Tyre Configuration and Axle Load of Front-Wheel Assist and Four-Wheel Drive Tractors Effects on Soil Compaction and Rolling Resistance under No-Tillage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Description of Farm Equipment and Experimental Treatments
2.3. Experimental Variables Measured
2.4. Statistical Analyses
3. Results and Discussion
3.1. Soil Cone Index and Soil Water Content
3.2. Rolling Resistance and Rut Depth
4. Conclusions
- (1)
- Average rolling resistance values across all tyre combinations were 5 kN for the FWA and 7.5 kN for the 4WD tractors, with average power losses of 6.9 and 10.4 kW, respectively. These observations were consistent with rut depth measurements, which increased 1.4 times on average after a single pass of the 4WD compared with the FWA tractor. Rolling resistance increased significantly with dual compared with single tyres, and while soil cone index at the centreline of the rut was lower after the dual tyre tests, the final volume of soil over which soil strength (and therefore soil compaction) increased was significantly greater than that of the single tyre configuration.
- (2)
- Linear relationships between rut depth and tyre inflation pressure were established, which confirmed that greater soil deformation (sinkage) induced by wheeling is evidence of increased rolling resistance and soil compaction. If the same contact area was to be achieved with different tyres or tyre configurations, the depth of sinkage would be similar, but the resultant width of the rut would be increased with wider section tyres. This would result in increased rolling resistance. The rut depth–tyre inflation pressure-rolling resistance relationships documented in this study reinforced the knowledge that if the tyres could be operated at the lowest permissible inflation pressure, not only would the contact area be increased, but also (and importantly) their deformability relative to the soil. The net result would be shallower sinkage, reduced rolling resistance, and improved slip performance.
- (3)
- Soil cone index data (depth range: 150 to 450 mm) provided evidence that subsoil compaction occurred across all treatments and despite axle loads being lower than thresholds suggested in earlier studies. This was observed with both the FWA and 4WD tractors regardless of the tyres fitted to the equipment. These adverse effects may be mitigated, or possibly avoided, if advanced tyre technology (e.g., VF/IF marked tyres) were to be used, which should be considered in future studies. There is also a need to assess the cost-effectiveness of low-ground pressure tyre technology for heavy farm equipment relative to the adoption of controlled traffic farming (CTF). This research is required for improving the overall performance (timeliness, trafficability, energy-use efficiency) of mechanisation systems in Argentina and reducing impacts on soil associated with traffic compaction.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goering, C.E.; Stone, M.L.; Smith, D.W.; Turnquist, P.K. Off-Road Vehicle Engineering Principles; ASAE Publication No.: 801M0103; American Society of Agricultural Engineers: St. Joseph, MI, USA, 2006; ISBN 1-892769-26-3. [Google Scholar]
- Soane, B.D.; Dickson, J.W.; Campbell, D.J. Compaction by agricultural vehicles: A review. III. Incidence and control of compaction in crop production. Soil Tillage Res. 1982, 2, 3–36. [Google Scholar] [CrossRef]
- Misiewicz, P.A.; Blackburn, K.; Richards, T.E.; Brighton, J.L.; Godwin, R.J. The evaluation and calibration of pressure mapping system for the measurement of the pressure distribution of agricultural tyres. Biosyst. Eng. 2015, 130, 81–90. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Goering, C.E.; Rohrbach, R.P.; Buckmaster, D.R. Engineering Principles of Agricultural Machines, 2nd ed.; ASAE Pub. No.: 801M0206; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2006; ISBN 1-892769-50-6. [Google Scholar]
- Inns, F.M.; Kilgour, J. Agricultural Tyres; Dunlop Ltd.: London, UK, 1978. [Google Scholar]
- Perdok, U.D.; Tijink, F.G.J. Developments in IMAG research on mechanization in soil tillage and field traffic. Soil Tillage Res. 1990, 16, 121–141. [Google Scholar] [CrossRef]
- Abeels, P.F.J. Tire deflection and contact studies. J. Terramech. 1976, 13, 183–196. [Google Scholar] [CrossRef]
- Wismer, R.D.; Luth, H.J. Off-road traction prediction for wheeled vehicles. Trans. ASAE 1974, 17, 8–10. [Google Scholar] [CrossRef]
- Kurjenluomar, J.; Alakukku, L.; Ahokas, J. Rolling resistance and rut formation by implement tires on tilled clay soil. J. Terramech. 2009, 46, 267–275. [Google Scholar] [CrossRef]
- ASABE. ASAE-Standard ASAE-D497.7 MAR2011(R2020): Agricultural Machinery Management Data; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2020; p. 15. [Google Scholar]
- Hunt, D.R. Engineering Models for Agricultural Production; The Avi Publishing Co., Inc.: Westport, CT, USA, 1986; ISBN 0-87055-494-8. [Google Scholar]
- Crossley, C.P.; Kibiwot, V.N.; Reynolds, A.J.; Rickson, R.J. Rut formation and rolling resistance on earth roads. J. Agric. Eng. Res. 2001, 78, 99–107. [Google Scholar] [CrossRef]
- ASABE. ASAE-Standard EP542.1-NOV2019: Procedures for Using and Reporting data Obtained with the Soil Cone Penetrometer; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2019; p. 6. [Google Scholar]
- Domier, K.W.; Friesen, D.H.; Townsend, J.S. Traction characteristics of two-wheel drive, four-wheel drive and crawler tractors. Trans. ASAE 1971, 14, 0520–0522. [Google Scholar] [CrossRef]
- Botta, G.F.; Tolón-Becerra, A.; Lastra-Bravo, X.; Tourn, M.; Balbuena, R.; Rivero, D. Continuous application of direct sowing: Traffic effect on subsoil compaction and maize (Zea mays L.) yields in Argentinean Pampas. Soil Tillage Res. 2013, 134, 111–120. [Google Scholar] [CrossRef]
- Burt, E.C.; Wood, R.K. Soil-tire interface stress measurements. Trans. ASAE 1987, 30, 1254–1258. [Google Scholar] [CrossRef]
- Antille, D.L.; Ansorge, D.; Dresser, M.L.; Godwin, R.J. The Effects of Tyre Size on Soil Deformation and Soil Bulk Density Changes; ASABE Paper No.: 083879; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2008; Volume 4, pp. 2294–2304. [Google Scholar] [CrossRef] [Green Version]
- Antille, D.L.; Ansorge, D.; Dresser, M.L.; Godwin, R.J. Soil displacement and soil bulk density changes as affected by tire size. Trans. ASABE 2013, 56, 1683–1693. [Google Scholar] [CrossRef] [Green Version]
- Koolen, A.J.; Kuipers, H. Agricultural Soil Mechanics; Advanced Series in Agricultural Sciences; Springer: Berlin/Heidelberg, Germany, 1983; Volume 13, pp. 1–252. [Google Scholar] [CrossRef]
- Antille, D.L.; Peets, S.; Galambošová, J.; Botta, G.F.; Rataj, V.; Macák, M.; Tullberg, J.N.; Chamen, W.C.T.; White, D.R.; Misiewicz, P.A.; et al. Review: Soil compaction and controlled traffic farming in arable and grass cropping systems. Agronomy Res. 2019, 17, 653–682. [Google Scholar] [CrossRef]
- Plackett, C.W. The ground pressure of some agricultural tyres at low load and with zero sinkage. J. Agric. Eng. Res. 1984, 29, 159–166. [Google Scholar] [CrossRef]
- Liljedahl, J.B.; Turnquist, P.K.; Smith, D.W.; Hoki, M. Chapter 10: Traction. In Tractors and Their Power Units, 4th ed.; Springer: Boston, MA, USA, 1989; pp. 240–265. [Google Scholar] [CrossRef]
- Jensen, T.A.; Tullberg, J.N.; Antille, D.L. Chapter 3: Improving farm machinery operation and maintenance to optimise fuel use efficiency. In Energy-Smart Farming: Efficiency, Renewable Energy, and Sustainability. Part 1: Efficient Use of Electricity, Heat, and Fuel; Sims, R.E.H., Ed.; Burleigh Dodds Series in Agricultural Science No.: 115; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2022; pp. 71–102. [Google Scholar] [CrossRef]
- Chico-Santamarta, L.; Richards, T.; Godwin, R.J. A Laboratory Study into the Mobility of Travelling Irrigators in Air Dry, Field Capacity and Saturated Sandy Soils; ASABE Paper No.: 096106; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2009; Volume 4, pp. 2629–2646. [Google Scholar] [CrossRef]
- Sitkei, G. Sinkage and rolling resistance of wheels: Some new results on an old problem. Prog. Agric. Eng. Sci. 2015, 11, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Desbiolles, J.; Saunders, C.; Barr, J.; Riethmuller, G.; Northover, G.; Tullberg, J.; Antille, D. Chapter 6: Machinery evolution for conservation agriculture. In Australian Agriculture in 2020: From Conservation to Automation; Pratley, J., Kirkegaard, J., Eds.; Agronomy Australia and Charles Sturt University: Wagga Wagga, NSW, Australia, 2019; pp. 81–105. ISBN 13: 978-0-6485819-0-1. [Google Scholar]
- Davis, D.B.; Finney, J.B.; Richardson, R.J. Relative effects of tractor weight and wheel-slip in causing soil compaction. J. Soil Sci. 1973, 24, 399–409. [Google Scholar] [CrossRef]
- Raghavan, G.S.V.; McKyes, E.; Chassé, M. Effect of wheel slip on soil compaction. J. Agric. Eng. Res. 1977, 22, 79–83. [Google Scholar] [CrossRef]
- McKibben, E.G.; Davidson, J.B. Transport wheels for agricultural machines IV. Effect of outside and cross-section diameters on the rolling resistance of pneumatic implement tires. Agric. Eng. 1940, 21, 57–58. [Google Scholar]
- Tijink, F.G.J.; Döll, H.; Vermeulen, G.D. Technical and economic feasibility of low ground pressure running gear. Soil Tillage Res. 1995, 35, 99–110. [Google Scholar] [CrossRef]
- Soane, B.D.; Dickson, J.W.; Blackwell, P.S. Some options for reducing compaction under wheels on loose soil. In Proceedings of the 8th Conference of the International Soil and Tillage Research Organization, Stuttgart, Germany, 10–14 September 1979; ISTRO: Stuttgart, Germany, 1979; Volume 2, pp. 347–352. [Google Scholar]
- Antille, D.L.; Bennett, J.M.c.L.; Jensen, T.A. Soil compaction and controlled traffic considerations in Australian cotton-farming systems. Crop Pasture Sci. 2016, 67, 1–28. [Google Scholar] [CrossRef]
- Harris, B.J. Increased Deflection Agricultural Radial Tires Following the Tire and Rim Association IF, VF, and IF/CFO Load and Inflation Standards. In Proceedings of the Agricultural Equipment Technology Conference, ASABE Distinguished Lecture Series Tractor Design No.: 39. Louisville, Kentucky, 13–15 February 2017; ASABE: St. Joseph, MI, USA, 2017. [Google Scholar] [CrossRef]
- Godwin, R.J.; Misiewicz, P.A.; Smith, E.K.; Millington, W.A.J.; White, D.R.; Dickin, E.T.; Chaney, K. Summary of the effects of three tillage and three traffic systems on cereal yields over a four-year rotation. Asp. Appl. Biol. 2017, 134, 233–241. [Google Scholar]
- McPhee, J.E.; Antille, D.L.; Tullberg, J.N.; Doyle, R.B.; Boersma, M. Managing soil compaction—A choice of low-mass autonomous vehicles or controlled traffic? Biosyst. Eng. 2020, 195, 227–241. [Google Scholar] [CrossRef]
- Gauthier, G.F.; Carruthers, R.; Millán-Placci, F. Logística de la Soja: Argentina-Paraguay-Uruguay. Report No.: 105151. Serie de Informes Técnicos del Banco Mundial en Argentina, Paraguay y Uruguay. N°4, 2016; World Bank Group: Washington, DC, USA, 2016; Available online: http://documents.worldbank.org/curated/en/923401468272770160/Logistica-de-la-soja-Argentina-Paraguay-Uruguay (accessed on 27 October 2022).
- Botta, G.F.; Tolón-Becerra, A.; Tourn, M.; Lastra-Bravo, X.; Rivero, D. Agricultural traffic: Motion resistance and soil compaction in relation to tractor design and different soil conditions. Soil Tillage Res. 2012, 120, 92–98. [Google Scholar] [CrossRef]
- Antille, D.L.; Imhoff, S.C.; Alesso, C.A.; Chamen, W.C.T.; Tullberg, J.N. Potential to increase productivity and sustainability in Argentinean agriculture with controlled traffic farming: A short discussion. Acta Technol. Agric. 2015, 18, 83–87. [Google Scholar] [CrossRef] [Green Version]
- Botta, G.F.; Antille, D.L.; Nardon, G.F.; Rivero, D.; Bienvenido, F.; Contessotto, E.E.; Ezquerra-Canalejo, A.; Ressia, J.M. Zero and controlled traffic improved soil physical conditions and soybean yield under no-tillage. Soil Tillage Res. 2022, 215, 105235. [Google Scholar] [CrossRef]
- Botta, G.F. Armonización del Peso y Rodado del Tractor para Reducir la Compactación del Suelo. Master’s Thesis, Universidad Nacional de La Plata, Facultad de Ciencias Agrarias y Forestales, La Plata/Buenos Aires, Argentina, 1997. [Google Scholar]
- Bekker, M.G. Latest developments in off-the-road locomotion. J. Frankl. Inst. 1957, 263, 411–423. [Google Scholar] [CrossRef]
- Bekker, M.G. Off the Road Locomotion: Research and Development in Terramechanics; University of Michigan Press: Ann Arbor, MI, USA, 1960; p. 220. [Google Scholar]
- Wong, J.Y. On the study of wheel-soil interaction. J. Terramech. 1984, 21, 117–131. [Google Scholar] [CrossRef]
- Ageikin, I.S. Off-the-Road Wheeled and Combined Tractor Devices; Amerind Publishing Co.: New Delhi, India, 1987; p. 202. [Google Scholar]
- INTA. Carta de suelos de la Provincia de Buenos Aires; Instituto Nacional de Tecnología Agropecuaria: Buenos Aires, Argentina, 2015; Available online: https://inta.gob.ar/documentos/carta-de-suelos-de-la-provincia-de-buenos-aires (accessed on 20 April 2022).
- Bouyoucos, G.J. Hydrometer method improved for making particle size analyses of soils. Agronomy J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; Agricultural Handbook No.: 436; US Department of Agriculture, National Resources Conservation Service: Washington, DC, USA, 1999; p. 886.
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; Agronomy Monograph; ASA-SSSA: Madison, WI, USA, 1986; Volume 9, pp. 363–375. [Google Scholar] [CrossRef]
- Ray, P.N.; Chapman, T.G. The British Standard compaction test for soils: A study of some factors affecting the test results. Geotechnique 1954, 4, 169–177. [Google Scholar] [CrossRef]
- Marshall, T.J. Relations between Water and Soil; Technical Communication No.: 50 of The Commonwealth Bureau of Soils; Commonwealth Agricultural Bureaux: Harpenden, UK, 1959; p. 91. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Davis, L.E. Measurements of pH with the glass electrode as affected by soil moisture. Soil Sci. 1943, 56, 405–422. [Google Scholar] [CrossRef]
- MAFF. The Analysis of Agricultural Materials, 3rd ed.; Reference Book 427; Ministry of Agriculture, Fisheries, and Food, The Stationery Office: London, UK, 1986.
- Hassan, A.E.; Sirois, D.L. Traction and rolling resistance of a dual-tired skidder on wetland. Trans. ASAE 1985, 28, 1038–1042. [Google Scholar] [CrossRef]
- Cassel, D.K. Tillage effects on soil bulk density and mechanical impedance. In Predicting Tillage Effects on Soil Physical Properties and Processes; Unger, P.W., Van Doren, D.M., Jr., Whisler, F.D., Skidmore, E.L., Eds.; ASA-SSSA Inc.: Madison, WI, USA, 1982; Volume 44, Chapter 4; pp. 45–67. [Google Scholar] [CrossRef]
- Yasin, M.; Grisso, R.D.; Bashford, L.L.; Jones, A.J.; Mielke, L.N. Normalizing cone resistance values by covariance analysis. Trans. ASAE 1993, 36, 1267–1270. [Google Scholar] [CrossRef]
- Aikins, K.A.; Jensen, T.A.; Antille, D.L. Three-dimensional scanning of soil surface and furrow profiles using a portable and affordable unit. Biosyst. Eng. 2020, 193, 279–289. [Google Scholar] [CrossRef]
- Vero, S.E.; Antille, D.L.; Lalor, S.T.J.; Holden, N.M. Field evaluation of soil moisture deficit thresholds for limits to trafficability with slurry spreading equipment on grassland. Soil Use Manag. 2014, 30, 69–77. [Google Scholar] [CrossRef]
- Bretschneider, S. Software Reviews: Statgraf 1.1. (1985). Soc. Sci. Microcomput. Rev. 1983, 3, 163–164. [Google Scholar] [CrossRef]
- Earl, R. Prediction of trafficability and workability from soil moisture deficit. Soil Tillage Res. 1997, 40, 155–168. [Google Scholar] [CrossRef]
- Spoor, G.; Tijink, F.G.J.; Weisskopf, P. Subsoil compaction: Risk, avoidance, identification and alleviation. Soil Tillage Res. 2003, 73, 175–182. [Google Scholar] [CrossRef]
- Håkansson, I.; Reeder, R.C. Subsoil compaction by vehicles with axle load extend persistence and crop response. Soil Tillage Res. 1994, 29, 277–304. [Google Scholar] [CrossRef]
- Tekeste, M.Z.; Antille, D.L.; Baillie, C.P. Modeling the effect of low ground pressure (LGP) tires on soil stress distribution beneath a cotton picker wheel loading. In Proceedings of the ISTVS 20th International and 9th Americas Conference, Online, 27–29 September 2021; International Society for Terrain-Vehicle Systems. [Paper No.: 119]. 2021. Available online: https://docs.google.com/document/d/12fQuuDEjR2pUK8WZeeYbiGzMfaZZ1nlkP2_GBTtU8J0/edit (accessed on 16 November 2022).
- Hovanesian, J.D.; Buchele, W.F. Development of a recording volumetric transducer for studying effects of soil parameters on compaction. Trans. ASAE 1959, 2, 0078–0081. [Google Scholar] [CrossRef]
- Botta, G.F.; Pozzolo, O.; Bomben, M.; Rosatto, H.; Rivero, D.; Ressia, M.; Tourn, M.; Soza, E.; Vazquez, J. Traffic alternatives in harvest of soybean (Glycine max L.): Effect on yields and soil under direct sowing system. Soil Tillage Res. 2007, 96, 145–154. [Google Scholar] [CrossRef]
- Tullberg, J.N.; Yule, D.F.; McGarry, D. Controlled traffic farming-From research to adoption in Australia. Soil Tillage Res. 2007, 97, 272–281. [Google Scholar] [CrossRef]
- Botta, G.F.; Rivero, D.; Tourn, M.; Bellora Melcon, F.; Pozzolo, O.; Nardon, G.F.; Balbuena, R.; Tolón-Becerra, A.; Rosatto, H.G.; Stadler, S. Soil compaction produced by tractor with radial and cross-ply tyres in two tillage regimes. Soil Tillage Res. 2008, 101, 44–51. [Google Scholar] [CrossRef]
- Ansorge, D.; Godwin, R.J. The effects of tyres and a rubber track at high axle loads on soil compaction: Part 1. Single-axle studies. Biosyst. Eng. 2007, 98, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Pytka, J.D.; Dąbrowski, J.; Zając, M.; Tarkowski, P. Effects of reduced inflation pressure and vehicle loading on off-road traction and soil stress and deformation state. J. Terramech. 2006, 43, 469–485. [Google Scholar] [CrossRef]
- Raper, R.L. Agricultural traffic impacts on soil. J. Terramech. 2005, 42, 259–280. [Google Scholar] [CrossRef]
- Vanden Berg, G.E.; Gill, W.R. Pressure distribution between a smooth tire and the soil. Trans. ASAE 1962, 5, 0105–0107. [Google Scholar] [CrossRef]
- Hidalgo, R.J.; Pozzolo, O.R.; Domínguez, J.F.; Giménez, L.; Botta, G.F. Soil compaction caused by the impact of machinery traffic during corn (Zea mays) harvest. Rev. Fac. Cienc. Agrar. 2020, 52, 161–174. [Google Scholar]
Property Measured | Analytical Method | Analytical Value | |||
---|---|---|---|---|---|
Depth interval, mm | - | 0–150 | 150–300 | 300–450 | 450–600 |
Particle size analysis | [46] | - | - | - | - |
Clay (<2 μm), % | - | 20.1 | 24.8 | 27.9 | 34.2 |
Silt (2–50 μm), % | - | 75.6 | 70.8 | 67.2 | 61.3 |
Sand (>50 μm), % | - | 4.3 | 4.4 | 4.9 | 4.5 |
Textural class | [47] | Silt loam | Silt loam | Silty clay loam | Silty clay loam |
Soil bulk density, kg m−3 | [48] | 1240 | 1270 | 1330 | 1370 |
Proctor density, kg m−3 | [49] | 1490 | 1530 | 1680 | 1710 |
Proctor soil water content, % (w/w) | [49] | 22.3 | 23.1 | 24.4 | 25.2 |
DUL100, % (w/w) | [50] | 26.6 | 28.5 | 26.8 | 28.7 |
SOC, % (w/w) | [51] | 1.85 | 1.44 | 0.95 | 0.61 |
pH1:2.5 (soil:water ratio) | [52] | 5.8 | 5.8 | 6.0 | 6.2 |
(a) Front Axle | |||||||
Tractor | Treatment | Front Tyres | Specification | Inflation Pressure | Mean Ground Pressure | Front Axle Load | Load/Tyre |
Units | - | - | - | --------------- kPa --------------- | ---------- kN ---------- | ||
FWA | FWA_D | Single | 520/70 R26 | 80 | 60.35 | 30.30 | 15.15 |
FWA | FWA_S | Single | 18.4 R26 | 60 | 60.01 | 23.30 | 11.65 |
FWA | (†) FWA_S | Single | 480/70 R26 | 70 | 65.10 | 28.84 | 14.42 |
4WD | 4WD_D | Single | 18.4 R38 | 190 | 48.80 | 64.96 | 32.48 |
4WD | 4WD_S | Single | 24.5 R32 | 110 | 52.81 | 67.20 | 33.60 |
4WD | (†) 4WD_S | Single | 23.1 R30 | 180 | 61.25 | 63.70 | 31.85 |
(b) Rear Axle | |||||||
Tractor | Treatment | Rear Tyre | Specification | Inflation Pressure | Mean Ground Pressure | Rear Axle Load | Load/Tyre |
Units | - | - | - | --------------- kPa --------------- | ---------- kN ---------- | ||
FWA | FWA_D | Dual | 18.4 R38 | 140 | 45.25 | 45.43 | 22.71 |
FWA | FWA_S | Single | 24.5 R32 | 60 | 55.40 | 46.60 | 23.30 |
FWA | (†) FWA_S | Single | 23.1 R30 | 100 | 68.90 | 43.56 | 21.78 |
4WD | 4WD_D | Dual | 18.4 R38 | 80 | 31.80 | 35.00 | 17.50 |
4WD | 4WD_S | Single | 24.5 R32 | 40 | 39.20 | 36.20 | 18.10 |
4WD | (†) 4WD_S | Single | 23.1 R30 | 70 | 56.20 | 34.30 | 17.15 |
(a) Tractor Type: FWA and 4WD | |||||||||||||||
Treatment | FWA_D | FWA_S | (†) FWA_S | 4WD_D | 4WD_S | (†) 4WD_S | |||||||||
Depth interval, mm | -------------------------------------------------------- CI, kPa ------------------------------------------------------- | ||||||||||||||
0–150 | 1699 b | 1778 b | 1800 b | 1789 b | 1749 b | 2020 c | |||||||||
150–300 | 2010 b | 2170 c | 1930 b | 2380 c | 2545 d | 2290 c | |||||||||
300–450 | 2322 b | 2410 c | 2290 b | 2688 c | 2790 d | 2610 c | |||||||||
450–600 | 2565 a | 2605 b | 2508 a | 2762 c | 2890 c | 2701 c | |||||||||
(b) Tractor Type: 4WD | |||||||||||||||
Measurement | CI after Pass of front Tyre | CI after Pass of Whole Vehicle | CI of front Tyre Relative to CI of Whole Vehicle | ||||||||||||
Treatment | 4WD_D | 4WD_S | (†) 4WD_S | 4WD_D | 4WD_S | (†) 4WD_S | 4WD_D | 4WD_S | (†) 4WD_S | ||||||
Depth interval, mm | --------------------------------- CI, kPa --------------------------------- | -------------------- % -------------------- | |||||||||||||
0–150 | 1319 | 1270 | 1450 | 1789 | 1749 | 2020 | 73.7 | 72.6 | 71.7 | ||||||
150–300 | 1590 | 1930 | 1578 | 2380 | 2545 | 2290 | 71.0 | 62.4 | 68.9 | ||||||
300–450 | 2000 | 1928 | 1845 | 2688 | 2790 | 2610 | 74.4 | 69.1 | 70.6 | ||||||
450–600 | 1900 | 2140 | 1950 | 2762 | 2890 | 2701 | 68.7 | 74.0 | 72.1 |
Measurement/Treatment | FWA_D | FWA_S | (†) FWA_S | 4WD_D | 4WD_S | (†) 4WD_S |
---|---|---|---|---|---|---|
Overall load, kN | 75.73 | 77.70 | 72.06 | 99.96 | 104.40 | 98.00 |
Rolling resistance, kN | 6.2 c | 3.6 a | 5.2 b | 8.9 e | 6.5 c | 7.1 d |
Power loss, kW | 8.6 c | 5.0 a | 7.2 b | 12.3 d | 9.0 c | 9.8 c |
Rut depth, mm | 73 b | 62 a | 65 a | 100 d | 84 c | 97 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivero, D.; Botta, G.F.; Antille, D.L.; Ezquerra-Canalejo, A.; Bienvenido, F.; Ucgul, M. Tyre Configuration and Axle Load of Front-Wheel Assist and Four-Wheel Drive Tractors Effects on Soil Compaction and Rolling Resistance under No-Tillage. Agriculture 2022, 12, 1961. https://doi.org/10.3390/agriculture12111961
Rivero D, Botta GF, Antille DL, Ezquerra-Canalejo A, Bienvenido F, Ucgul M. Tyre Configuration and Axle Load of Front-Wheel Assist and Four-Wheel Drive Tractors Effects on Soil Compaction and Rolling Resistance under No-Tillage. Agriculture. 2022; 12(11):1961. https://doi.org/10.3390/agriculture12111961
Chicago/Turabian StyleRivero, David, Guido F. Botta, Diogenes L. Antille, Alejandra Ezquerra-Canalejo, Fernando Bienvenido, and Mustafa Ucgul. 2022. "Tyre Configuration and Axle Load of Front-Wheel Assist and Four-Wheel Drive Tractors Effects on Soil Compaction and Rolling Resistance under No-Tillage" Agriculture 12, no. 11: 1961. https://doi.org/10.3390/agriculture12111961
APA StyleRivero, D., Botta, G. F., Antille, D. L., Ezquerra-Canalejo, A., Bienvenido, F., & Ucgul, M. (2022). Tyre Configuration and Axle Load of Front-Wheel Assist and Four-Wheel Drive Tractors Effects on Soil Compaction and Rolling Resistance under No-Tillage. Agriculture, 12(11), 1961. https://doi.org/10.3390/agriculture12111961