# Using Aggregated Farm Location Information to Predict Regional Structural Change of Farm Specialisation, Size and Exit/Entry in Norway Agriculture

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methods

## 3. Data

#### 3.1. Farm Group Construction

#### 3.2. Model Variable Construction

#### 3.3. Choice of Explanatory Variables

## 4. Results

#### 4.1. Coefficient of Determination

#### 4.2. Comparison of Observed and Estimated Shares

#### 4.3. Decomposition of the Estimated Effects

## 5. Sensitivity of Location Information

## 6. Discussion and Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Appendix A

Farm Group | Agrarian Zones | |||||||
---|---|---|---|---|---|---|---|---|

1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | |

Specialist cereals (4000–8000 SO) | 0.5 | 4.1 | 1.6 | 1.1 | 0 | 0 | 0 | 0 |

Specialist cereals (8000–15,000 SO) | 1.2 | 7.2 | 2.5 | 1.7 | 0.1 | 0 | 0 | 0 |

Specialist cereals (15,000–25,000 SO) | 0.6 | 7.2 | 1.8 | 1.3 | 0.1 | 0 | 0 | 0 |

Specialist cereals (25,000–50,000 SO) | 0.4 | 6.8 | 1.8 | 0.9 | 0 | 0 | 0 | 0 |

Crops combined (less than 4000 SO) | 2.6 | 0.9 | 1.8 | 1.3 | 2.2 | 1.7 | 2.6 | 5.5 |

Crops combined (4000–8000 SO) | 4.9 | 2.2 | 6.2 | 4.7 | 6.5 | 4.7 | 4.8 | 6.8 |

Crops combined (8000–15,000 SO) | 6.6 | 3.7 | 7.7 | 8 | 9.4 | 9.1 | 7.1 | 11 |

Crops combined (15,000–25,000 SO) | 5.2 | 2.9 | 4.6 | 7.3 | 6.4 | 7.4 | 5.8 | 4.6 |

Crops combined (25,000–50,000 SO) | 3.3 | 2 | 2.2 | 4.7 | 3.6 | 0 | 2.4 | 6.3 |

Specialist dairying (25,000–50,000 SO) | 0.7 | 0.2 | 0.9 | 1.4 | 2.4 | 1.6 | 0.8 | 0 |

Specialist dairying (50,000–100,000 SO) | 5.2 | 1.6 | 3.2 | 7.7 | 7.2 | 6.4 | 5.7 | 4.6 |

Specialist dairying (100,000 SO) | 8.5 | 3.4 | 3.2 | 6.6 | 5.4 | 4.6 | 4 | 4.6 |

Other grazing livestock (25,000–50,000 SO) | 1.3 | 0.5 | 1.5 | 1.3 | 1.9 | 0.3 | 1.1 | 0 |

## References

- Mittenzwei, K.; Persson, T.; Höglind, M.; Kværnø, S. Combined Effects of Climate Change and Policy Uncertainty on the Agricultural Sector in Norway. Agric. Syst.
**2017**, 153, 118–126. [Google Scholar] [CrossRef] - Statistics Norway Agriculture, Forestry, Hunting and Fishing—Holdings, Agricultural Area and Livestock. Available online: https://www.ssb.no/en/statbank/list/stjord?rxid=8480068c-54d5-4265-a149-f3477ce65573 (accessed on 8 July 2021).
- Forbord, M.; Bjørkhaug, H.; Burton, R.J.F. Drivers of Change in Norwegian Agricultural Land Control and the Emergence of Rental Farming. J. Rural Stud.
**2014**, 33, 9–19. [Google Scholar] [CrossRef] - Agricultural Policy Monitoring and Evaluation 2014: OECD Countries. Available online: https://www.oecd-ilibrary.org/agriculture-and-food/agricultural-policy-monitoring-and-evaluation-2014_agr_pol-2014-en (accessed on 19 May 2021).
- Cochrane, W.W. Farm Prices: Myth and Reality; University of Minnesota Press: Minneapolis, MN, USA, 1958; ISBN 978-0-8166-5732-2. [Google Scholar]
- Zimmermann, A.; Heckelei, T. Structural Change of European Dairy Farms—A Cross-Regional Analysis. J. Agric. Econ.
**2012**, 63, 576–603. [Google Scholar] [CrossRef] - Balmann, A.; Dautzenberg, K.; Happe, K.; Kellermann, K. On the Dynamics of Structural Change in Agriculture: Internalc Frictions, Policy Threats and Vertical Integration. Outlook Agric.
**2006**, 35, 115–121. [Google Scholar] [CrossRef] - Arfa, N.B.; Daniel, K.; Jacquet, F.; Karantininis, K. Agricultural Policies and Structural Change in French Dairy Farms: A Nonstationary Markov Model. Can. J. Agric. Econ. Can. Agroecon.
**2015**, 63, 19–42. [Google Scholar] [CrossRef] - Harrington, D.H.; Reinsel, R.D.; Harrington, D.H. A Synthesis of Forces Driving Structural Change. Can. J. Agric. Econ.
**1995**, 1995, 3–14. [Google Scholar] - Alvarez-Cuadrado, F.; Poschke, M. Structural Change Out of Agriculture: Labor Push versus Labor Pull. Am. Econ. J. Macroecon.
**2011**, 3, 127–158. [Google Scholar] [CrossRef] - van Neuss, L. The Drivers of Structural Change. J. Econ. Surv.
**2019**, 33, 309–349. [Google Scholar] [CrossRef] - Fezzi, C.; Bateman, I.J. Structural Agricultural Land Use Modeling for Spatial Agro-Environmental Policy Analysis. Am. J. Agric. Econ.
**2011**, 93, 1168–1188. [Google Scholar] [CrossRef] - Müller, D.; Zeller, M. Land Use Dynamics in the Central Highlands of Vietnam: A Spatial Model Combining Village Survey Data with Satellite Imagery Interpretation. Agric. Econ.
**2002**, 27, 333–354. [Google Scholar] [CrossRef] - Mandryk, M.; Reidsma, P.; van Ittersum, M.K. Scenarios of Long-Term Farm Structural Change for Application in Climate Change Impact Assessment. Landsc. Ecol.
**2012**, 27, 509–527. [Google Scholar] [CrossRef] - Olesen, J.E.; Bindi, M. Consequences of Climate Change for European Agricultural Productivity, Land Use and Policy. Eur. J. Agron.
**2002**, 16, 239–262. [Google Scholar] [CrossRef] - Bradshaw, B.; Dolan, H.; Smit, B. Farm-Level Adaptation to Climatic Variability and Change: Crop Diversification in the Canadian Prairies. Clim. Chang.
**2004**, 67, 119–141. [Google Scholar] [CrossRef] - Berry, P.M.; Rounsevell, M.D.A.; Harrison, P.A.; Audsley, E. Assessing the Vulnerability of Agricultural Land Use and Species to Climate Change and the Role of Policy in Facilitating Adaptation. Environ. Sci. Policy
**2006**, 9, 189–204. [Google Scholar] [CrossRef] - Reidsma, P.; Ewert, F.; Oude Lansink, A.; Leemans, R. Vulnerability and Adaptation of European Farmers: A Multi-Level Analysis of Yield and Income Responses to Climate Variability. Reg. Environ. Chang.
**2008**, 9, 25. [Google Scholar] [CrossRef] - Bindi, M.; Olesen, J.E. The Responses of Agriculture in Europe to Climate Change. Reg. Environ. Chang.
**2011**, 11, 151–158. [Google Scholar] [CrossRef] - Agovino, M.; Casaccia, M.; Ciommi, M.; Ferrara, M.; Marchesano, K. Agriculture, Climate Change and Sustainability: The Case of EU-28. Ecol. Indic.
**2019**, 105, 525–543. [Google Scholar] [CrossRef] - Stokstad, G. Exit from Farming and Land Abandonment in Northern Norway. Available online: https://ageconsearch.umn.edu/record/95343 (accessed on 19 May 2021).
- Storm, H.; Mittenzwei, K.; Heckelei, T. Direct Payments, Spatial Competition, and Farm Survival in Norway. Am. J. Agric. Econ.
**2015**, 97, 1192–1205. [Google Scholar] [CrossRef] - Vroege, W.; Meraner, M.; Polman, N.; Storm, H.; Heijman, W.; Finger, R. Beyond the Single Farm—A Spatial Econometric Analysis of Spill-Overs in Farm Diversification in the Netherlands. Land Use Policy
**2020**, 99, 105019. [Google Scholar] [CrossRef] - Saint-Cyr, L.D.F.; Storm, H.; Heckelei, T.; Piet, L. Heterogeneous Impacts of Neighbouring Farm Size on the Decision to Exit: Evidence from Brittany. Eur. Rev. Agric. Econ.
**2019**, 46, 237–266. [Google Scholar] [CrossRef] - Case, A. Neighborhood Influence and Technological Change. Reg. Sci. Urban Econ.
**1992**, 22, 491–508. [Google Scholar] [CrossRef] - Holloway, G.; Shankar, B.; Rahman, S. Bayesian Spatial Probit Estimation: A Primer and an Application to HYV Rice Adoption. Agric. Econ.
**2002**, 27, 383–402. [Google Scholar] [CrossRef] - Läpple, D.; Holloway, G.; Lacombe, D.J.; O’Donoghue, C. Sustainable Technology Adoption: A Spatial Analysis of the Irish Dairy Sector. Eur. Rev. Agric. Econ.
**2017**, 44, 810–835. [Google Scholar] [CrossRef] - Läpple, D.; Kelley, H. Spatial Dependence in the Adoption of Organic Drystock Farming in Ireland. Eur. Rev. Agric. Econ.
**2015**, 42, 315–337. [Google Scholar] [CrossRef] - Wollni, M.; Andersson, C. Spatial Patterns of Organic Agriculture Adoption: Evidence from Honduras. Ecol. Econ.
**2014**, 97, 120–128. [Google Scholar] [CrossRef] - Roberts, D.; Majewski, E.; Sulewski, P. Farm Household Interactions with Local Economies: A Comparison of Two EU Case Study Areas. Land Use Policy
**2013**, 31, 156–165. [Google Scholar] [CrossRef] - Lange, A.; Piorr, A.; Siebert, R.; Zasada, I. Spatial Differentiation of Farm Diversification: How Rural Attractiveness and Vicinity to Cities Determine Farm Households’ Response to the CAP. Land Use Policy
**2013**, 31, 136–144. [Google Scholar] [CrossRef] - Weltin, M.; Zasada, I.; Franke, C.; Piorr, A.; Raggi, M.; Viaggi, D. Analysing Behavioural Differences of Farm Households: An Example of Income Diversification Strategies Based on European Farm Survey Data. Land Use Policy
**2017**, 62, 172–184. [Google Scholar] [CrossRef] - Schneider, K.; Skevas, I.; Lansink, A.O. Spatial Spillovers on Input-Specific Inefficiency of Dutch Arable Farms. J. Agric. Econ.
**2021**, 72, 224–243. [Google Scholar] [CrossRef] - Skevas, I.; Lansink, A.O. Dynamic Inefficiency and Spatial Spillovers in Dutch Dairy Farming. J. Agric. Econ.
**2020**, 71, 742–759. [Google Scholar] [CrossRef] - Hoppe, R.A.; Korb, P.J. Understanding U.S. Farm Exits. Available online: https://ageconsearch.umn.edu/record/7212/ (accessed on 8 July 2021).
- Breustedt, G.; Glauben, T. Driving Forces behind Exiting from Farming in Western Europe. J. Agric. Econ.
**2007**, 58, 115–127. [Google Scholar] [CrossRef] - Landi, C.; Stefani, G.; Rocchi, B.; Lombardi, G.V.; Giampaolo, S. Regional Differentiation and Farm Exit: A Hierarchical Model for Tuscany. J. Agric. Econ.
**2016**, 67, 208–230. [Google Scholar] [CrossRef] - Thiermann, I.; Breustedt, G.; Rosenau, C. The Impact of Size on Exiting from Livestock Production—An Empirical Analysis of Dairy and Sow Farms in Germany—GJAE—German Journal of Agricultural Economics. GJAE Ger. J. Agric. Econ.
**2019**, 68, 139–155. [Google Scholar] - Bragg, L.A.; Dalton, T.J. Factors Affecting the Decision to Exit Dairy Farming: A Two-Stage Regression Analysis. J. Dairy Sci.
**2004**, 87, 3092–3098. [Google Scholar] [CrossRef] - Dong, F.; Hennessy, D.A.; Jensen, H.H.; Volpe, R.J. Technical Efficiency, Herd Size, and Exit Intentions in U.S. Dairy Farms. Agric. Econ.
**2016**, 47, 533–545. [Google Scholar] [CrossRef] - Weiss, C.R. Farm Growth and Survival: Econometric Evidence for Individual Farms in Upper Austria. Am. J. Agric. Econ.
**1999**, 81, 103–116. [Google Scholar] [CrossRef] - Gale, H.F. Age-Specific Patterns of Exit and Entry in U.S. Farming, 1978–1997. Appl. Econ. Perspect. Policy
**2003**, 25, 168–186. [Google Scholar] [CrossRef] - Pietola, K.; Väre, M.; Lansink, A.O. Timing and Type of Exit from Farming: Farmers’ Early Retirement Programmes in Finland. Eur. Rev. Agric. Econ.
**2003**, 30, 99–116. [Google Scholar] [CrossRef] - Mishra, A.K.; El-Osta, H.S.; Shaik, S. Succession Decisions in U.S. Family Farm Businesses. J. Agric. Resour. Econ.
**2010**, 35, 133–152. [Google Scholar] - Corsi, A.; Frontuto, V.; Novelli, S. What Drives Farm Structural Change? An Analysis of Economic, Demographic and Succession Factors. Agriculture
**2021**, 11, 438. [Google Scholar] [CrossRef] - Glauben, T.; Tietje, H.; Weiss, C. Agriculture on the Move: Exploring Regional Differences in Farm Exit Rates in Western Germany. Jahrb. Reg.
**2006**, 26, 103–118. [Google Scholar] [CrossRef] - Kazukauskas, A.; Newman, C.; Clancy, D.; Sauer, J. Disinvestment, Farm Size, and Gradual Farm Exit: The Impact of Subsidy Decoupling in a European Context. Am. J. Agric. Econ.
**2013**, 95, 1068–1087. [Google Scholar] [CrossRef] - Goetz, S.J.; Debertin, D.L. Why Farmers Quit: A County-Level Analysis. Am. J. Agric. Econ.
**2001**, 83, 1010–1023. [Google Scholar] [CrossRef] - Foltz, J.D. Entry, Exit, and Farm Size: Assessing an Experiment in Dairy Price Policy. Am. J. Agric. Econ.
**2004**, 86, 594–604. [Google Scholar] [CrossRef] - Piet, L.; Desjeux, Y. New Perspectives on the Distribution of Farm Incomes and the Redistributive Impact of CAP Payments. Eur. Rev. Agric. Econ.
**2021**, 48, 385–414. [Google Scholar] [CrossRef] - Neuenfeldt, S.; Gocht, A.; Heckelei, T.; Ciaian, P. Explaining Farm Structural Change in the European Agriculture: A Novel Analytical Framework. Eur. Rev. Agric. Econ.
**2019**, 46, 713–768. [Google Scholar] [CrossRef] - Gocht, A.; Britz, W. EU-Wide Farm Type Supply Models in CAPRI—How to Consistently Disaggregate Sector Models into Farm Type Models. J. Policy Model.
**2011**, 33, 146–167. [Google Scholar] [CrossRef] - Louhichi, K.; Ciaian, P.; Espinosa, M.; Perni, A.; Gomez y Paloma, S. Economic Impacts of CAP Greening: Application of an EU-Wide Individual Farm Model for CAP Analysis (IFM-CAP). Eur. Rev. Agric. Econ.
**2018**, 45, 205–238. [Google Scholar] [CrossRef] - Cooper, L.G.; Nakanishi, M. Market-Share Analysis: Evaluating Competitive Marketing Effectiveness; International Series in Quantitative Marketing; 6. Print; Kluwer: Boston, MA, USA, 1997; ISBN 978-0-89838-278-5. [Google Scholar]
- Fok, D.; Hans, F.P.; Paap, R. Econometric analysis of the market share attraction model. In Advances in Econometrics; Advances in Econometrics; Emerald Group Publishing Limited: Bingley, UK, 2002; Volume 16, pp. 223–256. ISBN 978-1-84950-142-2. [Google Scholar]
- Kotler, P. Marketing Management: Analysis, Planning, and Control; Prentice-Hall: Hoboken, NJ, USA, 1984; ISBN 978-0-13-557927-5. [Google Scholar]
- Bell, D.E.; Keeney, R.L.; Little, J.D.C. A Market Share Theorem. J. Mark. Res.
**1975**, 12, 136–141. [Google Scholar] [CrossRef] - Erickson, G.M.; Finkler, S.A. Determinants of Market Share for a Hospital’s Services. Med. Care
**1985**, 23, 1003–1018. [Google Scholar] [CrossRef] - Banker, R.D.; Kauffman, R.J. Strategic Contributions of Information Technology: An Empirical Study of Atm Networks; Social Science Research Network: Rochester, NY, USA, 1988. [Google Scholar]
- Banker, R.; Chen, P.Y.; Liu, F.C.; Ou, C.S. Complementarity of the Impact of Alternative Service Channels on Bank Performance. In Proceedings of the ICIS 2010 Proceedings—Thirty First International Conference on Information Systems, Saint Louis, MI, USA, 1 December 2010. [Google Scholar]
- Bod’a, M. Stochastic Sensitivity Analysis of Concentration Measures. Cent. Eur. J. Oper. Res.
**2017**, 25, 441–471. [Google Scholar] [CrossRef] - Gocht, A.; Röder, N.; Neuenfeldt, S.; Storm, H.; Heckelei, T. Modelling Farm Structural Change: A Feasibility Study for Ex Post Modelling Utilizing FADN and FSS Data in Germany and Developing an ex Ante Forecast Module for the CAPRI Farm Type Layer Baseline; Publications Office: Luxembourg, 2012. [Google Scholar]
- Nakanishi, M.; Cooper, L.G. Technical Note—Simplified Estimation Procedures for MCI Models. Mark. Sci.
**1982**, 1, 314–322. [Google Scholar] [CrossRef] - Goddard, E.; Weersink, A.; Chen, K.; Turvey, C.G. Economics of Structural Change in Agriculture. Can. J. Agric. Econ. Can. Agroecon.
**1993**, 41, 475–489. [Google Scholar] [CrossRef] - Fabbris, L. Measures of Predictor Variable Importance in Multiple Regression: An Additional Suggestion. Qual. Quant.
**1980**, 14, 787–792. [Google Scholar] [CrossRef] - Grömping, U. Variable Importance in Regression Models. WIREs Comput. Stat.
**2015**, 7, 137–152. [Google Scholar] [CrossRef] - Mittenzwei, K.; Britz, W. Analysing Farm-Specific Payments for Norway Using the Agrispace Model. J. Agric. Econ.
**2018**, 69, 777–793. [Google Scholar] [CrossRef]

**Figure 2.**Development of the chosen farm typology in the example regions (

**a**) NO012003, (

**b**) NO012002 and (

**c**) NO061004. Source: Own contribution.

**Figure 3.**Regional aggregation of NUTS3 and agricultural regions in Norway. Source: Own contribution.

**Figure 4.**Absolute difference of the observed and estimated farm group shares aggregated at the country level (The share values in the data set were between 0 and 1. Therefore, the absolute differences between observed and estimated shares were between −0.007 and 0.015, which translates into −0.7 and 1.5 percentage points. For better understanding, the observed and predicted values are presented in the annex aggregated for Norway.) Source: Own contribution.

**Figure 5.**Relative contributions of the variable categories to farm structural change. (The variables from category “age and population” were not selected in the forward selection based on the Bayesian information criterion.) Source: Own contribution.

**Figure 6.**Relative contribution of the variable categories to farm structural change across farm groups. Source: Own contribution.

Farm Group | Farm Specialisation | Farm Size |
---|---|---|

Specialist cereals (4000–8000 SO) | Specialist cereals oilseeds and protein crops | 4000 SO |

Specialist cereals (8000–15,000 SO) | 8000–15,000 SO | |

Specialist cereals (15,000–25,000 SO) | 15,000–25,000 SO | |

Specialist cereals (25,000–50,000 SO) | 25,000–50,000 SO | |

Crops combined (up to 4000 SO) | Various field crops combined | Up to 4000 SO |

Crops combined (4000–8000 SO) | 4000 < 8000 SO | |

Crops combined (8000–15,000 SO) | 8000–15,000 SO | |

Crops combined (15,000–25,000 SO) | 15,000–25,000 SO | |

Crops combined (25,000–50,000 SO) | 25,000–50,000 SO | |

Specialist dairying (25,000–50,000 SO) | Grazing (Specialist dairying) | 25,000–50,000 SO |

Specialist dairying (50,000–100,000 SO) | 50,000–100,000 SO | |

Specialist dairying (100,000 SO) | 100,000 SO and more | |

Other grazing livestock (25,000–50,000 SO) | Sheep, goats and other grazing livestock | 25,000–50,000 SO |

Residual farm group | All other farm specialisations and sizes | |

Inactive farms (exit farm group) | Not applicable |

Variable Category | Variable Group and Name | Mean | Standard Deviation | Median | Spatio-Temporal Resolution |
---|---|---|---|---|---|

Macro-economic variables | Growth rate of GDP | 3.73 | 1.56 | 3.67 | Country level/annual |

Interest rate from EMU convergence criterion series | 4.41 | 1.49 | 4.41 | ||

Unemployment rate (total, female) | 3.37 | 0.62 | 3.34 | ||

Unemployment rate (total, male) | 3.74 | 0.64 | 3.6 | ||

Unemployment rate (total, age above 25) | 2.58 | 0.53 | 2.55 | ||

Unemployment rate (total, age under 25) | 9.55 | 1.32 | 9.2 | ||

Unemployment rate (total) | 3.57 | 0.6 | 3.48 | ||

Population and Age | Age of farm holder | 49.26 | 2.89 | 49.17 | Farm group specific at regional level/annual |

Population density | 22.91 | 28.6 | 12.2 | Regional level/annual | |

Prices | Price of Beef | 3746.25 | 3888.18 | 716.98 | Country level/annual |

Price of Cereals | 244.06 | 258.18 | 31.53 | ||

Price of Eggs | 1481.61 | 1591.58 | 278.51 | ||

Price of Fruits | 1857.81 | 2066.1 | 593.66 | ||

Price of Grass | 25.94 | 25.72 | 1.84 | ||

Price of Oil seeds | 320.56 | 312.12 | 51.68 | ||

Price of Other animals output | 915.08 | 1051.8 | 283.25 | ||

Price of Other crops | 1001.22 | 1055.98 | 114.8 | ||

Price of Pork meat | 2946.53 | 2919.58 | 234.04 | ||

Price of Potatoes | 231.02 | 256.76 | 58.34 | ||

Price of Poultry meat | 1671.74 | 1766.23 | 271.73 | ||

Price of Raw milk at dairy | 446.19 | 476.38 | 83.86 | ||

Price of Renting of milk quota | 859.34 | 823.17 | 144.9 | ||

Price of Seed | 1010.7 | 1077.92 | 122.03 | ||

Price of Services input | 1000 | 1005.94 | 131.84 | ||

Price of Sheep and goat meat | 5658.93 | 5626.03 | 1398.65 | ||

Price of Vegetables | 1044.68 | 1071.95 | 211.19 | ||

Principal component (PC) of ani. and cro. inp. prices | 1000 | 1005.94 | 131.84 | ||

PC of ani. inp. prices | 859.34 | 823.17 | 144.9 | ||

PC of cro. in. prices | 1010.7 | 1077.92 | 122.03 | ||

PC of oth. cro. inp. prices | 2657.45 | 2924.85 | 641.27 | ||

Subsidies | Total subsidies averaged per farm | 21078.22 | 18587.2 | 16260.6 | Farm group specific at regional level/annual |

Total subsidies divided by utilised agricultural area | 1041.02 | 615.29 | 942.58 | ||

Natural conditions | Aridity index | 2.45 | 0.93 | 2.25 | Farm group specific at regional level/annual |

Arable land | 0.11 | 0.13 | 0.05 | Regional level/constant | |

Artificial surfaces | 0.03 | 0.04 | 0.01 | ||

Heterogeneous agricultural areas | 0.09 | 0.06 | 0.07 | ||

Pastures | 0.05 | 0.06 | 0.03 | ||

Permanent crops | 0.74 | 0.19 | 0.81 | ||

Elevation derived from a 100 m raster | 280.33 | 181.26 | 222.1 | ||

PC of CORINE 2000 data (ARAB) | 0.31 | 0.27 | 0.2 | ||

PC of CORINE 2000 data (ARTI) | 0.15 | 0.13 | 0.1 | ||

PC of CORINE 2000 data (HETE) | 0.19 | 0.12 | 0.14 | ||

PC of CORINE 2000 data (PAST) | 0.07 | 0.06 | 0.04 | ||

Slope derived from a 100 m raster | 17.56 | 7.99 | 15.1 | ||

Vegetation period (mean) days over 10 °C | 101.06 | 31.93 | 106.62 | Farm group specific at regional level | |

Vegetation period (stand. Dev.) days over 10 °C | 11.4 | 9.41 | 8.48 | ||

Vegetation period (mean) days over 5 °C | 172.09 | 33.62 | 171.93 | ||

Vegetation period (stand. Dev.) days over 5 °C | 10.63 | 7.95 | 8.46 | ||

Mean of growing degree days with 10 °C threshold | 860.13 | 347.34 | 880.16 | ||

Standard deviation of growing degree days with 10 °C threshold | 120.49 | 79.55 | 107.98 | ||

Mean of growing degree days with 5 °C threshold | 1025.58 | 324.05 | 1030.93 | ||

Standard deviation of growing degree days with 5 °C threshold | 108.56 | 65.1 | 92.36 | ||

Location information | Average number of neighbouring farms within 10 km | 118.53 | 92.13 | 94.46 | Farm group specific at regional level/annual |

Average number of neighbouring farms within 20 km | 357.05 | 269.7 | 280.73 | ||

Average number of neighbouring farms within 50 km | 1629.53 | 1096.66 | 1395.85 |

Farm Group | Average Number of Neighbouring Farms Within | ||||||||
---|---|---|---|---|---|---|---|---|---|

10 km | 20 km | 50 km | |||||||

Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | |

Specialist cereals (4000–8000 SO) | 148.5 | 13.0 | 590.0 | 439.9 | 39.0 | 1470.9 | 1959.7 | 311.0 | 4509.5 |

Specialist cereals (8000–15,000 SO) | 150.7 | 23.0 | 722.7 | 440.5 | 73.2 | 1763.0 | 1957.6 | 407.0 | 4563.4 |

Specialist cereals (15,000–25,000 SO) | 167.0 | 26.0 | 835.7 | 481.0 | 57.0 | 1779.2 | 2089.6 | 458.2 | 4691.3 |

Specialist cereals (25,000–50,000 SO) | 172.6 | 10.5 | 925.0 | 494.4 | 40.0 | 1842.0 | 2160.6 | 328.0 | 4669.6 |

Crops combined (less than 4000 SO) | 102.1 | 2.0 | 488.4 | 316.2 | 5.2 | 1203.0 | 1512.4 | 31.8 | 4977.8 |

Crops combined (4000–8000 SO) | 100.4 | 3.3 | 348.6 | 313.8 | 5.4 | 1131.2 | 1499.4 | 32.3 | 4989.6 |

Crops combined (8000–15,000 SO) | 103.4 | 3.5 | 368.3 | 319.0 | 6.1 | 1130.3 | 1499.1 | 25.5 | 4948.3 |

Crops combined (15,000–25,000 SO) | 105.1 | 3.5 | 387.6 | 321.2 | 6.2 | 1207.9 | 1496.4 | 27.7 | 4700.6 |

Crops combined (25,000–50,000 SO) | 109.7 | 4.0 | 442.6 | 330.5 | 6.5 | 1161.5 | 1529.6 | 32.1 | 4760.9 |

Specialist dairying (25,000–50,000 SO) | 106.9 | 2.0 | 447.4 | 330.2 | 4.0 | 1239.2 | 1511.1 | 27.0 | 5111.4 |

Specialist dairying (50,000–100,000 SO) | 115.8 | 4.0 | 554.7 | 347.3 | 6.9 | 1336.9 | 1548.4 | 32.6 | 4815.6 |

Specialist dairying (more than 100,000 SO) | 125.0 | 4.1 | 667.2 | 368.2 | 7.8 | 1548.1 | 1587.2 | 38.1 | 5302.0 |

Other grazing livestock (25,000–50,000 SO) | 99.3 | 2.0 | 387.4 | 313.6 | 5.0 | 1337.0 | 1528.7 | 34.0 | 5374.5 |

Residual farm group | 114.3 | 5.6 | 542.2 | 341.5 | 8.8 | 1321.2 | 1546.6 | 38.0 | 4738.1 |

Farm Group | Coefficient of Determination in % | Location Information Included |
---|---|---|

Specialist cereals (4000–8000 SO) | 98.1 | X |

Specialist cereals (8000–15,000 SO) | 98.2 | |

Specialist cereals (15,000–25,000 SO) | 98.5 | |

Specialist cereals (25,000–50,000 SO) | 98.6 | X |

Crops combined (less than 4000 SO) | 93.9 | |

Crops combined (4000–8000 SO) | 96.2 | |

Crops combined (8000–15,000 SO) | 94.0 | |

Crops combined (15,000–25,000 SO) | 93.1 | |

Crops combined (25,000–50,000 SO) | 92.3 | |

Specialist dairying (25,000–50,000 SO) | 96.1 | |

Specialist dairying (50,000–100,000 SO) | 98.8 | |

Specialist dairying (100,000 SO and more) | 96.5 | X |

Other grazing livestock (25,000–50,000 SO) | 86.7 | |

Residual farm group | 96.0 | |

Inactive farms (exit farm group) | 96.5 | X |

**Table 5.**Absolute number of farms and the percentage difference for an increase of 100% and a decrease of 50% of neighbouring farms within 10 km compared to the baseline at the country level.

No. | Farm Group | Baseline | Scenario | |||||
---|---|---|---|---|---|---|---|---|

No. Farms 2015 | 2025 | −50% Decline in Farm Density | +100% Increase in Farm Density | |||||

Total | % | abs | % | abs | % | abs | ||

1 | Inactive farms (exit farm group) (*) | 30,603 | 9 | 2724 | 11 | 3336 | 7 | 2050 |

2 | Specialist cereals (4000–8000 SO) (*) | 1028 | −28 | −288 | −40 | −407 | −16 | −159 |

3 | Specialist cereals (8000–15,000 SO) | 1801 | −8 | −144 | −9 | −157 | −8 | −148 |

4 | Specialist cereals (15,000–25,000 SO) | 1655 | −26 | −430 | −26 | −430 | −26 | −430 |

5 | Specialist cereals (25,000–50,000 SO) (*) | 1509 | −2 | −30 | −21 | −320 | 20 | 308 |

6 | Crops combined (less than 4000 SO) | 1196 | 31 | 371 | 30 | 355 | 33 | 389 |

7 | Crops combined (4000–8000 SO) | 3223 | 13 | 403 | 11 | 351 | 14 | 454 |

8 | Crops combined (8000–15,000 SO) | 4842 | −6 | −286 | −7 | −358 | −5 | −218 |

9 | Crops combined (15,000–25,000 SO) | 3679 | 28 | 1012 | 25 | 934 | 30 | 1085 |

10 | Crops combined (25,000–50,000 SO) | 2169 | 5 | 113 | 4 | 80 | 7 | 143 |

11 | Specialist dairying (25,000–50,000 SO) | 828 | −71 | −585 | −71 | −590 | −70 | −580 |

12 | Specialist dairying (50,000–100,000 SO) | 3541 | −59 | −2086 | −60 | −2125 | −56 | −1983 |

13 | Specialist dairying (more than 100,000 SO) (*) | 3679 | 10 | 357 | 15 | 541 | 5 | 177 |

14 | O. grazing livestock (25,000–50,000 SO) | 845 | −23 | −190 | −24 | −201 | −21 | −179 |

15 | Residual farm group | 8566 | −10 | −814 | −11 | −899 | −9 | −737 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Neuenfeldt, S.; Gocht, A.; Heckelei, T.; Mittenzwei, K.; Ciaian, P.
Using Aggregated Farm Location Information to Predict Regional Structural Change of Farm Specialisation, Size and Exit/Entry in Norway Agriculture. *Agriculture* **2021**, *11*, 643.
https://doi.org/10.3390/agriculture11070643

**AMA Style**

Neuenfeldt S, Gocht A, Heckelei T, Mittenzwei K, Ciaian P.
Using Aggregated Farm Location Information to Predict Regional Structural Change of Farm Specialisation, Size and Exit/Entry in Norway Agriculture. *Agriculture*. 2021; 11(7):643.
https://doi.org/10.3390/agriculture11070643

**Chicago/Turabian Style**

Neuenfeldt, Sebastian, Alexander Gocht, Thomas Heckelei, Klaus Mittenzwei, and Pavel Ciaian.
2021. "Using Aggregated Farm Location Information to Predict Regional Structural Change of Farm Specialisation, Size and Exit/Entry in Norway Agriculture" *Agriculture* 11, no. 7: 643.
https://doi.org/10.3390/agriculture11070643