Using Simple Sequence Repeats in 9 Brassica Complex Species to Assess Hypertrophic Curd Induction
Abstract
:1. Introduction
2. Materials and Methods
3. Data Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Snogerup, S.; Gustafsson, M.; Von Bothmer, R. Brassica sect. Brassica (Brassicaceae) I. Taxonomy and Variation. Willdenowia 1990, 19, 271–365. [Google Scholar]
- Gustafsson, M.; Lannér, C. Overview of the Brassica oleracea complex: Their distribution and ecological specificities. Bocconea 1997, 1, 7. [Google Scholar]
- Nagaharu, U. Genome Analysis in Brassica with Special Reference to the Experimental Formation of B. Napus and Peculiar Mode of Fertilization. Jpn. J. Bot. 1935, 7, 389–452. [Google Scholar]
- Branca, F.; Maggioni, L. Exploiting Sicilian Brassica oleracea L. complex species for the innovation of the agricultural systems and products: A review analysis. Acta Hortic. 2020, 1267, 187–196. [Google Scholar] [CrossRef]
- Rakow, G. Species Origin and Economic Importance of Brassica. In Brassica; Biotechnology in Agriculture and Forestry; Pua, E.-C., Douglas, C.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 3–11. [Google Scholar] [CrossRef]
- Maggioni, L.; Von Bothmer, R.; Poulsen, G.; Branca, F. Origin and Domestication of Cole Crops (Brassica oleracea L.): Linguistic and Literary Considerations 1. Econ. Bot. 2010, 64, 109–123. [Google Scholar] [CrossRef]
- Bowman, J.; Alvarez, J.; Weigel, D.; Meyerowitz, E.M.; Smyth, D. Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 1991, 119, 721–743. [Google Scholar] [CrossRef]
- Irish, V.F.; Sussex, I.M. Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell 1990, 2, 741–753. [Google Scholar] [PubMed] [Green Version]
- Smith, L.B.; King, G.J. The distribution of BoCAL-a alleles in Brassica oleracea is consistent with a genetic model for curd development and domestication of the cauliflower. Mol. Breed. 2000, 6, 603–613. [Google Scholar] [CrossRef]
- King, G.J. Using molecular allelic variation to understand domestication process and conserve diversity in Brassica crops. Acta Hortic. 2003, 598, 181–186. [Google Scholar] [CrossRef]
- Tonguç, M.; Griffiths, P.D. Genetic relationships of Brassica vegetables determined using database derived simple sequence repeats. Euphytica 2004, 137, 193–201. [Google Scholar] [CrossRef]
- Burgess, B.; Mountford, H.; Hopkins, C.J.; Love, C.; Ling, A.E.; Spangenberg, G.C.; Edwards, D.; Batley, J. Identification and characterization of simple sequence repeat (SSR) markers derived in silico from Brassica oleracea genome shotgun sequences: PRIMER NOTE. Mol. Ecol. Notes 2006, 6, 1191–1194. [Google Scholar] [CrossRef]
- Las Casas, G.; Distefano, G.; Caruso, M.; Nicolosi, E.; Gentile, A.; La Malfa, S. Relationships among cultivated Opuntia ficus-indica genotypes and related species assessed by cytoplasmic markers. Genet. Resour. Crop Evol. 2018, 65, 759–7873. [Google Scholar] [CrossRef]
- Branca, F.; Ragusa, L.; Tribulato, A.; Di Gaetano, C.; Calì, F. Genetic relationships of Brassica vegetables and wild relatives in Southern Italy determined by five SSR. Acta Hortic. 2013, 1005, 189–196. [Google Scholar] [CrossRef]
- Branca, F.; Chiarenza, G.L.; Cavallaro, C.; Gu, H.; Zhao, Z.; Tribulato, A. Diversity of Sicilian broccoli (Brassica oleracea var. italica) and cauliflower (Brassica oleracea var. botrytis) landraces and their distinctive bio-morphological, antioxidant, and genetic traits. Genet. Resour. Crop Evol. 2018, 65, 485–502. [Google Scholar] [CrossRef]
- Descriptors for Brassica and Raphanus; International Board for Plant Genetic Resources: Rome, Italy, 1990; p. 51.
- Maggioni, L.; Jørgensen, R.B.; von Bothmer, R.; Poulsen, G.; Branca, F. Signs of Inter-crossing between Leafy Kale Landraces and Brassica rupestris in South Italy. Acta Hortic. 2013, 151, 165–172. [Google Scholar] [CrossRef]
- Saedler, H.; Becker, A.; Winter, K.U.; Kirchner, C.; Theissen, G. MADS-box genes are involved in floral development and evolution. Acta Biochim. Pol. 2001, 48, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Sheng, X.-G.; Zhao, Z.-Q.; Wang, J.-S.; Yu, H.-F.; Shen, Y.-S.; Zeng, X.-Y.; Gu, H.-H. Genome wide analysis of MADS-box gene family in Brassica oleracea reveals conservation and variation in flower development. BMC Plant Biol. 2019, 19, 106. [Google Scholar] [CrossRef] [Green Version]
- Wils, C.R.; Kaufmann, K. Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana. Biochim. Biophys. Acta BBA Gene Regul. Mech. 2017, 1860, 95–105. [Google Scholar] [CrossRef]
Accession Code | Laboratory Code | Origin | Species |
---|---|---|---|
UNICT 3876 | CV 171 Menhir F1 | ISI sementi | CV |
UNICT 3190 | BR 15 S 1 A | Modica (RG) | CV |
UNICT 4137 | CV 99 S2 B | Adrano (CT) | CV |
UNICT 4145 | BR 13 S3 AC | Modica (RG) | CV |
UNICT 3878 | CV 173 Freedom | 3878 Royal Sluis | CV |
UNICT 4138 | CV 76 S2 | Acireale (CT) | CV |
UNICT 3652 | CV 159 | Catania | CV |
UNICT 3900 | BR 13 A X CV98/21 | DISPA 4 | CV |
UNICT 3902 | CV 33 S1 | Royal Sluis | CV |
UNICT 3895 | CV 98/2 X CV 136 EG | DISPA 2 | CV |
UNICT 3880 | CV 175 White Flash | Sakata | CV |
UNICT 3879 | CV 174 Graffiti | ISI sementi | CV |
UNICT 3089 | CV 75 S3AC | Acireale (CT) | CV |
UNICT 3906 | CV 24 S4 | Biancavilla (CT) | CV |
UNICT 3892 | CV 98/2 X BR 13 S3 | DISPA 3 | CV |
UNICT 579 | BR 41 | Modica (RG) | CV |
UNICT 3578 | BR 165 Marathon | Esasem | BR |
UNICT 3893 | CV 136 EG X CV98/2 | DISPA 1 | CV |
UNICT 3671 | CV 72 S2 | Catania (CT) | CV |
UNICT 583 | BR 46 | Vittoria (RG) | BR |
UNICT 658 | BR 45 S1 | Acireale (CT) | BR |
UNICT 3669 | BR 17 S2 | Ragusa (RG) | CV |
UNICT 658 | BR 129 | Roccella Valdemone (ME) | BR |
UNICT 657 | BR 128 | Roccella Valdemone (ME) | BR |
UNICT 651 | BR 122 Packman | Petoseed | BR |
UNICT 655 | BR 126 | Adrano (CT) | BR |
UNICT 3674 | CV 19 S2 A | Piazza Armerina (EN) | CV |
UNICT 637 | BR 106 | Cefalù (PA) | BR |
UNICT 3675 | BR 94 S1 | Francavilla (ME) | BR |
UNICT 3668 | BR 115 S1 | Troina (EN) | BR |
UNICT 574 | BR 36 | Biancavilla (CT) | BR |
UNICT 342 | Brassica macrocarpa 1 | Favignana (TP) | BM |
UNICT 733 | Brassica rupestris 1 | San Vito Lo Capo (TP) | BU |
UNICT 342 | Brassica macrocarpa 2 | Favignana (TP) | BM |
UNICT 342 | Brassica macrocarpa 3 | Favignana (TP) | BM |
UNICT 3512 | Brassica incana 1 | Agnone Bagni (SR) | BY |
UNICT 3270 | Brassica rupestris 2 | Bivongi (RC) | BU |
UNICT 3270 | Brassica rupestris 3 | Bivongi (RC) | BU |
UNICT 342 | Brassica macrocarpa 4 | Favignana (TP) | BM |
UNICT 3512 | Brassica incana 2 | Agnone Bagni (SR) | BY |
UNICT 342 | Brassica macrocarpa 5 | Favignana (TP) | BM |
UNICT 732 | Brassica rupestris 4 | Roccella Valdemone (ME) | BU |
UNICT 732 | Brassica rupestris 2 | Roccella Valdemone (ME) | BU |
UNICT 342 | Brassica macrocarpa 6 | Favignana (TP) | BM |
UNICT 736 | Brassica rupestris 5 | Ragusa Ibla (RG) | BU |
UNICT 342 | Brassica macrocarpa 7 | Favignana (TP) | BM |
UNICT 4158 | Brassica incana 3 | Sortino (SR) | BY |
UNICT 736 | Brassica rupestris 6 | Ragusa Ibla (RG) | BU |
UNICT 3040 | Brassica villosa 1 | Marianopoli (CL) | BV |
UNICT 736 | Brassica rupestris 7 | Ragusa Ibla (RG) | BU |
UNICT 342 | Brassica macrocarpa 8 | Favignana (TP) | BM |
UNICT 4158 | Brassica incana 4 | Sortino (SR) | BY |
UNICT 3040 | Brassica villosa 2 | Marianopoli (CL) | BV |
GenBank | Primers Name | SSR Motif | Primer Sequence (Forward, Reverse) | Chromosome |
---|---|---|---|---|
AF113918 | BoPLD1 | (CT)7(AT)7-1 | GACCACCGACTCCGATCTC AGACAAGCAAAATGCAAGGAA | C5 |
AF180355 | BoABI1 | (TC)16 | TATCAGGGTTTCCTGGGTTG GTGAACAAGAAGAAAAGAGAGCC | C1 |
AF273844 | BoTHL1 | (CTT)7 | GCCAAGGAGGAAATCGAAG AAGTGTCAATAAGGCAACAAGG | C9 |
U67451 | BoAP1 | (AT)9-1 | GGAGGAACGACCTTGATT GCCAAAATATACTATGCGTCT | C6 |
BH479680 | PBCGSSRBo39 | [GGTCG]4 | AACGCATCCATCCTCACTTC TAAACCAGCTCGTTCGGTTC | C7 |
Laboratory Code | CW (g) | CH (cm) | CD2 (cm) | CD1 (cm) | CS (cm) | CA (°) | PC1 |
---|---|---|---|---|---|---|---|
CV 171 Menhir F1 | 1095.8 (21.1) | 11.1 (8.4) | 42.32 (8.5) | 18 (8.7) | 0.62 (9.6) | 110 (21.9) | 3.794 |
BR 15 S 1 A | 965.7 (37.4) | 15.4 (14.6) | 39.82 (16.4) | 20.7 (17.4) | 0.74 (16.6) | 105 (19.4) | 3.588 |
CV 99 S2 B | 666.6 (42.5) | 15.2 (13.2) | 34.09 (19.6) | 21.1 (15.0) | 0.72 (12.1) | 112 (20.4) | 2.925 |
BR 13 S3 AC | 628.8 (33.7) | 16.8 (16.6) | 38.13 (18.5) | 19.7 (14.6) | 0.85 (14.6) | 101 (22.5) | 2.742 |
CV 173 Freedom | 605 (33.8) | 89 (16.7) | 30.99 (10.3) | 16.9 (11.8) | 0.53 (12.1) | 113 (13.3) | 2.171 |
CV 76 S2 | 567.3 (38.2) | 14.5 (15.6) | 36.96 (19.8) | 19.5 (13.1) | 0.74 (17.2) | 113 (13.5) | 2.722 |
CV 159 | 564.9 (37.0) | 14.5 (20.7) | 34.55 (12.6) | 20 (15.1) | 0.72 (18.7) | 104 (16.7) | 2.561 |
BR 13 A X CV98/21 | 554.5 (56.7) | 18.8 (20.4) | 30.84 (26.9) | 19.5 (19.3) | 0.96 (29.8) | 107 (17.7) | 2.397 |
CV 33 S1 | 541.5 (54.7) | 13.7 (24.4) | 32.25 (21.9) | 18.9 (29.6) | 0.72 (18.3) | 112 (22.3) | 2.452 |
CV 98/2 X CV 136 EG | 503.9 (35.4) | 16.8 (28.4) | 32.36 (18.1) | 16.5 (17.9) | 1.02 (34.4) | 100 (27.4) | 2.039 |
CV 175 White Flash | 467.09 (41.1) | 7.46 (20.9) | 29.97 (13.3) | 14.6 (15.7) | 0.51 (11.1) | 101 (15.6) | 1.777 |
CV 174 Graffiti | 461.8 (47.1) | 10.8 (16.1) | 32.98 (13.9) | 17.5 (16.4) | 0.62 (17.4) | 110 (19.3) | 2.198 |
CV 75 S3AC | 453.5 (49.7) | 11 (17.2) | 35.54 (17.9) | 18.1 (27.3) | 0.61(22.5) | 117 (15.8) | 2.404 |
CV 24 S4 | 443 (55.9) | 12.7 (23.0) | 36.41 (24.2) | 16.7 (23.8) | 0.76 (32.4) | 91 (26.5) | 1.977 |
CV 98/2 X BR 13 S3 | 438.8 (84.4) | 17.6 (24.4) | 28.81 (28.1) | 16.8 (29.4) | 1.05 (34.2) | 93 (17.7) | 1.723 |
BR 41 | 378.3 (46.2) | 10.2 (21.0) | 36.8 (16.9) | 17.2 (19.5) | 0.59 (17.8) | 113 (17.5) | 2.184 |
BR 165 Marathon | 319.8 (40.9) | 14.1 (26.8) | 3.52 (19.5) | 12.28 (26.7) | 1.2 (44.4) | 76 (29.8) | 0.061 |
CV 136 EG X CV98/2 | 317.4 (42.0) | 17.2 (22.2) | 29.22 (28.1) | 14.8 (16.0) | 1.17 (33.1) | 98 (21.6) | 1.410 |
CV 72 S2 | 305.7 (68.2) | 8.7 (20.7) | 31.7 (18.1) | 15.4 (22.8) | 0.56 (19.7) | 92 (25.2) | 1.470 |
BR 46 | 279 (39.0) | 16.6 (18.1) | 3.84 (17.3) | 11.1 (23.7) | 1.5 (28.2) | 57 (21.5) | −0.342 |
BR 45 S1 | 266.9 (33.4) | 22.2 (30.9) | 3.18 (13.2) | 8.47 (32.7) | 2.7 (37.4) | 58 (19.4) | −0.595 |
BR 17 S2 | 263.6 (56.1) | 11.2 (28.3) | 34.23 (18.8) | 14.4 (22.0) | 0.78 (21.2) | 91 (23.4) | 1.379 |
BR 129 | 226.4 (39.6) | 18.2 (12.9) | 3.13 (26.8) | 7.89 (29.4) | 2.3 (30.5) | 49 (27.8) | −0.821 |
BR 128 | 217.7 (58.3) | 18.2 (18.2) | 2.93 (29.8) | 9.49 (31.6) | 1.9 (29.4) | 54 (26.3) | −0.659 |
BR 122 Packman | 212.8 (36.3) | 12.8 (12.2) | 3.14 (15.0) | 7.78 (23.1) | 1.9 (16.5) | 46 (24.1) | −0.877 |
BR 126 | 188.3 (51.8) | 16.6 (23.4) | 2.87 (24.3) | 7.7 (28.3) | 2.2 (24.2) | 46 (24.1) | −0.951 |
CV 19 S2 A | 186.6 (41.3) | 8.4 (17.5) | 28.6 (16.7) | 13.6 (15.1) | 0.61 (18.2) | 85 (24.8) | 0.905 |
BR 106 | 164 (49.0) | 16.5 (17.9) | 3.34 (32.4) | 8.25 (29.5) | 2 (52.3) | 46 (32.8) | −0.940 |
BR 94 S1 | 143.9 (42.2) | 16 (29.0) | 2.69 (22.7) | 7.82 (29.0) | 2.1 (22.6) | 48 (26.7) | −1.008 |
BR 115 S1 | 109.5 (30.8) | 15.5 (9.5) | 2.64 (20.2) | 7.88 (25.8) | 2 (23.4) | 41 (34.2) | −1.158 |
BR 36 | 63.1 (41.7) | 16.9 (23.5) | 2.76 (18.9) | 4.74 (22.3) | 3.6 (15.5) | 27 (15.2) | −1.664 |
Brassica macrocarpa 5 | 36.7 (21.1) | 8.2 (12.1) | 14.5 (16.3) | 3.4 (23.1) | 0.23 (27.9) | 12 (10.2) | −1.572 |
Brassica rupestris | 33.3 (28.3) | 27.6 (15.5) | 16.2 (20.2) | 3.1 (17.9) | 0.19 (21.2) | 14 (11.7) | −1.574 |
Brassica macrocarpa 3 | 31.2 (19.8) | 18.6 (21.2) | 10.8 (23.6) | 2.4 (16.2) | 0.22 (19.8) | 15 (12.6) | −1.781 |
Brassica macrocarpa 1 | 30.9 (23.2) | 15.4 (18.4) | 7.3 (20.7) | 3.1 (19.2) | 0.42 (38.4) | 9 (7.9) | −1.915 |
Brassica incana 1 | 30.3 (21.9) | 21.1 (19.2) | 25.7 (26.3) | 3.8 (21.7) | 0.15 (26.5) | 12 (11.7) | −1.201 |
Brassica rupestris 3 | 29.8 (19.8) | 20.5 (12.2) | 16.9 (20.5) | 4.2 (22.2) | 0.25 (21.6) | 13 (7.3) | −1.463 |
Brassica rupestris 2 | 27.5 (17.5) | 18.4 (9.1) | 21.6 (23.4) | 3.9 (25.4) | 0.18 (17.8) | 17 (10.2) | −1.271 |
Brassica macrocarpa 8 | 27.2 (18.4) | 13.2 (21.2) | 8.5 (19.5) | 2.9 (19.1) | 0.34 (18.9) | 14 (11.9) | −1.827 |
Brassica incana 3 | 25.1 (21.8) | 19.6 (24.6) | 19.3 (31.3) | 2.7 (17.1) | 0.14 (27.1) | 15 (9.8) | −1.477 |
Brassica macrocarpa 7 | 24 (21.2) | 21.5 (27.2) | 11.4 (21.2) | 2.5 (19.5) | 0.22 (21.0) | 10 (8.1) | −1.837 |
Brassica rupestris 6 | 22.7 (20.1) | 26.3 (20.4) | 20.7 (28.2) | 2.1 (25.3) | 0.1 (19.2) | 9 (7.2) | −1.573 |
Brassica rupestris 7 | 22.1 (18.9) | 20.6 (26.1) | 18.5 (18.4) | 2.5 (19.2) | 0.14 (18.8) | 10 (8.3) | −1.591 |
Brassica macrocarpa 2 | 21.7 (18.4) | 15.8 (21.2) | 8.2 (19.2) | 3 (18.8) | 0.37 (18.9) | 12 (7.7) | −1.873 |
Brassica rupestris 4 | 21.6 (16.2) | 19.8 (9.1) | 7.3 (16.3) | 2.1 (16.9) | 0.29 (15.9) | 11 (8.2) | −1.998 |
Brassica macrocarpa 6 | 21.6 (20.3) | 17.6 (13.6) | 21.4 (19.7) | 2.1 (17.4) | 0.1 (16.5) | 15 (9.0) | −1.451 |
Brassica incana 2 | 21.5 (15.2) | 20.3 (21.1) | 19.6 (19.1) | 3.1 (21.1) | 0.16 (19.8) | 12 (9.2) | −1.482 |
Brassica rupestris 5 | 20.5 (19.0) | 20.8 (16.9) | 16.3 (20.1) | 2.2 (22.2) | 0.13 (20.5) | 12 (6.3) | −1.670 |
Brassica villosa 1 | 20.1 (18.2) | 15.1 (12.1) | 19.8 (19.2) | 2.6 (18.4) | 0.13 (19.3) | 11 (9.2) | −1.514 |
Brassica rupestris 1 | 19.8 (16.1) | 21.6 (19.5) | 8.9 (16.2) | 2.1 (14.2) | 0.24 (16.0) | 7 (6.1) | −2.001 |
Brassica macrocarpa 4 | 19.8 (17.2) | 23.2 (20.3) | 19.6 (23.3) | 2.6 (21.8) | 0.13 (23.2) | 11 (8.9) | −1.545 |
Brassica incana 4 | 19.7 (9.1) | 21.2 (23.2) | 17.3 (21.2) | 2.5 (18.8) | 0.14 (20.2) | 11 (8.0) | −1.627 |
Brassica villosa 2 | 19.2 (18.4) | 14.5 (9.1) | 18.1 (15.2) | 2.2 (19.2) | 0.12 (19.1) | 10 (6.8) | −1.616 |
PC1 | PC2 | PC3 | |
---|---|---|---|
CW | 0.508 | 0.06 | 0.229 |
CH | −0.032 | 0.998 | 0.010 |
CD1 | 0.438 | 0.022 | −0.898 |
CD2 | 0.527 | −0.022 | 0.251 |
CA | 0.521 | 0.004 | 0.279 |
% variance | 46.75 | 25.21 | 16.34 |
Estimate | Std. Error | p-Value | |
---|---|---|---|
CW on H indices | |||
BoTHL1 | 95.48 | 128.87 | 0.4643 |
PBCGSSRBo39 | 170.24 | 130.62 | 0.2021 |
BoPLD1 | −248.18 | 137.86 | 0.0888 |
BoAP1 | 142.67 | 99.97 | 0.1635 |
BoABI1 | −178.45 | 117.18 | 0.1379 |
CD1 on H indices | |||
BoTHL1 | 4.5004 | 3.0624 | 0.1518 |
PBCGSSRBo39 | −0.6356 | 3.1040 | 0.8391 |
BoPLD1 | −6.9635 | 3.2759 | 0.0416 |
BoAP1 | 2.7333 | 2.3756 | 0.2587 |
BoABI1 | −3.3929 | 2.7845 | 0.2322 |
CD2 on H indices | |||
BoTHL1 | 8.413 | 7.049 | 0.2417 |
PBCGSSRBo39 | 1.682 | 7.145 | 0.8154 |
BoPLD1 | −19.056 | 7.541 | 0.0168 |
BoAP1 | 1.124 | 5.468 | 0.8386 |
BoABI1 | −12.926 | 6.410 | 0.0525 |
PC1 on H indices | |||
BoTHL1 | 1.1348 | 0.8870 | 0.2102 |
PBCGSSRBo39 | 0.3260 | 0.8990 | 0.7193 |
BoPLD1 | −2.2453 | 0.9488 | 0.0244 |
BoAP1 | 0.6661 | 0.6881 | 0.3405 |
BoABI1 | −1.2391 | 0.065 | 0.1346 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Treccarichi, S.; Di Gaetano, C.; Di Stefano, F.; Gasparini, M.; Branca, F. Using Simple Sequence Repeats in 9 Brassica Complex Species to Assess Hypertrophic Curd Induction. Agriculture 2021, 11, 622. https://doi.org/10.3390/agriculture11070622
Treccarichi S, Di Gaetano C, Di Stefano F, Gasparini M, Branca F. Using Simple Sequence Repeats in 9 Brassica Complex Species to Assess Hypertrophic Curd Induction. Agriculture. 2021; 11(7):622. https://doi.org/10.3390/agriculture11070622
Chicago/Turabian StyleTreccarichi, Simone, Cornelia Di Gaetano, Fulvio Di Stefano, Mauro Gasparini, and Ferdinando Branca. 2021. "Using Simple Sequence Repeats in 9 Brassica Complex Species to Assess Hypertrophic Curd Induction" Agriculture 11, no. 7: 622. https://doi.org/10.3390/agriculture11070622