Alley Cropping Mitigates the Impacts of Climate Change on a Wheat Crop in a Mediterranean Environment: A Biophysical Model-Based Assessment
Abstract
:1. Introduction
- Increases in the overall light use efficiency [22];
2. Materials and Methods
2.1. Introduction to the Case Study
2.2. The Hi-sAFe Model
2.3. Modeled System Description
- Monoculture winter durum wheat (Claudio variety, agriculture: “A”);
- Alley cropping of wheat with walnut trees and grass along the tree lines (agroforestry: “AF”).
2.4. Climatic Data Series
2.5. Replication in the Virtual Experiment
2.6. The Simulated Climate Change (IPCC Scenario RCP8.5)
2.7. Computation of Indices to Characterize the Occurrence and Impact of Crop Stresses
3. Results
3.1. Example of Crop Yield Responses to Water Availability
3.2. Crop Stresses across Agricultural Systems
3.3. Crop Stresses in Agroforestry
3.4. Crop Radiative Regime
3.5. Crop Growth
4. Discussion
4.1. Crop Stresses and Climate Change
4.2. Crop Yield
4.3. Limitations of the Modeling Approach
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lobell, D.B. Climate Change Adaptation in Crop Production: Beware of Illusions. Glob. Food Secur. 2014, 3, 72–76. [Google Scholar] [CrossRef]
- Lobell, D.B.; Gourdji, S.M. The Influence of Climate Change on Global Crop Productivity. Plant. Physiol. 2012, 160, 1686–1697. [Google Scholar] [CrossRef] [Green Version]
- Lionello, P.; Scarascia, L. The Relation between Climate Change in the Mediterranean Region and Global Warming. Reg. Environ. Chang. 2018, 18, 1481–1493. [Google Scholar] [CrossRef]
- Mistry, M.N.; Sue Wing, I.; De Cian, E. Simulated vs. Empirical Weather Responsiveness of Crop Yields: US Evidence and Implications for the Agricultural Impacts of Climate Change. Environ. Res. Lett. 2017, 12, 075007. [Google Scholar] [CrossRef]
- Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising Temperatures Reduce Global Wheat Production. Nat. Clim. Chang. 2015, 5, 143–147. [Google Scholar] [CrossRef]
- Brisson, N.; Gate, P.; Gouache, D.; Charmet, G.; Oury, F.-X.; Huard, F. Why Are Wheat Yields Stagnating in Europe? A Comprehensive Data Analysis for France. Field Crops Res. 2010, 119, 201–212. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global Observed Changes in Daily Climate Extremes of Temperature and Precipitation. J. Geophys. Res. 2006, 111, D05109. [Google Scholar] [CrossRef] [Green Version]
- Meehl, G.A.; Stocker, T.F.; Collins, W.D.; Friedlingstein, P.; Gaye, A.T.; Gregory, J.M.; Kitoh, A.; Knutti, R.; Murphy, J.M.; Noda, A.; et al. Global Climate Projections. In IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; pp. 747–846. [Google Scholar]
- Vautard, R.; Gobiet, A.; Sobolowski, S.; Kjellström, E.; Stegehuis, A.; Watkiss, P.; Mendlik, T.; Landgren, O.; Nikulin, G.; Teichmann, C.; et al. The European Climate under a 2 °C Global Warming. Environ. Res. Lett. 2014, 9, 034006. [Google Scholar] [CrossRef]
- Forzieri, G.; Feyen, L.; Rojas, R.; Flörke, M.; Wimmer, F.; Bianchi, A. Ensemble Projections of Future Streamflow Droughts in Europe. Hydrol. Earth Syst. Sci. 2014, 18, 85–108. [Google Scholar] [CrossRef] [Green Version]
- Toreti, A.; Naveau, P. On the Evaluation of Climate Model Simulated Precipitation Extremes. Environ. Res. Lett. 2015, 10, 014012. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F. Global Trends and Variability in Soil Moisture and Drought Characteristics, 1950–2000, from Observation-Driven Simulations of the Terrestrial Hydrologic Cycle. J. Clim. 2008, 21, 432–458. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Quiring, S.M.; Peña-Gallardo, M.; Yuan, S.; Domínguez-Castro, F. A Review of Environmental Droughts: Increased Risk under Global Warming? Earth-Sci. Rev. 2020, 201, 102953. [Google Scholar] [CrossRef]
- Dai, A. Drought under Global Warming: A Review: Drought under Global Warming. Wires Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Hatfield, J.L.; Boote, K.J.; Kimball, B.A.; Ziska, L.H.; Izaurralde, R.C.; Ort, D.; Thomson, A.M.; Wolfe, D. Climate Impacts on Agriculture: Implications for Crop Production. Agron. J. 2011, 103, 351–370. [Google Scholar] [CrossRef] [Green Version]
- Ellsworth, D.S.; Anderson, I.C.; Crous, K.Y.; Cooke, J.; Drake, J.E.; Gherlenda, A.N.; Gimeno, T.E.; Macdonald, C.A.; Medlyn, B.E.; Powell, J.R.; et al. Elevated CO2 Does Not Increase Eucalypt Forest Productivity on a Low-Phosphorus Soil. Nat. Clim. Chang. 2017, 7, 279–282. [Google Scholar] [CrossRef] [Green Version]
- Sacks, W.J.; Deryng, D.; Foley, J.A.; Ramankutty, N. Crop Planting Dates: An Analysis of Global Patterns: Global Crop Planting Dates. Glob. Ecol. Biogeogr. 2010, 607–620. [Google Scholar] [CrossRef]
- Burgess, P.J.; Graves, A.R.; Palma, J.H.; Crous-Duran, J.; Upson, M. Financial and Economic Benefitsof Integrated Crop-Livestock-Tree Systems in Europe. In Proceedings of the World Congress on Integrated Crop-Livestock-Tree Systems, Brasilia, Brazil, 14 July 2015. [Google Scholar]
- Thevathasan, N.V.; Gordon, A.M. Ecology of Tree Intercropping Systems in the North Temperate Region: Experiences from Southern Ontario, Canada. Agrofor. Syst. 2004, 61, 257–268. [Google Scholar]
- Wolz, K.J.; DeLucia, E.H. Alley Cropping: Global Patterns of Species Composition and Function. Agric. Ecosyst. Environ. 2018, 252, 61–68. [Google Scholar] [CrossRef]
- Nair, P.K.R. Agroforestry. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: Oxford, UK, 2005; pp. 35–44. ISBN 978-0-12-348530-4. [Google Scholar]
- Jose, S. Agroforestry for Ecosystem Services and Environmental Benefits: An Overview. Agrofor. Syst. 2009, 76, 1–10. [Google Scholar] [CrossRef]
- Tsonkova, P.; Böhm, C.; Quinkenstein, A.; Freese, D. Ecological Benefits Provided by Alley Cropping Systems for Production of Woody Biomass in the Temperate Region: A Review. Agrofor. Syst. 2012, 85, 133–152. [Google Scholar] [CrossRef]
- Hallema, D.W.; Rousseau, A.N.; Gumiere, S.J.; Périard, Y.; Hiemstra, P.H.; Bouttier, L.; Fossey, M.; Paquette, A.; Cogliastro, A.; Olivier, A. Framework for Studying the Hydrological Impact of Climate Change in an Alley Cropping System. J. Hydrol. 2014, 517, 547–556. [Google Scholar] [CrossRef]
- Cardinael, R.; Umulisa, V.; Toudert, A.; Olivier, A.; Bockel, L.; Bernoux, M. Revisiting IPCC Tier 1 Coefficients for Soil Organic and Biomass Carbon Storage in Agroforestry Systems. Environ. Res. Lett. 2018, 13, 124020. [Google Scholar] [CrossRef]
- Quinkenstein, A.; Wöllecke, J.; Böhm, C.; Grünewald, H.; Freese, D.; Schneider, B.U.; Hüttl, R.F. Ecological Benefits of the Alley Cropping Agroforestry System in Sensitive Regions of Europe. Environ. Sci. Policy 2009, 12, 1112–1121. [Google Scholar] [CrossRef]
- Communication from the European Commission to the European Parliament, the European Council, the European Economic and Social Committee and the Regions. The European Green Deal—COM(2019) 640 Final. 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52019DC0640&from=EN (accessed on 1 February 2011).
- Eichhorn, M.P.; Paris, P.; Herzog, F.; Incoll, L.D.; Liagre, F.; Mantzanas, K.; Mayus, M.; Moreno, G.; Papanastasis, V.P.; Pilbeam, D.J.; et al. Silvoarable Systems in Europe—Past, Present and Future Prospects. Agrofor. Syst. 2006, 67, 29–50. [Google Scholar] [CrossRef]
- Lin, B.B. The Role of Agroforestry in Reducing Water Loss through Soil Evaporation and Crop Transpiration in Coffee Agroecosystems. Agric. For. Meteorol. 2010, 150, 510–518. [Google Scholar] [CrossRef]
- Inurreta-Aguirre, H.D.; Lauri, P.-É.; Dupraz, C.; Gosme, M. Yield Components and Phenology of Durum Wheat in a Mediterranean Alley-Cropping System. Agrofor. Syst. 2018, 92, 961–974. [Google Scholar] [CrossRef]
- Arenas-Corraliza, M.G.; López-Díaz, M.L.; Moreno, G. Winter Cereal Production in a Mediterranean Silvoarable Walnut System in the Face of Climate Change. Agric. Ecosyst. Environ. 2018, 264, 111–118. [Google Scholar] [CrossRef]
- Trnka, M.; Rötter, R.P.; Ruiz-Ramos, M.; Kersebaum, K.C.; Olesen, J.E.; Žalud, Z.; Semenov, M.A. Adverse Weather Conditions for European Wheat Production Will Become More Frequent with Climate Change. Nat. Clim. Chang. 2014, 4, 637–643. [Google Scholar] [CrossRef]
- Zampieri, M.; Ceglar, A.; Dentener, F.; Toreti, A. Wheat Yield Loss Attributable to Heat Waves, Drought and Water Excess at the Global, National and Subnational Scales. Environ. Res. Lett. 2017, 12, 064008. [Google Scholar] [CrossRef]
- Kanzler, M.; Böhm, C.; Mirck, J.; Schmitt, D.; Veste, M. Microclimate Effects on Evaporation and Winter Wheat (Triticum aestivum L.) Yield within a Temperate Agroforestry System. Agrofor. Syst. 2019, 93, 1821–1841. [Google Scholar] [CrossRef]
- Cardinael, R.; Mao, Z.; Prieto, I.; Stokes, A.; Dupraz, C.; Kim, J.H.; Jourdan, C. Competition with Winter Crops Induces Deeper Rooting of Walnut Trees in a Mediterranean Alley Cropping Agroforestry System. Plant. Soil 2015, 391, 219–235. [Google Scholar] [CrossRef]
- Calfapietra, C.; Gielen, B.; Karnosky, D.; Ceulemans, R.; Scarascia Mugnozza, G. Response and Potential of Agroforestry Crops under Global Change. Environ. Pollut. 2010, 158, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Lovell, S.T.; Dupraz, C.; Gold, M.; Jose, S.; Revord, R.; Stanek, E.; Wolz, K.J. Temperate Agroforestry Research: Considering Multifunctional Woody Polycultures and the Design of Long-Term Field Trials. Agrofor. Syst. 2018, 92, 1397–1415. [Google Scholar] [CrossRef]
- Gavinet, J.; Ourcival, J.-M.; Gauzere, J.; García de Jalón, L.; Limousin, J.-M. Drought Mitigation by Thinning: Benefits from the Stem to the Stand along 15 Years of Experimental Rainfall Exclusion in a Holm Oak Coppice. For. Ecol. Manag. 2020, 473, 118266. [Google Scholar] [CrossRef]
- Luedeling, E.; Smethurst, P.J.; Baudron, F.; Bayala, J.; Huth, N.I.; van Noordwijk, M.; Ong, C.K.; Mulia, R.; Lusiana, B.; Muthuri, C.; et al. Field-Scale Modeling of Tree–Crop Interactions: Challenges and Development Needs. Agric. Syst. 2016, 142, 51–69. [Google Scholar] [CrossRef]
- Luedeling, E.; Kindt, R.; Huth, N.I.; Koenig, K. Agroforestry Systems in a Changing Climate—Challenges in Projecting Future Performance. Curr. Opin. Environ. Sustain. 2014, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Dupraz, C.; Wolz, J.K.; Lecomte, I.; Talbot, G.; Vincent, G.; Mulia, R.; Bussière, F.; Ozier-Lafontaine, H.; Andrianarisoa, S.; Jackson, N.; et al. Hi-sAFe: A 3D Agroforestry Model for Integrating Dynamic Tree-Crop Interactions. Sustainability 2019, 11, 2293. [Google Scholar] [CrossRef] [Green Version]
- Talbot, G. L’intégration Spatiale et Temporelle Du Partage Des Ressources Dans Un Système Agroforestier Noyers-Céréales: Une Clef Pour En Comprendre La Productivité? Ph.D. Thesis, Université Montpellier II-Sciences et Techniques du Languedoc, Montpellier, France, 2011. [Google Scholar]
- Dufour, L.; Metay, A.; Talbot, G.; Dupraz, C. Assessing Light Competition for Cereal Production in Temperate Agroforestry Systems Using Experimentation and Crop Modelling. J. Agron. Crop. Sci. 2013, 199, 217–227. [Google Scholar] [CrossRef]
- Cardinael, R.; Chevallier, T.; Cambou, A.; Béral, C.; Barthès, B.G.; Dupraz, C.; Durand, C.; Kouakoua, E.; Chenu, C. Increased Soil Organic Carbon Stocks under Agroforestry: A Survey of Six Different Sites in France. Agric. Ecosyst. Environ. 2017, 236, 243–255. [Google Scholar] [CrossRef] [Green Version]
- Dupraz, C.; Blitz-Frayret, C.; Lecomte, I.; Molto, Q.; Reyes, F.; Gosme, M. Influence of Latitude on the Light Availability for Intercrops in an Agroforestry Alley-Cropping System. Agrofor. Syst. 2018. [Google Scholar] [CrossRef]
- Palma, J.H. CliPick: Project Database of Pan-European Simulated Climate Data for Default Model Use. 2015. Available online: http://home.isa.utl.pt/~joaopalma/projects/agforward/clipick/ (accessed on 10 July 2017).
- Palma, J.H.N. CliPick—Climate Change Web Picker. A Tool Bridging Daily Climate Needs in Process Based Modelling in Forestry and Agriculture. For. Syst. 2017, 26, eRC01. [Google Scholar] [CrossRef]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5—A Scenario of Comparatively High Greenhouse Gas Emissions. Clim. Chang. 2011, 109, 33–57. [Google Scholar] [CrossRef] [Green Version]
- Park, C.-K.; Byun, H.-R.; Deo, R.; Lee, B.-R. Drought Prediction till 2100 under RCP 8.5 Climate Change Scenarios for Korea. J. Hydrol. 2015, 526, 221–230. [Google Scholar] [CrossRef]
- Wheeler, T.R.; Batts, G.R.; Ellis, R.H.; Hadley, P.; Morison, J.I.L. Growth and Yield of Winter Wheat (Triticum aestivum) Crops in Response to CO2 and Temperature. J. Agric. Sci. 1996, 127, 37. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Djanaguiraman, M. Response of Floret Fertility and Individual Grain Weight of Wheat to High Temperature Stress: Sensitive Stages and Thresholds for Temperature and Duration. Funct. Plant. Biol. 2014, 41, 1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Zhang, Z.; Tao, F.; Palosuo, T.; Rötter, R.P. Impacts of Heat Stress on Leaf Area Index and Growth Duration of Winter Wheat in the North China Plain. Field Crop. Res. 2017. [Google Scholar] [CrossRef] [Green Version]
- Villegas, D.; Alfaro, C.; Ammar, K.; Cátedra, M.M.; Crossa, J.; García del Moral, L.F.; Royo, C. Daylength, Temperature and Solar Radiation Effects on the Phenology and Yield Formation of Spring Durum Wheat. J. Agron. Crop. Sci. 2016, 202, 203–216. [Google Scholar] [CrossRef]
- Farooq, M.; Hussain, M.; Siddique, K.H.M. Drought Stress in Wheat during Flowering and Grain-Filling Periods. Crit. Rev. Plant. Sci. 2014, 33, 331–349. [Google Scholar] [CrossRef]
- Sida, T.S.; Baudron, F.; Kim, H.; Giller, K.E. Climate-Smart Agroforestry: Faidherbia Albida Trees Buffer Wheat against Climatic Extremes in the Central Rift Valley of Ethiopia. Agric. For. Meteorol. 2018, 248, 339–347. [Google Scholar] [CrossRef]
- Temani, F.; Bouaziz, A.; Daoui, K.; Wery, J.; Barkaoui, K. Olive Agroforestry Can Improve Land Productivity Even under Low Water Availability in the South Mediterranean. Agric. Ecosyst. Environ. 2021, 307, 107234. [Google Scholar] [CrossRef]
- Bai, W.; Sun, Z.; Zheng, J.; Du, G.; Feng, L.; Cai, Q.; Yang, N.; Feng, C.; Zhang, Z.; Evers, J.B.; et al. Mixing Trees and Crops Increases Land and Water Use Efficiencies in a Semi-Arid Area. Agric. Water Manag. 2016, 178, 281–290. [Google Scholar] [CrossRef]
- Andrianarisoa, K.; Dufour, L.; Bienaimé, S.; Zeller, B.; Dupraz, C. The Introduction of Hybrid Walnut Trees (Juglans Nigra × Regia Cv. NG23) into Cropland Reduces Soil Mineral N Content in Autumn in Southern France. Agrofor. Syst. 2016, 90, 193–205. [Google Scholar] [CrossRef]
- Webber, H.; Zhao, G.; Wolf, J.; Britz, W.; de Vries, W.; Gaiser, T.; Hoffmann, H.; Ewert, F. Climate Change Impacts on European Crop Yields: Do We Need to Consider Nitrogen Limitation? Eur. J. Agron. 2015, 71, 123–134. [Google Scholar] [CrossRef]
- Allen, S.C.; Jose, S.; Nair, P.K.R.; Brecke, B.J.; Nkedi-Kizza, P.; Ramsey, C.L. Safety-Net Role of Tree Roots: Evidence from a Pecan (Carya illinoensis K. Koch)–Cotton (Gossypium hirsutum L.) Alley Cropping System in the Southern United States. For. Ecol. Manag. 2004, 192, 395–407. [Google Scholar] [CrossRef]
- Ferrise, R.; Moriondo, M.; Bindi, M. Probabilistic Assessments of Climate Change Impacts on Durum Wheat in the Mediterranean Region. Nat. Hazards Earth Syst. Sci. 2011, 11, 1293–1302. [Google Scholar] [CrossRef]
- Harris, G.R.; Collins, M.; Sexton, D.M.H.; Murphy, J.M.; Booth, B.B.B. Probabilistic Projections for 21st Century European Climate. Nat. Hazards Earth Syst. Sci. 2010, 10, 2009–2020. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Ahanbieke, P.; Wang, B.J.; Gan, Y.W.; Li, L.H.; Christie, P.; Li, L. Temporal and Spatial Distribution of Roots as Affected by Interspecific Interactions in a Young Walnut/Wheat Alley Cropping System in Northwest China. Agrofor. Syst. 2015, 89, 327–343. [Google Scholar] [CrossRef]
- Mu, H.; Jiang, D.; Wollenweber, B.; Dai, T.; Jing, Q.; Cao, W. Long-Term Low Radiation Decreases Leaf Photosynthesis, Photochemical Efficiency and Grain Yield in Winter Wheat. J. Agron. Crop. Sci. 2010, 196, 38–47. [Google Scholar] [CrossRef]
- Artru, S.; Garré, S.; Dupraz, C.; Hiel, M.-P.; Blitz-Frayret, C.; Lassois, L. Impact of Spatio-Temporal Shade Dynamics on Wheat Growth and Yield, Perspectives for Temperate Agroforestry. Eur. J. Agron. 2017, 82, 60–70. [Google Scholar] [CrossRef]
- Talbot, G.; Dupraz, C. Simple Models for Light Competition within Agroforestry Discontinuous Tree Stands: Are Leaf Clumpiness and Light Interception by Woody Parts Relevant Factors? Agrofor. Syst. 2012, 84, 101–116. [Google Scholar] [CrossRef]
- Martinez-Vazquez, P. Crop Lodging Induced by Wind and Rain. Agric. For. Meteorol. 2016, 228, 265–275. [Google Scholar] [CrossRef]
Stress Category | Stress Name in STICS | Stress Name in Hi-sAFe | Description | Further Analyzed (Yes/No) |
---|---|---|---|---|
Thermal | FTEMP | TempStressLUE | reduction in radiation use efficiency | Y |
FTEMPREMP | TempStressGrainFilling | temporary inhibition of grain filling | Y | |
FGELLEV | FrostStressPlantDensity | reducing plant density | Y | |
FSTRESSGEL | FrostStressFoliage | faster leaf senescence | Y | |
FGELFLO | FrostStressReprod | reducing plant flowers and fruits | N | |
Water | SWFAC | StomatalWaterStress | reduced radiation use efficiency and transpiration | Y |
SENFAC | SenescenceWaterStress | faster leaf senescence | Y | |
Nitrogen | INNLAI | NitrogenLAIStress | delayed plant development and slower leaf growth | Y |
INNS | NitrogenBiomassStress | crop light use efficiency | N | |
INNSENES | NitrogenSenescenceStress | faster senescence | N |
Emergence | Maximum Acceleration of Leaf Growth | Maximum Leaf Area | Anthesis | Start of Grain Filling |
---|---|---|---|---|
TempStressLUE | TempStressGrainFilling | |||
FrostStressPlantDensity | SenescenceWaterStress | FrostStressReprod | ||
FrostStressFoliage | - | - | SenescenceWaterStress | |
- | StomatalWaterStress | |||
NitrogenLAIStress |
Yield (t ha−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|
A | AF | ||||||||
Mean | SD | CV | Cumulative Yield | Mean | SD | CV | Cumulative Yield | ||
Past | Years 1–5 | 3.65 | 0.56 | 0.15 | 18 | 3.36 | 0.52 | 0.15 | 17 |
Years 18–22 | 4.16 | 0.83 | 0.20 | 83 | 3.49 | 0.57 | 0.16 | 75 | |
Years 36–40 | 4.62 | 0.76 | 0.17 | 163 | 3.11 | 0.44 | 0.14 | 132 | |
Present | Years 1–5 | 4.38 | 1.08 | 0.25 | 22 | 4.03 | 0.99 | 0.25 | 20 |
Years 18–22 | 4.47 | 0.62 | 0.14 | 95 | 3.75 | 0.47 | 0.13 | 85 | |
Years 36–40 | 4.95 | 0.70 | 0.14 | 183 | 3.55 | 0.46 | 0.13 | 151 | |
Future | Years 1–5 | 5.06 | 0.62 | 0.12 | 25 | 4.65 | 0.57 | 0.12 | 23 |
Years 18–22 | 5.06 | 0.64 | 0.13 | 108 | 4.15 | 0.48 | 0.12 | 96 | |
Years 36–40 | 4.84 | 0.41 | 0.09 | 197 | 3.38 | 0.33 | 0.10 | 161 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes, F.; Gosme, M.; Wolz, K.J.; Lecomte, I.; Dupraz, C. Alley Cropping Mitigates the Impacts of Climate Change on a Wheat Crop in a Mediterranean Environment: A Biophysical Model-Based Assessment. Agriculture 2021, 11, 356. https://doi.org/10.3390/agriculture11040356
Reyes F, Gosme M, Wolz KJ, Lecomte I, Dupraz C. Alley Cropping Mitigates the Impacts of Climate Change on a Wheat Crop in a Mediterranean Environment: A Biophysical Model-Based Assessment. Agriculture. 2021; 11(4):356. https://doi.org/10.3390/agriculture11040356
Chicago/Turabian StyleReyes, Francesco, Marie Gosme, Kevin J. Wolz, Isabelle Lecomte, and Christian Dupraz. 2021. "Alley Cropping Mitigates the Impacts of Climate Change on a Wheat Crop in a Mediterranean Environment: A Biophysical Model-Based Assessment" Agriculture 11, no. 4: 356. https://doi.org/10.3390/agriculture11040356