Evaluation of Potato Varieties Grown in Hydroponics for Phosphorus Use Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Potato Seeds
2.2. Growth Conditions
2.3. Analyses of P Content in Biomass
2.4. Holistic Score
2.5. Statistical Analyses
3. Results and Discussion
3.1. Biomass and Root/Shoot Ratio
3.2. Phosphorus Uptake
3.3. Phosphorus Utilization Efficiency
3.4. Holistic Evaluation of Potato Varieties for P-Use Efficiency
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cordell, D.; Drangert, J.O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Mogollón, J.M.; Beusen, A.H.W.; van Grinsven, H.J.M.; Westhoek, H.; Bouwman, A.F. Future agricultural phosphorus demand according to the shared socioeconomic pathways. Glob. Environ. Chang. 2018, 50, 149–163. [Google Scholar] [CrossRef]
- Raghothama, K.G. Phosphate acquisition. Annu. Rev. Plant. Biol. 1999, 50, 665–693. [Google Scholar] [CrossRef] [PubMed]
- Abelson, P.H. A potential phosphate crisis. Science 1999, 283, 2015. [Google Scholar] [CrossRef] [PubMed]
- Van Kauwenbergh, S.J.; Stewart, M.; Mikkelsen, R. World Reserves of Phosphate Rock-a Dynamic and Unfolding Story. Better Crop. 2013, 97, 18–20. [Google Scholar]
- Soratto, R.P.; Pilon, C.; Fernandes, A.M.; Moreno, L.A. Phosphorus Uptake, Use Efficiency, and Response of Potato Cultivars to Phosphorus Levels. Potato Res. 2015, 58, 121–134. [Google Scholar] [CrossRef]
- Shenoy, V.V.; Kalagudi, G.M. Enhancing plant phosphorus use efficiency for sustainable cropping. Biotechnol. Adv. 2005, 23, 501–513. [Google Scholar] [CrossRef]
- Liao, X.; Liu, G.; Hogue, B.; Li, Y.; Nicholson, F. Phosphorus availability and environmental risk in potato fields in North Florida. Soil Use Manag. 2015, 31, 308–312. [Google Scholar] [CrossRef]
- Liu, G.D.; Simonne, E.H.; Morgan, K.T.; Hochmuth, G.J.; Agehara, S.; Mylavarapu, R. 2020–2021 Vegetable Production Handbook: Chapter 2. Fertilizer Management for Vegetable Production in Florida; Publication #CV296; University of Florida Institute of Food and Agricultural Sciences: Gainesville, FL, USA, 2020; Available online: https://edis.ifas.ufl.edu/cv296 (accessed on 17 June 2021).
- Fixen, P.E.; Bruulsema, T.W. Potato Management Challenges Created by Phosphorus Chemistry and Plant Roots. Am. J. Potato Res. 2014, 91, 121. [Google Scholar] [CrossRef]
- Hopkins, B.G.; Ellsworth, J.W.; Bowen, T.R.; Cook, A.G.; Stephens, S.C.; Jolley, V.D.; Shiffler, A.K.; Eggett, D. Phosphorus fertilizer timing for Russet Burbank potato grown in calcareous soil. J. Plant. Nutr. 2010, 33, 529–540. [Google Scholar] [CrossRef]
- Hopkins, B.G. Phosphorus in plant nutrition. In Handbook of Plant Nutrition, 2nd ed.; Pilbeam, D.J., Barker, A.V., Eds.; CRC Press, Taylor & Francis Group. Ch.: Boca Raton, FL, USA, 2015; Volume 3, pp. 65–126. [Google Scholar]
- Stark, J.C.; Love, S.L. Potato Production Systems; University of Idaho: Moscow, ID, USA, 2003; Available online: http://www.cals.uidaho.edu/edcomm/pps/about-contr.html (accessed on 17 June 2021).
- Iwama, K. Physiology of the Potato: New Insights into Root System and Repercussions for Crop Management. Potato Res. 2008, 51, 333–353. [Google Scholar] [CrossRef]
- Sattelmacher, B.; Marschner, H. Effects of Root-Zone Temperature on Growth and Development of Roots of Two Potato (Solanum tuberosum L.) Clones as Influenced by Plant Age, Nutrient Supply, and Light Intensity. J. Agron. Crop. Sci. 1990, 165, 190–197. [Google Scholar] [CrossRef]
- Mariotto-Cezar, T.C.; Coelho, S.R.M.; Christ, D.; Schoeninger, V.; de Almeida, A.J.B. Nutritional and antinutritional factors during the storage process of common bean. J. Food Agric. Environ. 2013, 11, 268–272. [Google Scholar]
- Schenk, M.K. Nutrient efficiency of vegetable crops. Acta Hortic. 2006, 700, 21–34. [Google Scholar] [CrossRef]
- Bais, H.P.; Weir, T.L.; Perry, L.G.; Gilroy, S.; Vivanco, J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant. Biol. 2006, 57, 233–266. [Google Scholar] [CrossRef] [Green Version]
- Dakora, F.; Phillips, D. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant. Soil 2002, 245, 35–47. [Google Scholar] [CrossRef]
- Gerke, J.; Beissner, L.; Romer, W. The quantitative effect of chemical phosphate mobilization by carboxylate anions on P uptake by a single root. I. The basic concept and determination of soil parameters. J. Plant. Nutr. Soil Sci. 2000, 163, 207–212. [Google Scholar] [CrossRef]
- Hoffland, E. Quantitative-evaluation of the role of organic-acid exudation in the mobilization of rock phosphate by rape. Plant. Soil 1992, 140, 279–289. [Google Scholar] [CrossRef]
- Alvarez-Sánchez, E.; Etchevers, J.D.; Ortiz, J.; Núñez, R.; Volke, V.; Tijerina, L.; Martínez, A. Biomass production and phosphorus uptake of potato as affected by phosphorus nutrition. J. Plant. Nutr. 1999, 22, 205–217. [Google Scholar] [CrossRef]
- Balemi, T.; Schenk, M.K. Genotypic variation of potato for phosphorus efficiency and quantification of phosphorus uptake with respect to root characteristics. J. Plant. Nutr. Soil Sci. 2009, 172, 669–677. [Google Scholar] [CrossRef]
- Fernandes, A.M.; Soratto, R.P. Nutrition, dry matter uptake and partitioning and phosphorus use efficiency of potato grown at different phosphorus levels in nutrient solution. Soil Sci. J. 2011, 36, 1528–1537. [Google Scholar]
- Haynes, W.M. CRC Handbook of Chemistry and Physics, 93rd ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2012. [Google Scholar]
- Liu, G.D.; Li, Z.; Li, J. Effect on horizontally dividing the root system of wheat plants having different phosphorus efficiencies. J. Plant. Nutr. 1998, 21, 2535–2544. [Google Scholar] [CrossRef]
- Liu, G.D.; Dunlop, J.; Phung, T.; Li, Y.C. Physiological Responses of Wheat Phosphorus-efficient and -inefficient Varietys in Field and Effects of Mixing Other Nutrients on Mobilization of Insoluble Phosphates in Hydroponics. Commun. Soil Sci. Plant. Anal. 2007, 38, 2239–2256. [Google Scholar] [CrossRef]
- Manske, G.G.B.; Ortiz-Monasterio, J.I.; van Ginkel, M.; González, R.M.; Rajaram, S.; Molina, E.; Vlek, P.L.G. Traits associated with improved P-uptake efficiency in CIMMYT’s semidwarf spring bread wheat grown on an acid Andisol in Mexico. Plant. Soil 2000, 221, 198–204. [Google Scholar] [CrossRef]
- Liu, G.D.; Li, Y.C.; Porterfield, D.M. Genotypic Differences in Potassium Nutrition in Lowland Rice Hybrids. Commun. Soil Sci. Plant. Anal. 2009, 40, 1803–1821. [Google Scholar] [CrossRef]
- Lee, W.C.; Liu, G.D.; Alva, A.K. Potato cultivars’ specific leaf weight as an index of response to phosphate limitation. Proc. Fla. State Hortic. Soc. 2013, 126, 150–151. [Google Scholar]
- Correa, R.M.; Brasil, J.E.; Pereira Pinto, C.A.; Faquin, V.; Reis, E.S.; Monteiro, A.B.; Dyer, W.E. A comparison of potato seed tuber yields in beds, pots and hydroponic systems. Sci. Hortic. 2008, 116, 17–20. [Google Scholar] [CrossRef]
- Liu, G.D.; Gu, B.; Miao, S.L.; Li, Y.C.; Migliaccio, K.W.; Qian, Y. Phosphorus Release from Ash and Remaining Tissues of Two Wetland Species after a Prescribed Fire. J. Environ. Qual. 2010, 39, 1585–1593. [Google Scholar] [CrossRef]
- O’Del, J.W. Method 365.1 Determination of Phosphorus by Semi-Automated Colorimetry; U.S. Environmental Protection Agency, Environmental Monitoring Support Laboratory: Cincinnati, OH, USA, 1993.
- Hubbard, M.R. Statistical Quality Control for the Food Industry, 2nd ed.; Aspen Publishers, Inc.: Gaithersburg, MD, USA, 2001; ISBN 978-08-3-422093-5. [Google Scholar]
- Lambers, H.; Shane, M.W.; Cramer, M.D.; Pearse, S.J.; Veneklaas, E.J. Root Structure and Functioning for Efficient Acquisition of Phosphorus: Matching Morphological and Physiological Traits. Ann. Bot. 2006, 98, 693–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wissuwa, M. Combining a modeling with a genetic approach in establishing associations between genetic and physiological effects in relation to phosphorus uptake. Plant. Soil 2005, 269, 57–68. [Google Scholar] [CrossRef]
- Thornton, M.K.; Novy, R.G.; Stark, J.C. Improving Phosphorus Use Efficiency in the Future. Am. J. Potato Res. 2014, 91, 175–179. [Google Scholar] [CrossRef]
- Yamaguchi, J. Measurement of root diameter in field-grown crops under a microscope without washing. Soil Sci. Plant. Nutr. 2002, 48, 625–629. [Google Scholar] [CrossRef]
- Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Ahmed, N.; Zhang, L. Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Front. Plant. Sci. 2019, 10, 1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zotarelli, L.; Dittmar, P.J.; Roberts, P.D.; Desaeger, J.; Wells, B. This is Chapter 14 of the Vegetable Production Handbook of Florida, 2020–2021 ed.; HS604; University of Florida Institute of Food and Agricultural Sciences: Gainesville, FL, USA, 2021; pp. 287–310. Available online: https://edis.ifas.ufl.edu/publication/CV131 (accessed on 17 June 2021).
- Love, S.L.; Novy, R.; Corsini, D.L.; Bain, P. Variety selection and management. In Potato Production Systems; Stark, J.C., Love, S.L., Eds.; University of Idaho Agriculture Communications: Moscow, Russia, 2003; pp. 21–47. [Google Scholar]
- Pack, J.E.; Hutchinson, C.M.; Simonne, E.H. Evaluation of controlled-release fertilizers for northeast Florida chip potato production. J. Plant. Nutr. 2006, 29, 1301–1313. [Google Scholar] [CrossRef]
- Syers, J.K.; Johnston, A.E.; Curtin, D. Efficiency of Soil and Fertilizer Phosphorus Use. In Reconciling Changing Concepts of Soil Phosphorus Behavior with Agronomic Information; FAO Fertilizer and Plant Nutrition Bulletin No. 18; FAO: Rome, Italy, 2008. [Google Scholar]
Sum of Squares for Plant Dry Matter | Sum of Squares for Phosphorus | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | DF | Shoot (S) | F-Value | Pr > F | Root (R) | F-Value | Pr > F | S + R | F-Value | Pr > F | R:S Ratio | F-Value | Pr > F | Accumulation (mg/Plant) | F-Value | Pr > F | Utilization Efficiency (g/g) | F-Value | Pr > F |
Genotype (G) | 2 | 25.7 * | 3.62 | <0.05 | 0.426 | 1.21 | 0.31 | 29.8 * | 3.3 | <0.05 | 0.0794 | 1.08 | 0.35 | 191.7 ** | 6.19 | <0.01 | 397,299 ** | 16.44 | <0.01 |
Phosphorus (P) level | 2 | 164.6 ** | 23.16 | <0.05 | 0.0202 | 0.11 | 0.95 | 160.8 ** | 80.4 | <0.01 | 0.3403 * | 4.62 | <0.05 | 1533.9 ** | 49.48 | <0.01 | 587,126 ** | 25.3 | <0.01 |
G X P | 4 | 81.0 ** | 5.7 | <0.01 | 0.8809 | 1.25 | 0.3 | 89.6 ** | 4.97 | <0.05 | 0.2228 | 1.51 | 0.21 | 105.4 * | 3.22 | <0.05 | 241,462 ** | 4.99 | <0.01 |
Total | 55 | 462.8 | 9.6916 | 517.9 | 2.5145 | 2712 | 1,758,437 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, W.-C.; Zotarelli, L.; Rowland, D.L.; Liu, G. Evaluation of Potato Varieties Grown in Hydroponics for Phosphorus Use Efficiency. Agriculture 2021, 11, 668. https://doi.org/10.3390/agriculture11070668
Lee W-C, Zotarelli L, Rowland DL, Liu G. Evaluation of Potato Varieties Grown in Hydroponics for Phosphorus Use Efficiency. Agriculture. 2021; 11(7):668. https://doi.org/10.3390/agriculture11070668
Chicago/Turabian StyleLee, Wei-Chieh, Lincoln Zotarelli, Diane L. Rowland, and Guodong Liu. 2021. "Evaluation of Potato Varieties Grown in Hydroponics for Phosphorus Use Efficiency" Agriculture 11, no. 7: 668. https://doi.org/10.3390/agriculture11070668
APA StyleLee, W.-C., Zotarelli, L., Rowland, D. L., & Liu, G. (2021). Evaluation of Potato Varieties Grown in Hydroponics for Phosphorus Use Efficiency. Agriculture, 11(7), 668. https://doi.org/10.3390/agriculture11070668