China. J. Soil Sci. Plant Nutr. 2020, 20, 392–406. [Google Scholar] [CrossRef]
- Xie, F.; Liu, Y.; Yang, M. Spatial Spillover Effect of Environmental Regulation on Regional Economic Growth. Environ. Dev. Sustain. 2022, 1–12. [Google Scholar] [CrossRef]
- Hamman, E.; Deane, F.; Kennedy, A.; Huggins, A.; Nay, Z. Environmental Regulation of Agriculture in Federal Systems of Government: The Case of Australia. Agronomy 2021, 11, 1478. [Google Scholar] [CrossRef]
- Farooq, M.S.; Riaz, S.; Abid, A.; Umer, T.; Zikria, Y.B. Role of IoT Technology in Agriculture: A Systematic Literature Review. Electronics 2020, 9, 319. [Google Scholar] [CrossRef] [Green Version]
- Xiong, K.; Kong, F.; Zhang, N.; Lei, N.; Sun, C. Analysis of the Factors Influencing Willingness to Pay and Payout Level for Ecological Environment Improvement of the Ganjiang River Basin. Sustainability 2018, 10, 2149. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Qin, L.; Wang, Y.; Wang, Q. Environmentally-Friendly Agricultural Practices and Their Acceptance by Smallholder Farmers in China—A Case Study in Xinxiang County, Henan Province. Sci. Total Environ. 2016, 571, 737–743. [Google Scholar] [CrossRef]
- Mozzato, D.; Gatto, P.; Defrancesco, E.; Bortolini, L.; Pirotti, F.; Pisani, E.; Sartori, L. The Role of Factors Affecting the Adoption of Environmentally Friendly Farming Practices: Can Geographical Context and Time Explain the Differences Emerging from Literature? Sustainability 2018, 10, 3101. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Li, X.; Yu, J.; Yao, X. Toward Cleaner Production: What Drives Farmers to Adopt Eco-Friendly Agricultural Production? J. Clean. Prod. 2018, 184, 550–558. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Liu, H. Sustainable Agricultural Total Factor Productivity and Its Spatial Relationship with Urbanization in China. Sustainability 2021, 13, 6773. [Google Scholar] [CrossRef]
- Fang, L.; Hu, R.; Mao, H.; Chen, S. How Crop Insurance Influences Agricultural Green Total Factor Productivity: Evidence from Chinese Farmers. J. Clean. Prod. 2021, 321, 128977. [Google Scholar] [CrossRef]
- Lansink, A.O.; Reinhard, S. Investigating Technical Efficiency and Potential Technological Change in Dutch Pig Farming. Agric. Syst. 2004, 79, 353–367. [Google Scholar] [CrossRef]
- Sherlund, S.M.; Barrett, C.B.; Adesina, A.A. Smallholder Technical Efficiency Controlling for Environmental Production Conditions. J. Dev. Econ. 2002, 69, 85–101. [Google Scholar] [CrossRef]
- van der Werf, E. Production Functions for Climate Policy Modeling: An Empirical Analysis. Energy Econ. 2008, 30, 2964–2979. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, X.; Li, Z.; Zheng, R.; Na, S.; Zhou, Y. Research on the Efficiency and Improvement of Rural Development in China: Based on Two-Stage Network SBM Model. Sustainability 2021, 13, 2914. [Google Scholar] [CrossRef]
- Pang, J.; Chen, X.; Zhang, Z.; Li, H. Measuring Eco-Efficiency of Agriculture in China. Sustainability 2016, 8, 398. [Google Scholar] [CrossRef] [Green Version]
- Long, X.; Yu, H.; Sun, M.; Wang, X.-C.; Klemeš, J.J.; Xie, W.; Wang, C.; Li, W.; Wang, Y. Sustainability Evaluation Based on the Three-Dimensional Ecological Footprint and Human Development Index: A Case Study on the Four Island Regions in China. J. Environ. Manag. 2020, 265, 110509. [Google Scholar] [CrossRef]
- Doudou, B.; Yuanping, F. Global Productive Service Agglomeration Development Experience and Inspiration. Planners 2015, 7, 112–129. [Google Scholar]
- Hu, Y.; Wang, F.; Guin, C.; Zhu, H. A Spatio-Temporal Kernel Density Estimation Framework for Predictive Crime Hotspot Mapping and Evaluation. Appl. Geogr. 2018, 99, 89–97. [Google Scholar] [CrossRef]
- Shi, Z.; Huang, H.; Wu, Y.; Chiu, Y.-H.; Qin, S. Climate Change Impacts on Agricultural Production and Crop Disaster Area in China. Int. J. Environ. Res. Public. Health 2020, 17, 4792. [Google Scholar] [CrossRef] [PubMed]
- Kloog, I.; Haim, A.; Portnov, B.A. Using Kernel Density Function as an Urban Analysis Tool: Investigating the Association between Nightlight Exposure and the Incidence of Breast Cancer in Haifa, Israel. Comput. Environ. Urban Syst. 2009, 33, 55–63. [Google Scholar] [CrossRef]
- Ji, Y.; Li, Y.; Yao, N.; Biswas, A.; Chen, X.; Li, L.; Pulatov, A.; Liu, F. Multivariate Global Agricultural Drought Frequency Analysis Using Kernel Density Estimation. Ecol. Eng. 2022, 177, 106550. [Google Scholar] [CrossRef]
- Ping, J.L.; Green, C.J.; Zartman, R.E.; Bronson, K.F. Exploring Spatial Dependence of Cotton Yield Using Global and Local Autocorrelation Statistics. Field Crops Res. 2004, 89, 219–236. [Google Scholar] [CrossRef]
- Gao, C.; Feng, Y.; Tong, X.; Lei, Z.; Chen, S.; Zhai, S. Modeling Urban Growth Using Spatially Heterogeneous Cellular Automata Models: Comparison of Spatial Lag, Spatial Error and GWR. Comput. Environ. Urban Syst. 2020, 81, 101459. [Google Scholar] [CrossRef]
- Cho, S.-H.; Lambert, D.M.; Chen, Z. Geographically Weighted Regression Bandwidth Selection and Spatial Autocorrelation: An Empirical Example Using Chinese Agriculture Data. Appl. Econ. Lett. 2010, 17, 767–772. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, S.; Yuan, L.; Liu, X.; Gong, B. The Impact of Epidemics on Agricultural Production and Forecast of COVID-19. China Agric. Econ. Rev. 2020, 12, 409–425. [Google Scholar] [CrossRef]
- Yin, Z.; Wu, J. Spatial Dependence Evaluation of Agricultural Technical Efficiency—Based on the Stochastic Frontier and Spatial Econometric Model. Sustainability 2021, 13, 2708. [Google Scholar] [CrossRef]
- LeSage, J.; Pace, R.K. Introduction to Spatial Econometrics; Chapman and Hall/CRC: New York, NY, USA, 2009; ISBN 0-429-13808-3. [Google Scholar]
- DOSSKEY, M.G. Setting Priorities for Research on Pollution Reduction Functions of Agricultural Buffers. Environ. Manag. 2002, 30, 0641–0650. [Google Scholar] [CrossRef] [PubMed]
- BaoYi, W.; WeiGuo, Z. Cross-provincial differences in determinants of agricultural eco-efficiency in China: An analysis based on panel data from 31 provinces in 1996–2015. China Rural Econ. 2018, 1, 1–15. [Google Scholar]
- Ferrari, G.T.; Ozaki, V. Missing Data Imputation of Climate Datasets: Implications to Modeling Extreme Drought Events. Rev. Bras. Meteorol. 2014, 29, 21–28. [Google Scholar] [CrossRef]
- Harrell, F.E. Missing Data. In Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis; Springer Series in Statistics; Springer International Publishing: Cham, Switzerland, 2015; pp. 45–61. ISBN 978-3-319-19425-7. [Google Scholar]
- Pažek, K.; Rozman, Č. Decision Making Under Conditions of Uncertainty in Agriculture: A Case Study of Oil Crops. Poljoprivreda 2009, 15, 45–50. [Google Scholar]
- Balmford, A.; Green, R.E.; Scharlemann, J.P.W. Sparing Land for Nature: Exploring the Potential Impact of Changes in Agricultural Yield on the Area Needed for Crop Production. Glob. Change Biol. 2005, 11, 1594–1605. [Google Scholar] [CrossRef]
- Alene, A.D.; Manyong, V.M. Farmer-to-Farmer Technology Diffusion and Yield Variation among Adopters: The Case of Improved Cowpea in Northern Nigeria. Agric. Econ. 2006, 35, 203–211. [Google Scholar] [CrossRef]
- Wang, B.; Sun, Y.; Wang, Z. Agglomeration Effect of CO2 Emissions and Emissions Reduction Effect of Technology: A Spatial Econometric Perspective Based on China’s Province-Level Data. J. Clean. Prod. 2018, 204, 96–106. [Google Scholar] [CrossRef]
- Adnan, N.; Nordin, S.M.; Rahman, I.; Noor, A. The Effects of Knowledge Transfer on Farmers Decision Making toward Sustainable Agriculture Practices: In View of Green Fertilizer Technology. World J. Sci. Technol. Sustain. Dev. 2018, 15, 98–115. [Google Scholar] [CrossRef]
- Laborte, A.G.; Schipper, R.A.; Van Ittersum, M.K.; Van Den Berg, M.M.; Van Keulen, H.; Prins, A.G.; Hossain, M. Farmers’ Welfare, Food Production and the Environment: A Model-Based Assessment of the Effects of New Technologies in the Northern Philippines. NJAS Wagening J. Life Sci. 2009, 56, 345–373. [Google Scholar] [CrossRef] [Green Version]
- Dube, K.; Sigauke, E. Irrigation Technology for Smallholder Farmers: A Strategy for Achieving Household Food Security in Lower Gweru Zimbabwe. S. Afr. J. Agric. Ext. 2015, 43, 1–11. [Google Scholar] [CrossRef]
- Rigby, D.; Cáceres, D. Organic Farming and the Sustainability of Agricultural Systems. Agric. Syst. 2001, 68, 21–40. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, X.; Du, W.; Wu, H.; Wang, J. Effects of Environmental Regulation and FDI on Urban Innovation in China: A Spatial Durbin Econometric Analysis. J. Clean. Prod. 2019, 235, 210–224. [Google Scholar] [CrossRef]
- Guyomard, H.; Bouamra-Mechemache, Z.; Chatellier, V.; Delaby, L.; Détang-Dessendre, C.; Peyraud, J.-L.; Réquillart, V. Review: Why and How to Regulate Animal Production and Consumption: The Case of the European Union. Animal 2021, 15, 100283. [Google Scholar] [CrossRef] [PubMed]
- Ghadiyali, T.R.; Kayasth, M.M. Contribution of Green Technology in Sustainable Development of Agriculture Sector. J. Environ. Res. Dev. 2012, 7, 590–596. [Google Scholar]
- Borsato, E.; Tarolli, P.; Marinello, F. Sustainable Patterns of Main Agricultural Products Combining Different Footprint Parameters. J. Clean. Prod. 2018, 179, 357–367. [Google Scholar] [CrossRef]
- Zhang, Y.; Ju, G.; Zhan, J. Farmers Using Insurance and Cooperatives to Manage Agricultural Risks: A Case Study of the Swine Industry in China. J. Integr. Agric. 2019, 18, 2910–2918. [Google Scholar] [CrossRef]
- Chu, L.K.; Le, N.T.M. Environmental Quality and the Role of Economic Policy Uncertainty, Economic Complexity, Renewable Energy, and Energy Intensity: The Case of G7 Countries. Environ. Sci. Pollut. Res. 2022, 29, 2866–2882. [Google Scholar] [CrossRef]
- Su, H.; Geng, Y.; Xia, X.-Q.; Wang, Q.-J. Economic Policy Uncertainty, Social Development, Political Regimes and Environmental Quality. Int. J. Environ. Res. Public Health 2022, 19, 2450. [Google Scholar] [CrossRef]
- Jansen, K. Labour, Livelihoods and the Quality of Life in Organic Agriculture in Europe. Biol. Agric. Hortic. 2000, 17, 247–278. [Google Scholar] [CrossRef] [Green Version]
- She, W.; Wu, Y.; Huang, H.; Chen, Z.; Cui, G.; Zheng, H.; Guan, C.; Chen, F. Integrative Analysis of Carbon Structure and Carbon Sink Function for Major Crop Production in China’s Typical Agriculture Regions. J. Clean. Prod. 2017, 162, 702–708. [Google Scholar] [CrossRef]
- Ye, C.; Ye, Q.; Shi, X.; Sun, Y. Technology Gap, Global Value Chain and Carbon Intensity: Evidence from Global Manufacturing Industries. Energy Policy 2020, 137, 111094. [Google Scholar] [CrossRef]
- Mundlak, Y.; Butzer, R.; Larson, D.F. Heterogeneous Technology and Panel Data: The Case of the Agricultural Production Function. J. Dev. Econ. 2012, 99, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Cermeño, R.; Maddala, G.S.; Trueblood, M.A. Modeling Technology as a Dynamic Error Components Process: The Case of the Inter-country Agricultural Production Function. Econom. Rev. 2003, 22, 289–306. [Google Scholar] [CrossRef]
- Chavas, J.-P. Chapter 5 Structural Change in Agricultural Production: Economics, Technology and Policy. In Handbook of Agricultural Economics; Agricultural Production; Elsevier: Amsterdam, The Netherlands, 2001; Volume 1, pp. 263–285. [Google Scholar]
- Aliev, E.B.; Bandura, V.M.; Pryshliak, V.M.; Yaropud, V.M.; Trukhanska, O.O. Modeling of Mechanical and Technological Processes of the Agricultural Industry. INMATEH-Agric. Eng. 2018, 54, 95–104. [Google Scholar]
- Anselin, L.; Syabri, I.; Kho, Y. GeoDa: An Introduction to Spatial Data Analysis. In Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications; Fischer, M.M., Getis, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 73–89. ISBN 978-3-642-03647-7. [Google Scholar]
- Law, M.; Collins, A. Getting to Know ArcGIS; ESRI Press: Redlands, CA, USA, 2015; ISBN 1-58948-382-0. [Google Scholar]
- Abdulai, A.; Huffman, W.E. The Diffusion of New Agricultural Technologies: The Case of Crossbred-Cow Technology in Tanzania. Am. J. Agric. Econ. 2005, 87, 645–659. [Google Scholar] [CrossRef]
- Xue, L.; Hou, P.; Zhang, Z.; Shen, M.; Liu, F.; Yang, L. Application of Systematic Strategy for Agricultural Non-Point Source Pollution Control in Yangtze River Basin, China. Agric. Ecosyst. Environ. 2020, 304, 107148. [Google Scholar] [CrossRef]
- Self, S.; Grabowski, R. Economic Development and the Role of Agricultural Technology. Agric. Econ. 2007, 36, 395–404. [Google Scholar] [CrossRef] [Green Version]
- Magruder, J.R. An Assessment of Experimental Evidence on Agricultural Technology Adoption in Developing Countries. Annu. Rev. Resour. Econ. 2018, 10, 299–316. [Google Scholar] [CrossRef]
- Timmer, C.P. Chapter 29 Agriculture and Economic Development. In Handbook of Agricultural Economics; Elsevier: Amsterdam, The Netherlands, 2002; Volume 2, pp. 1487–1546. [Google Scholar]
- D’Costa, A.P. Compressed Capitalism and Development. Crit. Asian Stud. 2014, 46, 317–344. [Google Scholar] [CrossRef]
- Milenković, L.; Stanojević, J.; Cvetković, D.; Stanojević, L.; Lalević, D.; Šunić, L.; Fallik, E.; Ilić, Z.S. New Technology in Basil Production with High Essential Oil Yield and Quality. Ind. Crops Prod. 2019, 140, 111718. [Google Scholar] [CrossRef]
- Chiputwa, B.; Langyintuo, A.S.; Wall, P. Adoption of Conservation Agriculture Technologies by Smallholder Farmers in the Shamva District of Zimbabwe: A Tobit Application; Southern Agricultural Economics Association (SAEA): Birmingham, AB, USA, 2010. [Google Scholar]
- Anastasios, M.; Koutsouris, A.; Konstadinos, M. Information and Communication Technologies as Agricultural Extension Tools: A Survey among Farmers in West Macedonia, Greece. J. Agric. Educ. Ext. 2010, 16, 249–263. [Google Scholar] [CrossRef]
- Akinola, A.A.; Sofoluwe, N.A. Impact of Mulching Technology Adoption on Output and Net Return to Yam Farmers in Osun State, Nigeria. Agrekon 2012, 51, 75–92. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiujuan, T. The Transition of State-peasants Relationship: From the Fiscal Perspective in Three Decades of Reform in China. China Agric. Econ. Rev. 2009, 1, 382–394. [Google Scholar] [CrossRef]
- Tang, L.; Sun, S. Fiscal Incentives, Financial Support for Agriculture, and Urban-Rural Inequality. Int. Rev. Financ. Anal. 2022, 80, 102057. [Google Scholar] [CrossRef]
- Qin, T.; Gu, X.; Tian, Z.; Deng, J. Comparison of Agriculture and Forestry Fiscal Subsidy Policies in China. J. Sustain. For. 2015, 34, 683–697. [Google Scholar] [CrossRef]
- Gao, Y.; Shu, Y.; Cao, H.; Zhou, S.; Shi, S. Fiscal Policy Dilemma in Resolving Agricultural Risks: Evidence from China’s Agricultural Insurance Subsidy Pilot. Int. J. Environ. Res. Public Health 2021, 18, 7577. [Google Scholar] [CrossRef]
- He, Q.; Deng, X.; Li, C.; Yan, Z.; Kong, F.; Qi, Y. The Green Paradox Puzzle: Fiscal Decentralisation, Environmental Regulation, and Agricultural Carbon Intensity in China. Environ. Sci. Pollut. Res. 2022, 1–20. [Google Scholar] [CrossRef]
- Viaggi, D.; Bartolini, F.; Raggi, M. Combining Linear Programming and Principal–Agent Models: An Example from Environmental Regulation in Agriculture. Environ. Model. Softw. 2009, 24, 703–710. [Google Scholar] [CrossRef]
- Khan, Y.; Hassan, T.; Kirikkaleli, D.; Xiuqin, Z.; Shukai, C. The Impact of Economic Policy Uncertainty on Carbon Emissions: Evaluating the Role of Foreign Capital Investment and Renewable Energy in East Asian Economies. Environ. Sci. Pollut. Res. 2022, 29, 18527–18545. [Google Scholar] [CrossRef]
- Syed, Q.R.; Bhowmik, R.; Adedoyin, F.F.; Alola, A.A.; Khalid, N. Do Economic Policy Uncertainty and Geopolitical Risk Surge CO2 Emissions? New Insights from Panel Quantile Regression Approach. Environ. Sci. Pollut. Res. 2022, 29, 27845–27861. [Google Scholar] [CrossRef] [PubMed]
- Conley, T.; Christopher, U. Social Learning Through Networks: The Adoption of New Agricultural Technologies in Ghana. Am. J. Agric. Econ. 2001, 83, 668–673. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Sarkar, A.; Hasan, A.K.; Li, X.; Xia, X. Evaluation of Farmers’ Ecological Cognition in Responses to Specialty Orchard Fruit Planting Behavior: Evidence in Shaanxi and Ningxia, China. Agriculture 2021, 11, 1056. [Google Scholar] [CrossRef]
- Baerenklau, K.A.; Knapp, K.C. Dynamics of Agricultural Technology Adoption: Age Structure, Reversibility, and Uncertainty. Am. J. Agric. Econ. 2007, 89, 190–201. [Google Scholar] [CrossRef]
- Jat, H.S.; Datta, A.; Choudhary, M.; Sharma, P.C.; Jat, M.L. Conservation Agriculture: Factors and Drivers of Adoption and Scalable Innovative Practices in Indo-Gangetic Plains of India—A Review. Int. J. Agric. Sustain. 2021, 19, 40–55. [Google Scholar] [CrossRef]
- Aggarwal, P.; Vyas, S.; Thornton, P.; Campbell, B.M.; Kropff, M. Importance of Considering Technology Growth in Impact Assessments of Climate Change on Agriculture. Glob. Food Secur. 2019, 23, 41–48. [Google Scholar] [CrossRef]
- Marra, M.; Pannell, D.J.; Abadi Ghadim, A. The Economics of Risk, Uncertainty and Learning in the Adoption of New Agricultural Technologies: Where Are We on the Learning Curve? Agric. Syst. 2003, 75, 215–234. [Google Scholar] [CrossRef]
- Norton, G.W.; Alwang, J. Changes in Agricultural Extension and Implications for Farmer Adoption of New Practices. Appl. Econ. Perspect. Policy 2020, 42, 8–20. [Google Scholar] [CrossRef]
- Schewe, R.L.; Stuart, D. Diversity in Agricultural Technology Adoption: How Are Automatic Milking Systems Used and to What End? Agric. Hum. Values 2015, 32, 199–213. [Google Scholar] [CrossRef]
- Yang, G.; Zha, D.; Zhang, C.; Chen, Q. Does Environment-Biased Technological Progress Reduce CO2 Emissions in APEC Economies? Evidence from Fossil and Clean Energy Consumption. Environ. Sci. Pollut. Res. 2020, 27, 20984–20999. [Google Scholar] [CrossRef]
Model | Index | AGTP | AEGTP | ACGTP |
---|---|---|---|---|
SAR | LM | 39.691 *** | 54.134 *** | 63.117 *** |
Robust LM | 103.136 *** | 39.710 *** | 126.750 *** | |
LR | 93.850 *** | 49.370 *** | 98.340 *** | |
Wald | 24.189 *** | 103.515 *** | 30.168 *** | |
SEM | LM | 476.079 *** | 737.994 *** | 440.713 *** |
Robust LM | 2070.075 *** | 811.531 *** | 1256.248 *** | |
LR | 90.270 *** | 49.067 *** | 92.340 *** | |
Wald | 31.936 *** | 37.380 *** | 36.776 *** |
Years | AGTP | ACGTP | AEGTP | |||
---|---|---|---|---|---|---|
Moran’s I | Z Value | Moran’s I | Z Value | Moran’s I | Z Value | |
2000 | −0.010 | 0.245 | 0.079 | 1.106 | −0.043 | −0.085 |
2001 | −0.054 | −0.282 | −0.030 | 0.057 | −0.169 | −1.244 |
2002 | 0.020 | 0.598 | −0.045 | −0.110 | 0.244 | 2.105 ** |
2003 | −0.053 | −0.183 | −0.189 | −1.570 | −0.198 | −1.615 |
2004 | −0.013 | 0.376 | −0.060 | −0.536 | 0.098 | 1.338 |
2005 | 0.067 | 0.962 | 0.002 | 0.370 | −0.150 | −1.103 |
2006 | 0.021 | 0.605 | 0.055 | 0.928 | 0.058 | 1.052 |
2007 | 0.228 | 1.954 * | −0.125 | −1.195 | −0.046 | −0.110 |
2008 | 0.046 | 0.947 | 0.138 | 1.712 * | −0.018 | 0.204 |
2009 | −0.019 | 0.214 | −0.015 | 0.198 | −0.052 | −0.272 |
2010 | 0.249 | 2.970 *** | 0.202 | 2.332 ** | 0.220 | 2.610 |
2011 | −0.137 | −0.989 | −0.092 | −0.544 | −0.117 | −0.791 |
2012 | −0.168 | −1.273 | −0.065 | −0.288 | 0.265 | 2.340 ** |
2013 | 0.232 | 2.666 *** | 0.074 | 1.044 | 0.258 | 3.135 *** |
2014 | −0.047 | −0.142 | −0.038 | −0.041 | −0.087 | −0.519 |
2015 | −0.005 | 0.311 | 0.021 | 0.131 | 0.035 | 0.733 |
2016 | −0.055 | −0.248 | −0.069 | −0.457 | −0.097 | −0.665 |
2017 | −0.117 | −0.847 | 0.010 | 0.464 | 0.120 | 0.827 |
2018 | −0.047 | −0.119 | −0.005 | 0.298 | −0.106 | −0.724 |
2019 | 0.010 | 0.245 | 0.071 | 1.043 | −0.086 | −0.487 |
AGTP | AEGTP | ACGTP | |||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Direct Effect | Indirect Effect | Total Effect | Direct Effect | Indirect Effect | Total Effect | Direct Effect | Indirect Effect | Total Effect |
PGDP | 0.238 | 0.345 | 0.583 *** | −0.003 | 0.026 | 0.024 | 0.242 | 0.317 | 0.559 *** |
(0.145) | (0.252) | (0.223) | (0.025) | (0.040) | (0.038) | (0.148) | (0.243) | (0.211) | |
PIC | −0.632 *** | 0.508 ** | −0.124 | −0.0693 | 0.090 | 0.020 | −0.564 ** | 0.420 * | −0.144 |
(0.238) | (0.220) | (0.160) | (0.075) | (0.087) | (0.045) | (0.232) | (0.218) | (0.140) | |
PP | 0.762 | −1.509 *** | −0.747 | −0.041 | 0.083 | 0.042 | 0.807 | −1.593 *** | −0.786 * |
(0.545) | (0.580) | (0.468) | (0.096) | (0.120) | (0.085) | (0.515) | (0.545) | (0.442) | |
FIN | 0.153 | −0.346 ** | −0.193 ** | −0.060 ** | 0.032 | −0.029 | 0.214 | −0.377 *** | −0.163 ** |
(0.139) | (0.139) | (0.088) | (0.024) | (0.036) | (0.018) | (0.135) | (0.126) | (0.081) | |
EPR | 0.013 | −0.214 ** | −0.202 ** | −0.009 | −0.016 | −0.024 | 0.021 | −0.199 ** | −0.178 ** |
(0.032) | (0.093) | (0.082) | (0.011) | (0.021) | (0.019) | (0.030) | (0.087) | (0.077) | |
CER | −0.001 * | 0.001 | −0.000 | 0.001 | −0.001 | −0.000 | −0.001* | 0.001 | −0.001 |
(0.001) | (0.002) | (0.002) | (0.001) | (0.001) | (0.001) | (0.001) | (0.002) | (0.002) | |
labor | 0.437 *** | −0.004 | 0.434 * | 0.129 *** | −0.172 *** | −0.043 | 0.311 ** | 0.172 | 0.483 ** |
(0.140) | (0.237) | (0.228) | (0.032) | (0.045) | (0.049) | (0.137) | (0.225) | (0.218) | |
PS | −0.111 | 1.071 | 0.960* | 0.048 | 0.175 | 0.224 ** | −0.165 | 0.892 | 0.727 |
(0.400) | (0.805) | (0.528) | (0.051) | (0.124) | (0.111) | (0.374) | (0.767) | (0.507) | |
rho | 0.052 | 0.063 | 0.045 | ||||||
(0.056) | (0.060) | (0.061) | |||||||
sigma2_e | 0.278 ** | 0.008 *** | 0.244 ** | ||||||
(0.111) | (0.002) | (0.106) | |||||||
Number | 600 | 600 | 600 | ||||||
R2 | 0.004 | 0.015 | 0.004 | ||||||
Id | 30 | 30 | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Deng, Y.; Sarkar, A.; Wang, Z. An Integrated Assessment of Different Types of Environment-Friendly Technological Progress and Their Spatial Spillover Effects in the Chinese Agriculture Sector. Agriculture 2022, 12, 1043. https://doi.org/10.3390/agriculture12071043
Chen G, Deng Y, Sarkar A, Wang Z. An Integrated Assessment of Different Types of Environment-Friendly Technological Progress and Their Spatial Spillover Effects in the Chinese Agriculture Sector. Agriculture. 2022; 12(7):1043. https://doi.org/10.3390/agriculture12071043
Chicago/Turabian StyleChen, Guang, Yue Deng, Apurbo Sarkar, and Zhengbing Wang. 2022. "An Integrated Assessment of Different Types of Environment-Friendly Technological Progress and Their Spatial Spillover Effects in the Chinese Agriculture Sector" Agriculture 12, no. 7: 1043. https://doi.org/10.3390/agriculture12071043