In Transition towards Organic Farming: Effects of Rock Phosphate, Coral Lime, and Green Manure on Soil Fertility of an Acid Oxisol and the Growth of Soybean (Glycine max L. Merr.) Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Soil and Organic Amendments
2.2. The Experimental Design and Chemical Analysis of Plant Tissue
2.3. Soil-Solution Extraction
2.4. Chemical and Statistical Analyses
3. Results and Discussion
3.1. Soil Properties as Affected by Organic Amendments
Treatment | Soil pH | KCl-Extractable | NaHCO3-Extractable |
---|---|---|---|
Lime-Rock P-Green Manure | (1:1 in water) | Al | P |
←---------------mg/kg-- | -------------------→ | ||
0-0-0 | 4.46 | 76.7 | 5.84 |
0-0-5 | 4.52 | 72.7 | 6.47 |
0-0-10 | 4.63 | 39.6 | 8.84 |
0-75-0 | 4.48 | 50.3 | 14.86 |
0-75-5 | 4.61 | 21.8 | 15.28 |
0-75-10 | 4.86 | 10.5 | 16.94 |
0-150-0 | 4.53 | 31.8 | 18.75 |
0-150-5 | 4.71 | 14.9 | 17.18 |
0-150-10 | 4.93 | 9.1 | 18.07 |
1-0-0 | 4.96 | 7.7 | 9.47 |
1-0-5 | 5.04 | 4.7 | 9.32 |
1-0-10 | 5.19 | 3.6 | 8.90 |
1-75-0 | 5.08 | 4.3 | 11.30 |
1-75-5 | 5.16 | 3.6 | 11.05 |
1-75-10 | 5.44 | 2.8 | 11.62 |
1-150-0 | 5.13 | 4.6 | 14.11 |
1-150-5 | 5.31 | 4.0 | 9.08 |
1-150-10 | 5.27 | 3.6 | 9.16 |
2-0-0 | 5.41 | 3.1 | 4.92 |
2-0-5 | 5.54 | 2.5 | 6.98 |
2-0-10 | 5.71 | 1.6 | 7.21 |
2-75-0 | 5.53 | 3.1 | 6.51 |
2-75-5 | 5.63 | 3.4 | 6.79 |
2-75-10 | 5.81 | 2.2 | 6.28 |
2-150-0 | 5.52 | 2.2 | 7.48 |
2-150-5 | 5.75 | 2.5 | 8.24 |
2-150-10 | 5.90 | 2.8 | 7.77 |
LSD(0.05) Ϯ | 0.04 | 2.1 | 2.14 |
Source | DF | p-Value Ϯ | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Extractable parameters | Soil solution parameters | Plant parameters | ||||||||
pH | Al | P | pH | P | Org. C | DW ¶ | Al | Mn | ||
Lime | 2 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.061 | 0.208 | <0.001 | <0.001 |
RP ¶ | 2 | <0.001 | <0.001 | <0.001 | 0.052 | <0.001 | 0.072 | <0.001 | <0.001 | <0.001 |
GM ¶ | 2 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.277 | <0.001 | <0.001 |
Lime*RP | 4 | <0.001 | <0.001 | <0.001 | 0.034 | <0.001 | 0.034 | 0.008 | <0.001 | <0.001 |
Lime*GM | 4 | <0.001 | <0.001 | <0.001 | <0.003 | 0.076 | <0.001 | 0.332 | <0.001 | <0.001 |
RP*GM | 4 | <0.001 | <0.001 | <0.001 | 0.575 | <0.001 | 0.006 | 0.147 | <0.001 | <0.001 |
Lime*RP*GM | 8 | <0.001 | <0.001 | <0.001 | 0.487 | <0.001 | 0.009 | 0.236 | <0.001 | <0.001 |
Error | 54 | Ϯ If p-value < 0.05 then the effect is significant at 95% level. | ||||||||
Total | 80 | ¶ RP = rock phosphate, GM = green manure, DW = dry weight. |
3.2. Effects of Organic Amendments on Soil-Solution Composition
3.3. Soybean Responses to Organic Amendments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USDA national organic program. In Standard Manual; CCOF Certification Services LLC: Santa Cruz, CA, USA, 2022.
- Fageria, N.K. The Use of Nutrients in Crop Plants; Chapter 3: Phosphorus; CRC Press: Boca Raton, FL, USA, 2009; pp. 91–130. [Google Scholar]
- Sanchez, P. Properties and Management of Soils in the Tropics, 2nd ed.; Chapter 14: Phosphorus; Cambridge University Press: Cambridge, UK, 2009; pp. 370–414. [Google Scholar]
- Havlin, J.; Tisdale, S.; Nelson, W.; Beaton, J. Soil Fertility and Fertilizers; Chapter 5: Phosphorus; Pearson India Education Services: Ultar Pradesh, India, 2017; pp. 190–225. [Google Scholar]
- Barker, A. Science and Technology of Organic Farming; Chapter 3: Requirements of plants for soil-derived nutrients; CRC Press: Boca Raton, FL, USA, 2010; pp. 17–80. [Google Scholar]
- Fageria, N.K.; He, Z.L.; Baligar, V.C. Functions of phosphorus in crop plants. In Phosphorus Management in Crop Production; CRC Press: Boca Raton, FL, USA, 2017; pp. 47–90. 368p. [Google Scholar]
- Hue, N.; Silva, J. Organic soil amendments for sustainable agriculture. In Plant Nutrient Management in Hawaii’s Soils; Silva, J.A., Uchida, R., Eds.; College of Tropical Agriculture & Human Resources, University Hawaii at Manoa: Honolulu, HI, USA, 2000. [Google Scholar]
- Lazcano, C.; Decock, C.; Wong, C.; Garcia-Brucher, K. Assessing the effects of compost on soil health. In Improving Soil Health; Horwath, W., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2023. [Google Scholar]
- Tubeileh, A.; Goss, M. Assessing the effects of using animal manure on soil health. In Improving Soil Health; Horwath, W., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2023. [Google Scholar]
- Mikkelsen, R. Sources of phosphorus for plants: Past, present, and future. Better Crops 2019, 103, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, L. Chemical Equilibria in Soils; Chapter 12: Phosphates; John Wiley & Sons: New York, NY, USA, 1979; pp. 162–209. [Google Scholar]
- Hue, N. Soil acidity: Development, impacts, and management. In Structure and Functions of Pedosphere; Giri, B., Kapoor, R., Wu, Q., Varma, A., Eds.; Springer Nature: Singapore, 2022; pp. 103–131. [Google Scholar]
- Afzal, F.; Khan, T.; Khan, A.; Khan, S.; Raza, H.; Ihsan, A.; Ahanger, M.; Kazi, A. Nutrient deficiencies under stress in legumes: An overview. In Legumes under Environmental Stress: Yield, Improvement and Adaptations; Azooz, M., Ahmad, P., Eds.; Wiley Blackwell: West Sussex, OK, USA, 2015. [Google Scholar]
- Kaiser, D.; Fernandez, F.; Wilson, M.; Piotrowski, K. Fertilizing Soybeans in Minnesota; University of Minnesota Extension: St Paul, MN, USA, 2022. [Google Scholar]
- Adams, F.; Burmester, C.; Hue, N.; Long, L. A comparison of column-displacement and centrifuge methods for obtaining soil solutions. Soil Sci. Soc. Am. J. 1980, 44, 733–735. [Google Scholar] [CrossRef]
- Wolt, J. Soil Solution Chemistry; Chapter 5: Obtaining soil solution; John Wiley & Sons: New York, NY, USA, 1994; pp. 95–120. [Google Scholar]
- Barhisel, R.; Berg, P. Aluminum. In Methods of Soil Analysis Part 2; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Soil Science Society of America: Madison WI, USA, 1982; pp. 275–300. [Google Scholar]
- Hue, N.; Evans, C. Procedures Used for Soil and Plant Analysis by the Auburn University Soil Testing Laboratory; Auburn University: Auburn, AL, USA, 1986. [Google Scholar]
- Bartlett, R.J.; Ross, D.S. Colorimetric determination of oxidizable carbon in acid soil solution. Soil Sci. Soc. Am. J. 1988, 52, 1191–1192. [Google Scholar] [CrossRef]
- Hue, N.; Craddock, R.; Adams, F. Effect of organic acids on aluminum toxicity in subsoils. Soil Sci. Soc. Am. J. 1986, 50, 28–34. [Google Scholar] [CrossRef]
- Strawn, D.; Bohn, H.; O’Connor, G. Soil Chemistry, 5th ed.; John Wiley & Sons: New York, NJ, USA, 2020; 379p. [Google Scholar]
- Deng, Y.; Chen, K.; Teng, W.; Zhan, A.; Tong, Y.; Feng, G.; Cui, Z.; Zhang, F.; Chen, X. Is the inherent potential of maize roots efficient for soil phosphorus acquisition? PLoS ONE 2014, 9, e90287. [Google Scholar] [CrossRef] [PubMed]
- Fox, R. External phosphorus requirements of crops. In Chemistry in the Soil Environment; Dowdy, R.H., Ryan, J.A., Volk, V.V., Baker, D.E., Eds.; Soil Science Society of America: Madison WI, USA, 1981; pp. 223–233. [Google Scholar]
- Hue, N.; Fox, R. Predicting plant phosphorus requirements for Hawaii soils using a combination of phosphorus sorption isotherms and chemical extraction methods. Commun. Soil Sci. Plant Anal. 2010, 41, 133–143. [Google Scholar] [CrossRef]
Input Source | N | P | K | Ca | Mg | Na |
---|---|---|---|---|---|---|
←--- | ------ | -- % -- | ---- | ---- | ----→ | |
Cowpea GM | 2.70 | 0.14 | 2.76 | 1.6 | 0.45 | 0.03 |
Florida rock phosphate Ϯ | --- | 10.64 | 0.09 | 31.7 | 0.19 | 0.43 |
Samoa coral lime ¶ | --- | 0.02 | 0.02 | 34.5 | 1.47 | 0.31 |
Treatment | pH | Al | P | K | Ca | Mg | Mn | Organic Carbon | EC |
---|---|---|---|---|---|---|---|---|---|
L-RP-GM | ←----- | --------- | -mg/L-- | -------- | -------- | ----→ | mmole/L | dS/m | |
0-0-0 | 4.51 | 0.57 | 0.010 | 75.9 | 14.9 | 20.9 | 0.50 | 2.15 | 1.14 |
0-0-5 | 5.11 | 0.51 | 0.010 | 128.8 | 30.3 | 24.2 | 1.78 | 3.63 | 1.20 |
0-0-10 | 5.39 | 0.30 | 0.011 | 212.9 | 65.9 | 39.0 | 3.20 | 5.55 | 1.77 |
0-75-0 | 4.75 | 0.56 | 0.022 | 85.1 | 32.0 | 18.9 | 0.25 | 1.88 | 1.17 |
0-75-5 | 4.98 | 0.45 | 0.032 | 135.5 | 51.4 | 24.9 | 1.35 | 3.22 | 1.31 |
0-75-10 | 5.57 | 0.25 | 0.033 | 212.5 | 75.7 | 39.7 | 2.22 | 5.27 | 1.79 |
0-150-0 | 5.00 | 0.43 | 0.035 | 69.5 | 49.6 | 16.7 | 0.30 | 2.03 | 1.07 |
0-150-5 | 5.16 | 0.29 | 0.035 | 126.8 | 63.2 | 24.7 | 1.85 | 3.66 | 1.35 |
0-150-10 | 5.63 | 0.19 | 0.041 | 184.7 | 76.7 | 36.3 | 3.22 | 6.09 | 1.64 |
1-0-0 | 5.58 | 0.10 | 0.022 | 55.3 | 61.1 | 15.8 | 0.50 | 1.72 | 1.08 |
1-0-5 | 5.73 | 0.07 | 0.032 | 122.5 | 88.3 | 27.4 | 0.95 | 3.64 | 1.50 |
1-0-10 | 5.78 | 0.05 | 0.045 | 190.3 | 142.2 | 46.0 | 1.72 | 6.60 | 2.05 |
1-75-0 | 5.64 | BD ¶ | 0.063 | 62.3 | 69.0 | 17.7 | 0.22 | 2.35 | 1.18 |
1-75-5 | 5.70 | BD | 0.054 | 120.4 | 105.3 | 30.0 | 1.10 | 4.02 | 1.60 |
1-75-10 | 6.04 | BD | 0.045 | 188.6 | 152.7 | 45.8 | 1.52 | 6.09 | 2.04 |
1-150-0 | 5.91 | BD | 0.052 | 64.2 | 95.0 | 21.7 | 0.25 | 1.99 | 1.39 |
1-150-5 | 6.02 | BD | 0.064 | 116.9 | 104.3 | 29.2 | 0.95 | 3.15 | 1.58 |
1-150-10 | 6.01 | BD | 0.066 | 187.5 | 162.7 | 48.3 | 1.57 | 5.77 | 2.07 |
2-0-0 | 6.23 | BD | 0.032 | 49.1 | 102.8 | 19.2 | 0.12 | 1.53 | 1.25 |
2-0-5 | 6.29 | BD | 0.034 | 127.0 | 146.2 | 33.1 | 0.35 | 3.34 | 1.83 |
2-0-10 | 6.40 | BD | 0.043 | 183.4 | 171.0 | 47.0 | 0.43 | 5.55 | 2.15 |
2-75-0 | 6.10 | BD | 0.052 | 58.1 | 102.4 | 18.9 | 0.23 | 1.46 | 1.29 |
2-75-5 | 6.27 | BD | 0.044 | 120.3 | 139.9 | 32.1 | 0.70 | 3.16 | 1.76 |
2-75-10 | 6.59 | BD | 0.048 | 182.9 | 185.3 | 48.6 | 1.12 | 5.22 | 2.26 |
2-150-0 | 5.99 | BD | 0.046 | 59.0 | 109.5 | 19.6 | 0.40 | 1.72 | 1.57 |
2-150-5 | 6.08 | BD | 0.055 | 121.7 | 139.0 | 35.1 | 0.88 | 4.24 | 1.85 |
2-150-10 | 6.32 | BD | 0.062 | 174.2 | 174.5 | 47.0 | 0.93 | 5.81 | 2.19 |
LSD(0.05) Ϯ | 0.22 | 0.03 | 0.005 | 16.9 | 19.4 | 4.6 | 0.33 | 0.43 | 0.12 |
Treatment | Shoot | Chemical Composition of Shoot | |||||
---|---|---|---|---|---|---|---|
L-RP-GM | Dry matter | N | P | K | Ca | Al | Mn |
g/plant | ←-------- | ------% ---- | --------------- | ----------→ | ←- mg/kg | ------→ | |
0-0-0 | 1.55 | 2.26 | 0.06 | 2.81 | 0.28 | 86.6 | 363.3 |
0-0-5 | 2.08 | 2.47 | 0.06 | 2.43 | 0.47 | 66.5 | 547.7 |
0-0-10 | 2.06 | 2.40 | 0.08 | 2.74 | 0.76 | 53.2 | 458.4 |
0-75-0 | 2.36 | 1.99 | 0.12 | 2.35 | 0.65 | 47.3 | 341.6 |
0-75-5 | 2.36 | 2.09 | 0.14 | 2.32 | 0.96 | 45.3 | 281.2 |
0-75-10 | 2.50 | 1.92 | 0.17 | 2.67 | 1.07 | 46.3 | 302.9 |
0-150-0 | 3.08 | 2.44 | 0.16 | 2.41 | 0.96 | 35.1 | 222.5 |
0-150-5 | 2.74 | 1.95 | 0.17 | 2.45 | 1.11 | 31.4 | 253.8 |
0-150-10 | 2.41 | 2.13 | 0.24 | 2.51 | 1.24 | 28.6 | 275.3 |
1-0-0 | 2.22 | 1.88 | 0.06 | 2.41 | 1.03 | 27.7 | 149.9 |
1-0-5 | 2.08 | 2.06 | 0.08 | 2.35 | 1.07 | 26.3 | 148.6 |
1-0-10 | 2.17 | 2.06 | 0.08 | 2.55 | 1.27 | 26.7 | 212.6 |
1-75-0 | 2.49 | 1.95 | 0.16 | 2.22 | 1.15 | 25.1 | 119.6 |
1-75-5 | 2.51 | 2.20 | 0.22 | 2.49 | 1.26 | 20.8 | 128.4 |
1-75-10 | 2.72 | 1.95 | 0.24 | 2.39 | 1.34 | 18.9 | 157.7 |
1-150-0 | 2.59 | 1.99 | 0.16 | 2.09 | 1.27 | 20.0 | 116.5 |
1-150-5 | 2.65 | 2.00 | 0.26 | 2.25 | 1.28 | 21.6 | 128.0 |
1-150-10 | 2.56 | 2.00 | 0.25 | 2.39 | 1.34 | 18.9 | 157.7 |
2-0-0 | 2.52 | 1.82 | 0.06 | 2.00 | 1.13 | 18.3 | 75.7 |
2-0-5 | 2.46 | 2.37 | 0.08 | 2.24 | 1.35 | 17.2 | 88.8 |
2-0-10 | 1.73 | 2.44 | 0.12 | 2.41 | 1.54 | 16.8 | 121.2 |
2-75-0 | 2.08 | 2.06 | 0.16 | 2.08 | 1.40 | 15.3 | 82.0 |
2-75-5 | 2.12 | 2.06 | 0.16 | 2.41 | 1.37 | 15.1 | 117.7 |
2-75-10 | 2.72 | 1.81 | 0.18 | 2.45 | 1.35 | 13.8 | 106.7 |
2-150-0 | 2.33 | 2.20 | 0.16 | 1.98 | 1.39 | 11.2 | 80.7 |
2-150-5 | 2.41 | 2.40 | 0.17 | 2.19 | 1.50 | 10.1 | 110.2 |
2-150-10 | 2.16 | 2.40 | 0.16 | 2.32 | 1.52 | 9.09 | 115.7 |
LSD(0.05) Ϯ | 0.25 | 0.12 | 0.03 | 0.21 | 0.14 | 5.7 | 42.0 |
Soil-Solution P | Soil-Solution Ca | |
---|---|---|
Plant P | 0.72 ** | 0.35 (NS) |
Plant Ca | 0.81 ** | 0.85 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, R.; Hue, N. In Transition towards Organic Farming: Effects of Rock Phosphate, Coral Lime, and Green Manure on Soil Fertility of an Acid Oxisol and the Growth of Soybean (Glycine max L. Merr.) Seedlings. Agriculture 2022, 12, 2045. https://doi.org/10.3390/agriculture12122045
Huang R, Hue N. In Transition towards Organic Farming: Effects of Rock Phosphate, Coral Lime, and Green Manure on Soil Fertility of an Acid Oxisol and the Growth of Soybean (Glycine max L. Merr.) Seedlings. Agriculture. 2022; 12(12):2045. https://doi.org/10.3390/agriculture12122045
Chicago/Turabian StyleHuang, Robert, and Nguyen Hue. 2022. "In Transition towards Organic Farming: Effects of Rock Phosphate, Coral Lime, and Green Manure on Soil Fertility of an Acid Oxisol and the Growth of Soybean (Glycine max L. Merr.) Seedlings" Agriculture 12, no. 12: 2045. https://doi.org/10.3390/agriculture12122045
APA StyleHuang, R., & Hue, N. (2022). In Transition towards Organic Farming: Effects of Rock Phosphate, Coral Lime, and Green Manure on Soil Fertility of an Acid Oxisol and the Growth of Soybean (Glycine max L. Merr.) Seedlings. Agriculture, 12(12), 2045. https://doi.org/10.3390/agriculture12122045