Entomopathogenic Nematode Steinernema feltiae as an Indicator of Soil Pollution with Oil Derivatives in Bioremediation Process
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Design
2.2. Nematode Analyses
2.3. Statistical Analyses
3. Results
3.1. The Effect of Oil Derivatives on the Virulence of S. feltiae
3.2. The Effect of Oil Derivatives on the Intensity of Test Insect (T. molitor) Penetration by S. Feltiae IJs
3.3. Virulence Coefficient
3.4. The Relationships between PDSs Content in Soil and S. feltiae Virulence
4. Discussion
4.1. The Effect of Oil Derivatives on S. feltiae Virulence
4.2. Oil-Derivatives Bioidication Potential of S. feltiae
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Lv, Y.; Bao, J.; Zhu, L. A comprehensive review of recent and perspective technologies and challenges for the remediation of oil-contaminated sites. Energy Rep. 2022, 8, 7976–7988. [Google Scholar] [CrossRef]
- Meuser, H. Contaminated urban soil. Environ. Pollut. 2010, 19, 320. [Google Scholar] [CrossRef]
- Najar-Rodriguez, A.J.; Lavidis, N.A.; Mensah, R.K.; Choy, P.T.; Walter, G.H. The toxicological effects of petroleum spray oils oninsects–Evidence for an alternative mode of action and possible new control options. Food Chem. Toxicol. 2008, 46, 3003–3014. [Google Scholar] [CrossRef]
- Zhang, J.M.; Liu, F.; Huang, H.; Wang, R.J.; Xu, B.L. Occurrence, risk and influencing factors of polycyclic aromatic hydrocarbonsin surface soils from a large-scale coal mine, Huainan, China. Ecotoxicol. Environ. Saf. 2020, 192, 110269. [Google Scholar] [CrossRef] [PubMed]
- Gonzáles-Doncel, M.; Gonzáles, L.; Fernández-Torija, C.; Navas, J.M.; Tarazona, J.V. Toxic effects of an oil spill of fish early life stages may not be exclusively associated to PAHs: Studies with Prestige oil and medaka (Oryzias latipes). Aquat. Toxicol. 2008, 87, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Stroomberg, G.J.; Zappey, H.; Steen, R.J.; van Gestel, C.A.; Ariese, F.; Velthorst, N.H.; van Straalen, N.M. PAH biotransformation in terrestrial invertebrates--a new phase II metabolite in isopods and springtails. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2004, 138, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Rosado, E.; Pichtel, J. Phytoremediation of Soil Contaminated with Used Motor Oil: II. Greenhouse Studies. Environ. Eng. Sci. 2004, 21, 169–180. [Google Scholar] [CrossRef]
- Khan, S.; Tripathi, A.K.; Srivastava, R.; Saleem, M.S.; Yeremenko, S.; Sydorenko, V. Bioremediation of Petroleum Contamination: A Short Review. Ecol. Quest. 2022, 33, 43–52. [Google Scholar] [CrossRef]
- Stepanova, A.Y.; Gladkov, E.A.; Osipova, E.S.; Gladkova, O.V.; Tereshonok, D.V. Bioremediation of Soil from Petroleum Contamination. Processes 2022, 10, 1224. [Google Scholar] [CrossRef]
- Sui, X.; Wang, X.; Li, Y.; Ji, H. Remediation of Petroleum-Contaminated Soils with Microbial and Microbial Combined Methods: Advances, Mechanisms, and Challenges. Sustainability 2021, 13, 9267. [Google Scholar] [CrossRef]
- Kalia, A.; Sharma, S.; Semor, N.; Babele, P.K.; Sagar, S.; Bhatia, R.K.; Walia, A. Recent advancements in hydrocarbon bioremediation and future challenges: A review. 3 Biotech 2022, 12, 135. [Google Scholar] [CrossRef] [PubMed]
- Kour, D.; Kaur, T.; Devi, R.; Yadav, A.; Singh, M.; Joshi, D.; Suyal, D.C.; Kumar, A.; Rajput, V.D.; Yadav, A.N.; et al. Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: Present status and future challenges. Environ. Sci. Pollut. Res. 2021, 28, 24917–24939. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Sharma, I.; Nath, S.; Webster, T.J. Chapter 2—Bioremediation—The natural solution. In Microbial Ecology of Wastewater Treatment Plants; Shah, M., Rodriguez-Couto, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 11–40. ISBN 9780128225035. [Google Scholar] [CrossRef]
- Bala, S.; Garg, D.; Thirumalesh, B.V.; Sharma, M.; Sridhar, K.; Inbaraj, B.S.; Tripathi, M. Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. Toxics 2022, 10, 484. [Google Scholar] [CrossRef]
- Dzionek, A.; Wojcieszyńska, D.; Guzik, U. Natural carriers in bioremediation: A review. Electron. J. Biotechnol. 2016, 23, 28–36. [Google Scholar] [CrossRef]
- Orellana, R.; Cumsille, A.; Piña-Gangas, P.; Rojas, C.; Arancibia, A.; Donghi, S.; Stuardo, C.; Cabrera, P.; Arancibia, G.; Cárdenas, F.; et al. Economic Evaluation of Bioremediation of HydrocarbonContaminated Urban Soils in Chile. Sustainability 2022, 14, 11854. [Google Scholar] [CrossRef]
- Kołoczek, H.; Kaszycki, P. Bioremediacja zanieczyszczeń rafineryjnych w środowisku gruntowo-wodnym. In Metody Usuwania Zanieczyszczeń Węglowodorowych ze Srodowiska Gruntowo-Wodnego; Rychlickiego, S., Ed.; Uczelniane Wyd. Nauk.-Dydakt., AGH: Kraków, Poland, 2006. [Google Scholar]
- Chan, H. Biodegradation of petroleum oil achieved by bacteria and nematodes in contaminated water. Sep. Purif. Technol. 2011, 80, 459–466. [Google Scholar] [CrossRef]
- Hentati, O.; Lachhab, R.; Ayadi, M.; Ksibi, M. Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates Environ. Monit. Assess. 2013, 185, 2989–2998. [Google Scholar] [CrossRef] [PubMed]
- Al-Mutairi, N.; Bufarsan, A.; Al-Rukaibi, F. Ecorisk evaluation and treatability potential of soils contaminated with petroleum and plant bioassays. hydrocarbon-based fuels. Chemosphere 2008, 74, 142–148. [Google Scholar] [CrossRef]
- Trishala, K.; Rawtani, P.D.; Agrawal, Y.K. Bioindicators: The natural indicator of environmental pollution. Front. Life Sci. 2016, 9, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Parikh, G.; Rawtani, D.; Khatri, N. Insects as an Indicator for Environmental Pollution. Environ. Claims J. 2021, 33, 161–181. [Google Scholar] [CrossRef]
- García-Segura, D.; Castillo-Murrieta, I.M.; Martínez-Rabelo, F.; Gomez-Anaya, A.; Jacobo Rodríguez-Campos Hernández-Castellanos, B.; Contreras-Ramos, S.M.; Barois, I. Macrofauna and mesofauna from soil contaminated by oil extraction. Geoderma 2018, 332, 180–189. [Google Scholar] [CrossRef]
- Blakely, J.K.; Neher, D.A.; Spongberg, A.L. Soil invertebrate and microbial communities and decomposition as indicators of polycyclic aromatic hydrocarbon contamination. Appl. Soil Ecol. 2002, 21, 71–88. [Google Scholar] [CrossRef]
- Raymond, R.L.; Hudson, J.O.; Jamison, V.W. Oil degradation in soil. Appl. Environ. Microbiol. 1976, 31, 522–535. [Google Scholar] [CrossRef] [PubMed]
- Remelli, S.; Rizzo, P.; Celico, F.; Menta, C. Natural Surface Hydrocarbons and Soil Faunal Biodiversity: A Bioremediation Perspective. Water 2020, 12, 2358. [Google Scholar] [CrossRef]
- Brázová, T.; Kováčik, P.; Matoušková, M.; Oros, M. Nematodes as soil stress indicators for polycyclic aromatic hydrocarbons: A review. Helminthologia 2022, 59, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Tomalak, M. Potencjał nicieni owadobójczych w biologicznym zwalczaniu szkodliwych błonkówek atakujących drzewa owocowe i parkowe. Prog. Plant Prot. 2006, 46, 249–255. [Google Scholar]
- Patil, J.; Linga, V.; Vijayakumar, R.; Subaharan, K.; Navik, O.; Bakthavatsalam, N.; Mhatre, P.H.; Sekhar, J. Biocontrol potential of entomopathogenic nematodes for the sustainable management of Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize. Pest Manag. Sci. 2022, 78, 2883–2895. [Google Scholar] [CrossRef]
- Nouh, G.M.; Adly, D. Evaluation of the virulence of entomopathogenic nematodes as a biological control agents against Gryllotalpa gryllotalpa (Gryllotalpidae). J. Appl. Entomol. 2021, 145, 1050–1056. [Google Scholar] [CrossRef]
- Manochaya, S.; Udikeri, S.; Srinath, B.S.; Sairam, M.; Srinivas, V.; Bandlamori, S.V.; Ramakrishna, K. In vivo culturing of entomopathogenic nematodes for biological control of insect pests: A review. J. Nat. Pestic. Res. 2022, 1, 100005. [Google Scholar] [CrossRef]
- Jayashree Ramakrishnan, E.J.; Salame, L.; Ahmed Nasser, A.; Glazer, I.; Ment, D. Survival and efcacy of entomopathogenic nematodes on exposed surfaces. Sci. Rep. 2022, 12, 4629. [Google Scholar] [CrossRef]
- Grewal, P.; Lewis, E.; Gaugle, R.; Campbell, J. Host finding behaviour as a predictor of foraging strategy in entomopathogenic nematodes. Parasitology 1994, 108, 207–215. [Google Scholar] [CrossRef]
- Hao, W.; Li, Q.; Zhang, J.; Jiang, Y.; Liang, W. Utility of nematode Acrobeloides nanus for assessing subacute toxicity of heavy metals. Environ. Monit. Assess. 2010, 164, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Ropek, D.; Gondek, K. Occurrence and virulence of entomopathogenic nematodes and fungi in soil contaminated with heavy metals near petroleum refinery and thermal power plant in Trzebinia. Ecol. Chem. Eng. 2002, 9, 447–454. [Google Scholar]
- Ropek, D.; Gospodarek, J. The effect of oil derivatives on the ability of entomopathogenic nematode Steinernema feltiae to find host. Ecol. Chem. Eng. A 2013, 20, 857–865. [Google Scholar]
- Maurya, S.; Abraham, J.S.; Somasundaram, S.; Toteja, R.; Gupta, R.; Makhija, S. Indicators for assessment of soil quality: A mini-review. Environ. Monit. Assess. 2020, 192, 604. [Google Scholar] [CrossRef] [PubMed]
- Gospodarek, J.; Petryszak, P.; Kołoczek, H. The effect of the bioremediation of soil contaminated with petroleum derivatives on the occurrence of epigeic and edaphic fauna. Bioremediation J. 2016, 20, 38–53. [Google Scholar] [CrossRef]
- Kaszycki, P.; Petryszak, P.; Pawlik, M.; Koloczek, H. Ex situ bioremediation of soil polluted with oily waste: The use of specialized microbial consortia for process bioaugmentation. Ecol. Chem. Eng. S 2011, 18, 83–92. [Google Scholar]
- Kaszycki, P.; Supel, P.; Petryszak, P. Bacterial population dynamics of biostimulated auto- and allochthonous microflora in waste oily emulsions from the metal-processing industry. J. Ecol. Eng. 2014, 15, 14–22. [Google Scholar]
- Kaszycki, P.; Petryszak, P.; Supel, P. Bioremediation of a spent metalworking fluid with auto- and allochthonous bacterial consortia. Ecol. Chem. Eng. S 2015, 22, 285–299. [Google Scholar] [CrossRef]
- Kaszycki, P.; Szumilas, P.; Kołoczek, H. Biopreparat przeznaczony do likwidacji środowiskowych skażeń węglowodorami i ich pochodnym. Inżynieria Ekol. 2001, 4, 15–22. [Google Scholar]
- Gospodarek, J.; Kołoczek, H.; Petryszak, P. Effect of bioremediation process of soil contaminated with oil derivatives on Coleoptera, Carabidae representatives. Ecol. Chem. Eng. A 2013, 20, 545–554. [Google Scholar]
- Kaya, H.K.; Stock, S.P. Techniques in insect nematology. In Manual of Techniques in Insect Pathology; Lacey, L.A., Ed.; Academic Press: Cambridge, MA, USA, 1997; pp. 281–324. ISBN 9780124325555. [Google Scholar] [CrossRef]
- Chachina, S.B.; Voronkova, N.A.; Shadrin, M.A.; Evdokimov, N.S. The recultivation of the soils, contaminated with petrol and diesel fuel, with the help of earthworms Dendrobena veneta and the complex of microorganisms. IOP Conf. Ser. Earth Environ. Sci. 2019, 315, 052065. [Google Scholar] [CrossRef]
- Hawrot-Paw, M.; Koniuszy, A.; Zając, G.; Szyszlak-Bargłowicz, J. Ecotoxicity of soil contaminated with diesel fuel and biodiesel. Sci. Rep. 2020, 10, 16436. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Zheng, X.-L.; Li, B.; Ma, Y.-X.; Cao, J.-H. Volatilization behaviors of diesel oil from the soils. J. Environ. Sci. 2004, 16, 1033–1036. [Google Scholar]
- Wołejko, E.; Wydro, U.; Odziejewicz, J.I.; Koronkiewicz, A.; Jabłonska-Trypuc, A. Biomonitoring of Soil Contaminated with Herbicides. Water 2022, 14, 1534. [Google Scholar] [CrossRef]
- Dahiya, U.R.; Das, J.; Bano, S. Biological Indicators of Soil Health and Biomonitoring. In Advances in Bioremediation and Phytoremediation for Sustainable Soil Management; Malik, J.A., Ed.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Gospodarek, J.; Rusin, M.; Barczyk, G.; Nadgórska-Socha, A. The Effect of Petroleum-Derived Substances and Their Bioremediation on Soil Enzymatic Activity and Soil Invertebrates. Agronomy 2021, 11, 80. [Google Scholar] [CrossRef]
- Ropek, D.; Gospodarek, J. Effect of soil pollution with oil derivatives on the occurrence of entomopathogenic nematodes. Ecol. Chem. Eng. A 2013, 20, 157–166. [Google Scholar]
Months from the Moment Soil Was Contaminated | Mortality of Test Insects [%] | *LSD (α = 0.05) | |||||||
---|---|---|---|---|---|---|---|---|---|
Series without Bioremediation | Series with Bioremediation | ||||||||
Unpolluted Soil | Petrol | Diesel Fuel | Used Engine Oil | Unpolluted Soil | Petrol | Diesel Fuel | Used Engine Oil | ||
1 | 92.5 | 15.0 | 17.5 | 0.0 | 90.0 | 15.0 | 12.5 | 0.0 | 13.82 |
2 | 77.5 | 15.0 | 12.5 | 0.0 | 87.5 | 15.0 | 17.5 | 0.0 | 12.73 |
3 | 80.0 | 22.5 | 17.5 | 0.0 | 82.5 | 25.0 | 25.0 | 10.0 | 15.40 |
4 | 85.0 | 57.5 | 65.0 | 17.5 | 97.5 | 72.5 | 77.5 | 20.0 | 17.84 |
5 | 92.5 | 70.0 | 70.0 | 7.5 | 92.5 | 72.5 | 77.5 | 27.5 | 17.00 |
6 | 95.0 | 75.0 | 60.0 | 15.0 | 90.0 | 72.5 | 67.5 | 25.0 | 17.68 |
7 | 95.0 | 80.0 | 60.0 | 22.5 | 95.0 | 90.0 | 70.0 | 42.5 | 17.68 |
8 | 100.0 | 77.5 | 55.0 | 25.0 | 100.0 | 92.5 | 67.5 | 45.0 | 14.63 |
9 | 97.5 | 80.0 | 52.5 | 25.0 | 97.5 | 85.0 | 65.0 | 37.5 | 15.21 |
10 | 95.0 | 85.0 | 50.0 | 27.5 | 95.0 | 80.0 | 60.0 | 35.0 | 20.83 |
11 | 92.5 | 87.5 | 55.0 | 30.0 | 90.0 | 85.0 | 67.5 | 42.5 | 25.00 |
12 | 95.0 | 82.5 | 57.5 | 35.0 | 92.5 | 90.0 | 70.0 | 52.5 | 24.05 |
13 | 97.5 | 87.5 | 57.5 | 40.0 | 97.5 | 82.5 | 75.0 | 57.5 | 16.31 |
14 | 100.0 | 87.5 | 62.5 | 62.5 | 100.0 | 87.5 | 80.0 | 62.5 | 17.84 |
15 | 97.5 | 85.0 | 72.5 | 67.5 | 97.5 | 92.5 | 85.0 | 67.5 | 20.69 |
16 | 95.0 | 85.0 | 72.5 | 65.0 | 95.0 | 90.0 | 85.0 | 60.0 | 20.27 |
17 | 100.0 | 77.5 | 75.0 | 65.0 | 97.5 | 87.5 | 85.0 | 67.5 | 15.21 |
18 | 100.0 | 75.0 | 77.5 | 70.0 | 100.0 | 80.0 | 87.5 | 72.5 | 14.63 |
19 | 100.0 | 77.5 | 75.0 | 67.5 | 100.0 | 85.0 | 82.5 | 67.5 | 15.96 |
20 | 100.0 | 85.0 | 77.5 | 70.0 | 100.0 | 92.5 | 85.0 | 70.0 | 13.18 |
21 | 100.0 | 92.5 | 80.0 | 77.5 | 100.0 | 97.5 | 87.5 | 75.0 | 16.67 |
22 | 100.0 | 100.0 | 82.5 | 82.5 | 100.0 | 100.0 | 92.5 | 77.5 | 14.43 |
23 | 100.0 | 100.0 | 82.5 | 80.0 | 100.0 | 100.0 | 87.5 | 77.5 | 13.82 |
24 | 100.0 | 100.0 | 85.0 | 77.5 | 100.0 | 97.5 | 92.5 | 77.5 | 13.61 |
Months from the Moment Soil Was Contaminated | Number of IJs Which Infested Test Insects | *LSD (α = 0.05) | |||||||
---|---|---|---|---|---|---|---|---|---|
Series without Bioremediation | Series with Bioremediation | ||||||||
Unpolluted Soil | Petrol | Diesel Fuel | Used Engine Oil | Unpolluted Soil | Petrol | Diesel Fuel | Used Engine Oil | ||
1 | 7.4 | 0.4 | 0.4 | 0.0 | 7.1 | 0.3 | 0.4 | 0.0 | 1.53 |
2 | 7.5 | 0.6 | 0.4 | 0.0 | 8.0 | 0.4 | 0.4 | 0.0 | 1.80 |
3 | 7.2 | 1.4 | 0.8 | 0.0 | 7.1 | 1.3 | 1.0 | 0.2 | 1.61 |
4 | 7.8 | 4.3 | 2.3 | 0.4 | 7.5 | 4.1 | 3.2 | 0.4 | 1.98 |
5 | 8.7 | 4.6 | 2.0 | 0.2 | 7.3 | 4.7 | 3.0 | 0.5 | 2.24 |
6 | 8.4 | 5.5 | 2.1 | 0.5 | 6.9 | 5.1 | 2.7 | 0.8 | 2.34 |
7 | 6.9 | 5.2 | 2.5 | 0.6 | 7.0 | 5.1 | 3.4 | 1.1 | 1.99 |
8 | 7.5 | 5.5 | 2.1 | 0.6 | 8.0 | 5.8 | 2.5 | 1.0 | 1.85 |
9 | 8.1 | 6.2 | 2.1 | 0.8 | 7.2 | 6.0 | 2.8 | 1.2 | 2.05 |
10 | 9.8 | 5.7 | 1.9 | 1.1 | 7.7 | 5.0 | 3.2 | 1.6 | 1.78 |
11 | 8.6 | 6.4 | 2.1 | 1.1 | 8.4 | 6.9 | 3.4 | 1.7 | 2.04 |
12 | 8.7 | 6.7 | 2.3 | 1.2 | 8.4 | 7.1 | 3.4 | 2.0 | 1.50 |
13 | 8.1 | 7.3 | 2.8 | 1.4 | 8.0 | 7.1 | 3.5 | 2.1 | 2.10 |
14 | 9.6 | 8.1 | 3.1 | 1.8 | 9.4 | 8.6 | 3.7 | 2.4 | 1.99 |
15 | 9.2 | 7.2 | 3.2 | 2.5 | 9.8 | 8.4 | 4.1 | 3.1 | 1.96 |
16 | 10.5 | 8.6 | 3.6 | 2.0 | 9.8 | 9.9 | 4.1 | 3.3 | 2.51 |
17 | 8.5 | 7.5 | 3.2 | 2.2 | 9.3 | 8.1 | 4.2 | 3.3 | 1.49 |
18 | 10.6 | 9.0 | 3.3 | 2.4 | 9.9 | 9.3 | 4.3 | 3.4 | 2.03 |
19 | 8.5 | 8.9 | 3.1 | 2.4 | 8.9 | 8.4 | 4.0 | 3.2 | 1.87 |
20 | 10.9 | 8.8 | 3.6 | 2.5 | 9.9 | 10.3 | 4.0 | 3.3 | 2.12 |
21 | 10.2 | 9.6 | 3.5 | 2.6 | 10.2 | 9.5 | 4.3 | 3.7 | 2.27 |
22 | 10.2 | 10.4 | 4.3 | 3.3 | 9.9 | 11.9 | 4.6 | 3.9 | 2.52 |
23 | 9.9 | 10.3 | 4.6 | 3.3 | 9.7 | 9.5 | 5.2 | 4.1 | 2.53 |
24 | 10.0 | 10.1 | 5.2 | 4.1 | 10.5 | 10.9 | 6.5 | 4.5 | 2.08 |
Months from the Moment Soil Was Contaminated | Mortality of Test Insects [%] | |||||||
---|---|---|---|---|---|---|---|---|
Series without Bioremediation | Series with Bioremediation | |||||||
Unpolluted Soil | Petrol | Diesel Fuel | Used Engine Oil | Unpolluted Soil | Petrol | Diesel Fuel | Used Engine Oil | |
1 | 684.5 | 6.0 | 7.0 | 0.0 | 639.0 | 4.5 | 5.0 | 0.0 |
2 | 581.3 | 9.0 | 5.0 | 0.0 | 700.0 | 6.0 | 7.0 | 0.0 |
3 | 576.0 | 18.0 | 14.0 | 0.0 | 585.8 | 20.0 | 25.0 | 2.0 |
4 | 663.0 | 120.8 | 149.5 | 7.0 | 731.3 | 166.8 | 248.0 | 8.0 |
5 | 804.8 | 161.0 | 140.0 | 1.5 | 675.3 | 217.5 | 232.5 | 13.8 |
6 | 798.0 | 210.0 | 126.0 | 7.5 | 621.0 | 239.3 | 182.3 | 20.0 |
7 | 655.5 | 175.5 | 150.0 | 13.5 | 665.0 | 270.0 | 238.0 | 46.8 |
8 | 750.0 | 231.0 | 115.5 | 15.0 | 800.0 | 397.8 | 168.8 | 45.0 |
9 | 789.8 | 189.0 | 110.3 | 20.0 | 702.0 | 314.5 | 182.0 | 45.0 |
10 | 931.0 | 193.8 | 95.0 | 30.3 | 864.5 | 352.0 | 192.0 | 56.0 |
11 | 795.5 | 286.0 | 115.5 | 33.0 | 756.0 | 425.0 | 229.5 | 72.3 |
12 | 893.0 | 495.0 | 132.3 | 42.0 | 777.0 | 549.0 | 238.0 | 105.0 |
13 | 789.8 | 490.0 | 161.0 | 56.0 | 780.0 | 511.5 | 262.5 | 120.8 |
14 | 990.0 | 621.3 | 193.8 | 112.5 | 940.0 | 682.5 | 296.0 | 150.0 |
15 | 1014.0 | 612.0 | 232.0 | 168.8 | 1023.8 | 869.5 | 348.5 | 209.3 |
16 | 997.5 | 731.0 | 261.0 | 130.0 | 931.0 | 891.0 | 348.5 | 198.0 |
17 | 850.0 | 581.3 | 240.0 | 143.0 | 906.8 | 708.8 | 357.0 | 222.8 |
18 | 1060.0 | 675.0 | 255.8 | 168.0 | 990.0 | 744.0 | 376.3 | 246.5 |
19 | 850.0 | 689.8 | 232.5 | 162.0 | 890.0 | 714.0 | 330.0 | 216.0 |
20 | 1090.0 | 748.0 | 279.0 | 175.0 | 990.0 | 952.8 | 340.0 | 231.0 |
21 | 1020.0 | 888.0 | 280.0 | 201.5 | 1020.0 | 926.3 | 376.3 | 277.5 |
22 | 1020.0 | 1040.0 | 354.8 | 272.3 | 990.0 | 1190.0 | 425.5 | 302.3 |
23 | 990.0 | 1030.0 | 379.5 | 264.0 | 970.0 | 950.0 | 455.0 | 317.8 |
24 | 1000.0 | 1010.0 | 442.0 | 317.8 | 1050.0 | 1062.8 | 601.3 | 348.8 |
Corelation Coefficient | ||||||||
---|---|---|---|---|---|---|---|---|
Control | Petrol | Diesel Fuel | Engine Oil | |||||
0R | R | 0R | R | 0R | R | 0R | R | |
Mortality of Test Insects | −0.042 | 0.003 | −0.246 | 0.063 | −0.783 * | −0.537 * | −0.761 * | −0.765 * |
The Intensity of Test Insect Penetration by IJs | 0.120 | 0.056 | 0.188 | −0.054 | −0.781 * | −0.587 * | −0.694 * | −0.732 * |
Pco | 0.079 | 0.059 | 0.223 | −0.010 | −0.716 * | −0.571 * | −0.577 * | −0.674 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ropek, D.R.; Gospodarek, J. Entomopathogenic Nematode Steinernema feltiae as an Indicator of Soil Pollution with Oil Derivatives in Bioremediation Process. Agriculture 2022, 12, 2033. https://doi.org/10.3390/agriculture12122033
Ropek DR, Gospodarek J. Entomopathogenic Nematode Steinernema feltiae as an Indicator of Soil Pollution with Oil Derivatives in Bioremediation Process. Agriculture. 2022; 12(12):2033. https://doi.org/10.3390/agriculture12122033
Chicago/Turabian StyleRopek, Dariusz Roman, and Janina Gospodarek. 2022. "Entomopathogenic Nematode Steinernema feltiae as an Indicator of Soil Pollution with Oil Derivatives in Bioremediation Process" Agriculture 12, no. 12: 2033. https://doi.org/10.3390/agriculture12122033
APA StyleRopek, D. R., & Gospodarek, J. (2022). Entomopathogenic Nematode Steinernema feltiae as an Indicator of Soil Pollution with Oil Derivatives in Bioremediation Process. Agriculture, 12(12), 2033. https://doi.org/10.3390/agriculture12122033