The Indigenous Prestice Black-Pied Pig Breed Differs from a Commercial Hybrid in Growth Intensity, Carcass Value and Meat Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Feeding and Composition of the Feed
2.3. Growth Performance
2.4. Procedures before Slaughter and Slaughter Measurements
2.5. Physical and Chemical Analysis
2.6. Statistical Analysis
- Yij = value of the trait
- µ = overall mean
- di = effect of genotype (i = 1, 2)
- sj = effect of sex (j = 1, 2)
- (ds)ij = combined effect of genotype and sex
- eij = random residual
3. Results
3.1. Performance Parameters in Pigs
3.2. Carcass Characteristics in Pigs
3.3. Physical and Chemical Characteristics of Musculus Longissimus Lumborum et Thoracis
4. Discussion
4.1. Performance Parameters in Pigs
4.2. Carcass Characteristics in Pigs
4.3. Physical and Chemical Characteristics of Musculus Longissimus Lumborum et Thoracis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gan, M.; Shen, L.; Fan, Y.; Guo, Z.; Liu, B.; Chen, L.; Tang, G.; Jiang, Y.; Li, X.; Zhang, S.; et al. High altitude adaptability and meat quality in tibetan pigs: A reference for local pork processing and genetic improvement. Animals 2019, 9, 1080. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, A.; Rodrigues, A. Pork Meat Quality of Preto Alentejano and Commercial Largewhite Landrace Cross. J. Integr. Agric. 2013, 12, 1961–1971. [Google Scholar] [CrossRef]
- Dostálová, A.; Svitáková, A.; Bureš, D.; Vališ, L.; Volek, Z. Effect of an Outdoor Access System on the Growth Performance, Carcass Characteristics, and Longissimus lumborum Muscle Meat Quality of the Prestice Black-Pied Pig Breed. Animals 2020, 10, 1244. [Google Scholar] [CrossRef]
- Nevrkla, P.; Kapelanski, W.; Vaclavkova, E.; Hadas, Z.; Cebulska, A.; Horky, P. Meat quality and fatty acid profile of pork and backfat from an indigenous breed and a commercial hybrid of pigs. Ann. Anim. Sci. 2017, 17, 1215–1227. [Google Scholar] [CrossRef] [Green Version]
- Matousek, V.; Kernerova, N.; Hysplerova, K.; Jirotkova, D.; Brzakova, M. Carcass traits and meat quality of Prestice Black-Pied Pig Breed. Asian Australas. J. Anim. Sci. 2016, 29, 1181–1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirtori, F.; Crovetti, A.; Zilio, D.M.; Pugliese, C.; Acciaioli, A.; Campodoni, G.; Bozzi, R.; Franci, O. Effect of sire breed and rearing system on growth, carcass composition and meat traits of Cinta Senese crossbred pigs. Ital. J. Anim. Sci. 2011, 10. [Google Scholar] [CrossRef]
- Kapelanski, W.; Buczynski, J.T.; Bocian, M. Slaughter value and meat quality in the Polish native Zlotnicka Spotted pig. Anim. Sci. Pap. Rep. 2006, 24, 7–13. [Google Scholar]
- Council Directive 2008/120/EC of 18 December 2008 Laying Down Minimum Standards for the Protection of Pigs (Codified Version). Available online: https://eur-lex.europa.eu/eli/dir/2008/120/oj (accessed on 24 November 2020).
- Commission Decision of 27 December 2004 Authorizing Methods for Grading Pig Carcases in the Czech Republic (Notified by Number C(2004) 2566) (Only the Czech Text is Authentic) (2005/1/EC). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02005D0001-20130701 (accessed on 24 November 2020).
- Methodical Instructions for Performance Testing in Pigs; Czech and Moravian Pig Breeders Union: Prague, Czech Republic, 2002.
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- ISO 1444. Meat and Meat Products–Determination of Free Fat Content; International Organization for Standardization: Geneva, Switzerland, 1996. [Google Scholar]
- ISO 3596. Animal and Vegetable Fats and Oils–Determination of Unsaponifiable Matter. Method Using Diethyl Ether Extraction; International Organization for Standardization: Geneve, Switzerland, 2000. [Google Scholar]
- Piette, G.; Raymond, M.P. A comparative evaluation of methods to determine rancidity in processed meat (in German). Fleischwirtschaft 1999, 7, 69–73. [Google Scholar]
- Leenhouwers, J.L.; Merks, J.W.M. Suitability of traditional and conventional pig breeds in organic and low-input production systems in Europe: Survey results and a review of literature. Anim. Genet. Resour. Inf. 2013, 53, 169–184. [Google Scholar] [CrossRef]
- Bereskin, B.; Shelby, C.E.; Cox, D.F. Some factors affecting pig survival. J. Anim. Sci. 1973, 36, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Cassady, J.P.; Young, L.D.; Leymaster, K.A. Heterosis and recombination effects on pig growth and carcass traits. J. Anim. Sci. 2002, 80, 2286–2302. [Google Scholar] [CrossRef]
- Fortina, R.; Barbera, S.; Lussiana, C.; Mimosi, A.; Tassone, S.; Rossi, A.; Zanardi, E. Performances and meat quality of two Italian pig breeds fed diets for commercial hybrids. Meat Sci. 2005, 71, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhu, L.; Li, X.; Si, T. Evaluation of the Chinese indigenous pig breed Dahe and crossbred Dawu for growth and carcass characteristics, organ weight, meat quality and intramuscular fatty acid and amino acid composition. Animal 2011, 5, 1485–1492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szulc, K.; Skrzypczak, E.; Buczynski, J.T.; Stanislawski, D.; Jankowska-Makosa, A.; Knecht, D. Evaluation of fattening and slaughter performance and determination of meat quality in Zlotnicka Spotted pigs and their crosses with the Duroc breed. Czech. J. Anim. Sci. 2012, 57, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Maiorano, G.; Gambacorta, M.; Tavaniello, S.; D’Andrea, M.; Stefanon, B.; Pilla, F. Growth, Carcass and Meat Quality of Casertana, Italian Large White and Duroc x (Landrace x Italian Large White) Pigs Reared Outdoors. Ital. J. Anim. Sci. 2013, 12, 426–431. [Google Scholar] [CrossRef] [Green Version]
- Václavková, E.; Bělková, J.; Lustyková, A.; Frydrychová, S.; Lipenský, J.; Rozkot, M.; Truněčková, J. Breeding of Přeštice Black Pied pigs—Review. Res. Pig Breed. 2018, 12, 14–19. [Google Scholar]
- Peinado, J.; Medel, P.; Fuentetaja, A.; Mateos, G.G. Influence of sex and castration of females on growth performance and carcass and meat quality of heavy pigs destined for the dry-cured industry. J. Anim. Sci. 2008, 86, 1410–1417. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, G.G.; Baghe, R.P.S.; Nayak, S.; Fatima, B.; Ganie, A.A. Effect of sex on growth performance, nutrient utilization and carcass characteristics in cross bred pigs. Indian J. Anim. Res. 2017, 51, 175–178. [Google Scholar] [CrossRef] [Green Version]
- Aymerich, P.; Soldevila, C.; Bonet, J.; Farré, M.; Gasa, J.; Coma, J.; Solà-Oriol, D. Interrelationships between sex and dietary lysine on growth performance and carcass composition of finishing boars and gilts. Transl. Anim. Sci. 2020, 4, txaa129. [Google Scholar] [CrossRef]
- Li, W.; Li, R.; Wei, Y.; Meng, X.; Wang, B.; Zhang, Z.; Wu, W.; Liu, H. Effect of MSTN Mutation on Growth and Carcass Performance in Duroc × Meishan Hybrid Population. Animals 2020, 10, 932. [Google Scholar] [CrossRef]
- Franco, D.; Vazquez, J.A.; Lorenzo, J.M. Growth performance, carcass and meat quality of the Celta pig crossbred with Duroc and Landrance genotypes. Meat Sci. 2014, 96, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Debrecéni, O.; Lípová, P.; Bučko, O.; Cebulska, A.; Kapelánski, W. Effect of pig genotypes from Slovak and Polish breeds on meat quality. Arch. Anim. Breed. 2018, 61, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Song, Q.Q.; Wu, F.; Zhang, J.Z.; Xu, M.S.; Li, H.H.; Han, Z.J.; Gao, H.X.; Xu, N.Y. Evaluation of the four breeds in synthetic line of Jiaxing Black Pigs and Berkshire for meat quality traits, carcass characteristics, and flavor substances. Anim. Sci. J. 2019, 90, 574–582. [Google Scholar] [CrossRef]
- Touma, S.; Oyadomari, M. Comparison of growth performances, carcass characteristics, and meat qualities of Okinawan indigenous Agu pigs and crossbred pigs sired by Agu or Duroc boar. Anim. Sci. J. 2020, 91, e13362. [Google Scholar] [CrossRef]
- McManus, C.; Paiva, S.R.; Silva, A.V.R.S.; Murata, L.S.; Louvandini, H.; Cubilllos, G.P.B.; Castro, G.C.; Martinez, R.A.; Dellacasa, M.S.L.; Perez, J.E. Phenotypic characterization of naturalized swine breeds in Brazil, Uruguay and Colombia. Braz. Arch. Biol. Technol. 2010, 53, 583–591. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.M.; Choi, T.J.; Ho Cho, K.; Cho, E.S.; Lee, J.J.; Chung, H.J.; Baek, S.Y.; Jeong, Y.D. Effects of Sex and Breed on Meat Quality and Sensory Properties in Three-way Crossbred Pigs Sired by Duroc or by a Synthetic Breed Based on a Korean Native Breed. Korean J. Food Sci. Anim. Resour. 2018, 38, 544–553. [Google Scholar]
- Kernerová, N.; Matoušek, V.; Vejčík, V.; Václavovský, J.; Eidepesová, L. Field tests of three final hybrids of pigs. Res. Pig Breed. 2007, 1, 36–39. [Google Scholar]
- Muhlisin; Panjono; Lee, S.J.; Lee, J.K.; Lee, S.K. Effects of crossbreeding and gender on the carcass traits and meat quality of korean native black pig and duroc crossbred. Asian Australas. J. Anim. Sci. 2014, 27, 1019–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lertpatarakomol, R.; Chaosap, C.; Chaweewan, K.; Sitthigripong, R.; Limsupavanich, R. Carcass characteristics and meat quality of purebred Pakchong 5 and crossbred pigs sired by Pakchong 5 or Duroc boar. Asian Australas. J. Anim Sci. 2019, 32, 585–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancini, R.A.; Hunt, M.C. Current research in meat color. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef] [PubMed]
- Kasprzyk, A.; Tyra, M.; Babicz, M. Fatty acid profile of pork from a local and a commercial breed. AAB 2015, 58, 379. [Google Scholar] [CrossRef]
- Alfonso, L.; Mourot, J.; Insausti, K.; Mendizabal, J.A.; Arana, A. Comparative description of growth, fat deposition, carcass and meat quality characteristics of Basque and Large White pigs. Anim. Res. 2005, 54, 33–42. [Google Scholar] [CrossRef]
- Stanišić, N.; Parunović, N.; Stajić, S.; Petrović, M.; Radović, Č.; Živković, D.; Petričević, M. Differences in meat colour between free-range Swallow Belly Mangalitsa and commercially reared Swedish Landrace pigs during 6 days of vacuum storage. Arch. Anim. Breed. 2016, 59, 159–166. [Google Scholar] [CrossRef]
- Imrich, I.; Mlyneková, E.; Mlynek, J.; Halo, M.; Kanka, T. Comparison of the Physico-Chemical Meat Quality of the Breeds Mangalitsa and Large White with Regard to the Slaughter Weight. Potravin. Slovak J. Food Sci. 2020, 14, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Petrović, M.; Radović, Č.; Parunović, N.; Radojković, D.; Savić, R. Carcass properties, chemical content and fatty acid composition of the Musculus longissimus of different pig genotypes. S. Afr. J. Anim. Sci. 2013, 43, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Kasprzyk, A.; Bogucka, J. Meat quality of Pulawska breed pigs and image of longissimus lumborum muscle microstructure compared to commercial DanBred and Naima hybrids. Arch. Anim. Breed. 2020, 63, 293–301. [Google Scholar] [CrossRef]
- Allesio, H.; Hagerman, A.; Fulkerson, B. Generation of reactive oxygen species after exhaustive aerobic and isometric exercise. Med. Sci. Sport Exer. 2000, 32, 1576–1581. [Google Scholar] [CrossRef] [PubMed]
- Franco, D.; Lorenzo, J.M. Effect of gender (barrows vs. females) on carcass traits and meat quality of Celta pig reared outdoors. J. Sci. Food Agric. 2013, 93, 727–734. [Google Scholar] [CrossRef]
- Picard, B.; Lefaucheur, L.; Berri, C.; Duclos, M.J. Muscle fiber ontogenesis in farm animal species. Reprod. Nutr. Dev. 2002, 42, 415–431. [Google Scholar] [CrossRef] [Green Version]
- Dorado, M.; Martin Gomez, E.M.; Jimenez-Colmenero, F.; Masoud, T.A. Cholestrol and fat contents of Spanish commercial pork cuts. Meat Sci. 1999, 51, 321–323. [Google Scholar] [CrossRef]
- Thomas, R.; Banik, S.; Mohan, N.H.; Sarma, D.K. Carcass and meat quality of triple cross (Ghungroo × Hampshire × Duroc) fattener pigs. Int. Food Res. J. 2017, 24, 153–158. [Google Scholar]
Ingredients (%) | A1 | A2 | A3 |
---|---|---|---|
Wheat | 36 | 42 | 46 |
Barley | 25 | 30 | 32 |
Soybean meal, extracted | 22 | 20 | 12 |
Corn | 13 | 5 | 7 |
Salt | 0.4 | 0.4 | 0.4 |
Monocalcium phosphate | 0.5 | 0.5 | 0.5 |
Magnesium oxide | 0.1 | 0.1 | 0.1 |
Amino acids and vitamins 1 | 3 | 2 | 2 |
Nutrients (%) | |||
Dry matter | 88.2 | 88.9 | 88.4 |
Fat | 5.4 | 2.4 | 1.7 |
N-substances | 17 | 16.1 | 14.3 |
Ash | 4.9 | 4.5 | 4.3 |
ME (MJ/kg) | 13.0 | 12.9 | 12.8 |
Item | Genotype (G) | Significance | ||||||
---|---|---|---|---|---|---|---|---|
PB | CH | p-Value | ||||||
Sex (S) | Barrows | Gilts | Barrows | Gilts | SEM | G | S | G × S |
n = 19 | n = 20 | n = 17 | n = 20 | |||||
Age at slaughter | 194 | 194 | 157 | 157 | - | - | - | - |
Live weight (kg) | ||||||||
at the age of 27 days | 6.03 | 6.34 | 7.08 | 5.98 | 0.18 | 0.336 | 0.263 | 0.050 |
at the age of 79 days | 26.34 | 23.10 | 32.07 | 29.90 | 0.62 | <0.001 | 0.008 | 0.581 |
at slaughter | 99.04 | 88.88 | 100.7 | 95.09 | 0.87 | 0.006 | <0.001 | 0.115 |
Average daily gain (g) | ||||||||
28th–79th day | 390.6 | 322.4 | 480.7 | 460.6 | 11.44 | <0.001 | 0.018 | 0.190 |
80th day–slaughter | 632.2 | 572.0 | 880.6 | 835.5 | 16.36 | <0.001 | <0.001 | 0.569 |
AFI 80th day–slaughter (kg/day) | 2.51 | 2.26 | 2.48 | 2.30 | - | - | - | - |
FCR 80th day–slaughter (kg/kg) | 3.89 | 3.87 | 2.83 | 2.74 | - | - | - | - |
Item | Genotype (G) | Significance | ||||||
---|---|---|---|---|---|---|---|---|
PB | CH | p-Value | ||||||
Sex (S) | Barrows | Gilts | Barrows | Gilts | SEM | G | S | G × S |
n = 19 | n = 20 | n = 17 | n = 20 | |||||
Carcass weight (kg) | 77.15 | 69.17 | 77.54 | 73.72 | 0.67 | 0.028 | <0.001 | 0.063 |
Left carcass side (kg) | 38.51 | 34.52 | 38.80 | 36.90 | 0.33 | 0.018 | <0.001 | 0.061 |
Ham (kg) | 7.17 | 6.61 | 8.72 | 8.61 | 0.15 | <0.001 | 0.113 | 0.289 |
Ham percentage (%) | 18.55 | 19.17 | 22.45 | 23.31 | 0.31 | <0.001 | 0.061 | 0.910 |
Lean meat content (%) | 52.74 c | 56.35 b | 58.23 a | 59.64 a | 0.37 | <0.001 | <0.001 | 0.016 |
Backfat thickness (mm) | 32.11 a | 26.85 b | 15.25 c | 14.81 c | 0.95 | <0.001 | <0.001 | 0.006 |
Item | Genotype (G) | Significance | ||||||
---|---|---|---|---|---|---|---|---|
PB | CH | p-Value | ||||||
Sex (S) | Barrows | Gilts | Barrows | Gilts | SEM | G | S | G × S |
n = 19 | n = 20 | n = 17 | n = 20 | |||||
pH45 | 6.23 | 6.35 | 6.08 | 6.16 | 0.03 | 0.006 | 0.110 | 0.764 |
pH24 | 5.68 a | 5.63 a,b | 5.51 b | 5.64 a,b | 0.01 | <0.001 | 0.091 | <0.001 |
Meat color | ||||||||
L* (lightness) | 51.45 | 49.64 | 55.45 | 53.97 | 0.47 | <0.001 | 0.039 | 0.878 |
a* (redness) | 1.27 | 1.30 | 1.49 | 1.82 | 0.13 | 0.158 | 0.487 | 0.564 |
b* (yellowness) | 11.01 | 10.24 | 11.70 | 11.25 | 0.16 | 0.007 | 0.047 | 0.592 |
Drip loss (%) | 2.95 | 2.94 | 3.77 | 3.35 | 0.15 | 0.040 | 0.482 | 0.461 |
Dry matter (%) | 27.18 A | 25.32 B | 28.12 A | 27.99 A | 0.21 | <0.001 | 0.003 | 0.016 |
Protein (%) | 20.04 | 20.20 | 21.96 | 23.15 | 0.33 | <0.001 | 0.263 | 0.390 |
Intramuscular fat (%) | 2.38 | 2.20 | 1.64 | 1.58 | 0.04 | <0.001 | 0.059 | 0.316 |
Cholesterol (mg/g) | 68.07 | 61.69 | 63.32 | 58.29 | 1.38 | 0.134 | 0.038 | 0.803 |
Muscle fiber diameter (μm) | 66.58 | 66.25 | 69.78 | 68.90 | 0.96 | 0.137 | 0.754 | 0.888 |
TBARS (MDA mg/kg) | ||||||||
Day 1 | 0.13 | 0.15 | 0.16 | 0.17 | 0.01 | 0.065 | 0.373 | 0.577 |
Day 3 | 0.15 | 0.16 | 0.19 | 0.19 | 0.01 | 0.004 | 0.548 | 0.688 |
Day 6 | 0.17 | 0.19 | 0.21 | 0.22 | 0.01 | 0.010 | 0.266 | 0.442 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nevrkla, P.; Václavková, E.; Rozkot, M. The Indigenous Prestice Black-Pied Pig Breed Differs from a Commercial Hybrid in Growth Intensity, Carcass Value and Meat Quality. Agriculture 2021, 11, 331. https://doi.org/10.3390/agriculture11040331
Nevrkla P, Václavková E, Rozkot M. The Indigenous Prestice Black-Pied Pig Breed Differs from a Commercial Hybrid in Growth Intensity, Carcass Value and Meat Quality. Agriculture. 2021; 11(4):331. https://doi.org/10.3390/agriculture11040331
Chicago/Turabian StyleNevrkla, Pavel, Eva Václavková, and Miroslav Rozkot. 2021. "The Indigenous Prestice Black-Pied Pig Breed Differs from a Commercial Hybrid in Growth Intensity, Carcass Value and Meat Quality" Agriculture 11, no. 4: 331. https://doi.org/10.3390/agriculture11040331