Evapotranspiration Partition and Dual Crop Coefficients in Apple Orchard with Dwarf Stocks and Dense Planting in Arid Region, Aksu Oasis, Southern Xinjiang
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Measurement Set-Up
2.3.1. ETa−w Calculated with Water Balance Model
2.3.2. Evapotranspiration Simulation
2.3.3. Calibration and Validation of SIMDualKc Model
2.3.4. Evaluation of Evapotranspiration Simulation
2.3.5. Yield and Water Productivity
2.4. Statistical Analyses
3. Results and Discussion
3.1. SIMDualKc Model Parameterization and Calibration
3.2. Crop Coefficient-Kc-Local
3.3. Dual Crop Coefficients
3.4. ETa and WP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dang, Y. Investigation of the Current Status of Dwarf Apple Cultivation in Aksu; Tarim University: Xinjiang, China, 2018. [Google Scholar]
- Li, X.; Li, Y.; Jiang, Z. Present situation and development prospect of apple production in Aksu area of Xinjiang. Apple Prod. Yantai 2020, 3, 10–12. [Google Scholar]
- Cao, H. Water Consumption Characteristics and Irrigation Schedule Optimization of Dwarf Apple Orchard with Drip Irrigation in Southern Xinjiang; Tarim University: Xinjiang, China, 2021. [Google Scholar]
- Li, Z.; Chen, Y.; Shen, Y. Analysis of changing pan evaporation in the arid region of northwest China. Water Resour. Res. 2013, 49, 2205–2212. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, M.; Zhou, Q.; Sun, Z.; Chen, J. Analysis of agricultural irrigation water-use coefficient in Xinjiang arid region. Trans. Chin. Soc. Agric. Eng. 2013, 29, 100–107. [Google Scholar]
- Li, B.; Guo, X.; Sun, X.; Ma, J. Study on water consumption characteristics and crop coefficients of young apple trees at different lower limit of irrigation under water storage pit irrigation conditions. Water Sav. Irrig. 2016, 6, 10–15. [Google Scholar]
- Gao, Y.; Yang, L.; Shen, X.; Li, X.; Sun, J.; Duan, A.; Wu, L. Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effect of SDI on grain yield and water use efficiency. Agric. Water Manag. 2014, 146, 1–10. [Google Scholar] [CrossRef]
- Marsal, J.; Girona, J.; Casadesus, J.; Lope, G.; Stöckle, C.O. Crop coefficient (Kc) for apple: Comparison between measurements by a weighing lysimeter and prediction by CropSyst. Irrig. Sci. 2013, 31, 455–463. [Google Scholar] [CrossRef]
- Gao, Y.; Duan, A.; Sun, J.; Li, F.; Liu, Z.; Liu, H.; Liu, Z. Crop coefficient and water-use efficiency of winter wheat/spring maize strip intercropping. Field. Crop. Res. 2009, 111, 65–73. [Google Scholar] [CrossRef]
- Peddinti, S.R.; Kambhammettu, B.P. Dynamics of crop coefficients for citrus orchards of central Indian using water balance and eddy covariance flux partition techniques. Agric. Water Manag. 2019, 212, 68–77. [Google Scholar] [CrossRef]
- Dragoni, D.; Lakso, A.N.; Piccioni, R.M. Transpiration of apple trees in a humid climate using heat pulse sap flow gauges calibrated with whole-canopy gas exchange chambers. Agric. Forest Meteorol. 2005, 130, 85–94. [Google Scholar] [CrossRef]
- Santos, F.L.; Valverde, P.C.; Reis, J.L.; Ramos, A.F.; Castanheira, N.L. Sap flow scaling and crop coefficient of dry-farmed olive orchards converted to irrigation. Acta Hortic. 2012, 949, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Mobe, N.T.; Dzikiti, S.; Zirebwa, S.F.; Midgley, S.J.E.; von Loeper, W.; Mazvimavi, D.; Ntshidi, Z.; Jovanovic, N.Z. Estimating crop coefficients for apple orchards with varying canopy cover using measured data from twelve orchards in the Western Cape Province, South Africa. Agric. Water Manag. 2020, 233, 106103. [Google Scholar] [CrossRef]
- Paço, T.A.; Ferreira, M.I.; Rosa, R.D.; Paredes, P.; Rodrigues, G.C.; Conceição, N.; Pacheco, C.A.; Pereira, L.S. The dual crop coeficiente approach using a density fator to simulate the evapotranspiration of a peach orchard: SIMDualKc model versus eddy covariance measurements. Irrig. Sci. 2012, 30, 115–126. [Google Scholar] [CrossRef]
- Paço, T.A.; Pôças, I.; Cunha, M.; Silvestre, J.C.; Santos, F.; Paredes, P.; Pereira, L. Evapotranspiration and crop coefficients for a super intensive live orchard. An application of SIMDualKc and METRIC models using ground and satellite observations. J. Hydrol. 2014, 519, 2067–2080. [Google Scholar]
- Zanotelli, D.; Montagnani, L.; Andreotti, C.; Tagliavini, M. Evapotranspiration and crop coefficient patterns of an apple orchard in a sub-humid environment. Agric. Water Manag. 2019, 226, 105756. [Google Scholar] [CrossRef]
- Paço, T.A.; Rosa, R.D.; Paredes, P.; Rodrigues, G.C.; Conceição, N.; Ferreira, M.I.; Pereira, L.S. The dual crop coeficiente approach: Testing the SIMDualKc model with peach orchard evapotranspiration eddy covariance measurements. Acta Hortic. 2011, 889, 181–188. [Google Scholar] [CrossRef]
- Paço, T.A.; Paredes, P.; Pereira, L.S.; Silvestre, J.; Santos, F.L. Crop coefficients and transpiration of a super intensive arbequina olive orchard using the Dual Kc approach and the Kcb computation with the fraction of ground cover and height. Water 2019, 11, 383. [Google Scholar] [CrossRef] [Green Version]
- Autovino, D.; Rallo, G.; Provenzano, G. Predicting soil and plant water status dynamic in olive orchards under different irrigation systems with Hydrus-2D: Model performance and scenario analysis. Agric. Water Manag. 2018, 203, 225–235. [Google Scholar] [CrossRef]
- Cammalleri, C.; Ciraolo, G.; Minacapilli, M.; Rallo, G. Evapotranspiration from an olive orchard using remote sensing-based Dual Coefficient Approach. Water Resour. Manag. 2013, 27, 4877–4895. [Google Scholar] [CrossRef]
- Odi-Lara, M.; Campos, I.; Neale, C.M.U.; Ortega-Farías, S.O.; Poblete-Echeverría, C.; Balbontín, C.; Calera, A. Estimating evapotranspiration of an apple orchard using a remote sensing-based soil water balance. Remote Sens. 2016, 8, 253. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Rase, D.; Smith, M. Crop evapotranspiration: Guidelines for computing crop requirements. United Nations FAO Irrigation and Drainage Paper No.56. FAO Rome 1998, 300, D05109. [Google Scholar]
- Conceição, N.; Tezza, L.; Häusler, M.; Lourenço, S.; Pacheco, C.A.; Ferreira, M.I. Three Years of monitoring evapotranspiration components and crop and stress coefficients in a deficit irrigated intensive olive orchard. Agric. Water Manag. 2017, 191, 138–152. [Google Scholar] [CrossRef]
- Li, X.; Shi, P.; Yang, X.; He, L.; Kang, S. Water consumption variation and growth of apple trees under drip irrigation in Shiyanghe river basin of Gansu Province. J. Water Resour. Water Eng. 2005, 16, 19–23. [Google Scholar]
- Good, S.P.; Noone, D.; Bowen, G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 2015, 349, 175–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, Q. Soil Moisture Consumption Pattern and Growth Response of Apple Orchard in the Loess Plateau; Northwest A&F University: Yangling, China, 2011. [Google Scholar]
- Jia, G.; Yang, L.; Li, C.; An, D.; Wang, R.; Gao, X. Characteristics and Water Suitability of Apple at the Eastern Foot of Taihang Mountains in Central-south Region of Hebei Province. Meteorol. Environ. Sci. 2020, 43, 109–114. [Google Scholar]
- Liang, Z. Effect of Water and Fertilizer on Apple Growth and Evapotranspiration Estimation in Weibei Plateau; Northwest A&F University: Yangling, China, 2020. [Google Scholar]
- Volschenk, T. Evapotranspiration and crop coefficients of Golden Delicious/M793 apple trees in the Koue Bokkeveld. Agric. Water Manag. 2017, 194, 184–191. [Google Scholar] [CrossRef]
- Conceição, N.; Paço, T.A.; Silva, A.L.; Ferreira, M.I. Crop coefficients for a pear orchard (Pyrus communis L.) obtained using eddy covariance. Acta Hortic. 2008, 792, 707. [Google Scholar] [CrossRef]
- Wang, J.; Sammis, T.W.; Andales, A.A.; Simmons, L.J.; Gutschick, V.P.; Miller, D.R. Crop coefficients of open-canopy pecan orchards. Agric. Water Manag. 2007, 88, 253–262. [Google Scholar] [CrossRef]
- Hillel, D. Environmental Soil Physics, 1st ed.; Academics Press: London, UK, 1998. [Google Scholar]
- Rosa, R.D.; Paredes, P.; Rodrigues, G.C.; Alves, I.; Fernando, R.M.; Pereira, L.S.; Allen, R.G. Implementing the dual crop coefficient approach in interactive software. 1. Background and computational strategy. Agric. Water Manag. 2012, 103, 8–24. [Google Scholar] [CrossRef]
- Li, B.; Liu, R.; Liu, S.; Liu, Q.; Liu, F.; Zhou, G. Monitoring vegetation coverage variation of winter wheat by low-altitude UAV remote sensing system. Trans. Chin. Soc. Agric. Eng. 2012, 28, 160–165. [Google Scholar]
- Gao, Y.; Duan, A.; Qiu, X.; Li, X.; Pauline, U.; Sun, J.; Wang, H. Modeling evapotranspiration in maize/soybean strip intercropping system with the evaporation and radiation interception by neighboring species model. Agric. Water Manag. 2013, 128, 110–119. [Google Scholar] [CrossRef]
- Willmott, C.J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef] [Green Version]
- Tang, Q.; Zhang, C. Data processing system (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci. 2013, 20, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.L. Assessing olive evapotranspiration partitioning from soil water balance and radiometric soil and canopy temperatures. Agronomy 2018, 8, 43. [Google Scholar] [CrossRef] [Green Version]
- Mhawej, M.; Nasrallah, A.; Abunnasr, Y.; Fadel, A.; Faour, G. Better irrigation management using the satellite-based adjusted single crop coefficient (Kc) for over sixty crop types in California, USA. Agric. Water Manag. 2018, 256, 107059. [Google Scholar] [CrossRef]
- Abrisquta, I.; Abrisqueta, J.M.; Tapia, L.M.; Munguíad, J.P.; Conejeroa, W.; Vera, J.; Ruiz-Sánchez, M.C. Basal crop coefficients for early-season peach trees. Agric. Water Manag. 2013, 121, 158–163. [Google Scholar] [CrossRef]
- Munitz, S.; Schwartz, A.; Netzer, Y. Water consumption, crop coefficient and leaf area relations of a Vitis vinifera cv. ’Cabernet Sauvignon’ vineyard. Agric. Water Manag. 2019, 219, 86–94. [Google Scholar] [CrossRef]
- Martínez-Cruz, T.E.; Slack, D.C.; Ogden, K.L.; Ottman, M. The water use of sweet sorghum and development of crop coefficients. Irrig. Drain. 2015, 64, 93–104. [Google Scholar] [CrossRef]
- Marcial-Pablo, M.D.J.; Ontiveros-Capurata, R.E.; Jiménez-Jiménez, S.I.; Ojeda-Bustamante, W. Maize Crop Coefficient Estimation Based on Spectral Vegetation Indices and Vegetation Cover Fraction Derived from UAV-Based Multispectral Images. Agronomy 2021, 11, 668. [Google Scholar] [CrossRef]
- Zhang, J.; Duan, J. Analyses on Springtime Runoff Variance of Aksu River and Its Climate Causes. Plateau. Meteorol. 2009, 28, 465–473. [Google Scholar]
- Li, R.; Zhao, J.; Shi, H.; Wang, N.; Qi, Y.; Feng, Y.; Jia, Q. Simulation of evapotranspiration of corn under mulched drip irrigation based on SIMDual_Kc model in Tongliao area of Inner Mongolia. Trans. Chin. Soc. Agric. Eng. 2018, 34, 127–134. [Google Scholar]
- Wang, Z.; Cai, H.; Yu, L.; Wang, X.; Shi, X. Estimation of evapotranspiration and soil evaporation of winter wheat in arid region of Northwest China based on SIMDualKc model. Trans. Chin. Soc. Agric. Eng. 2016, 32, 126–136. [Google Scholar]
- Miao, Q.; Rosa, R.D.; Shi, H.; Paredes, P.; Zhu, L.; Dai, J.; Gonçalves, J.M.; Pereira, L.S. Modeling water use, transpiration and soil evaporation of spring wheat–maize and spring wheat–sunflower relay intercropping using the dual crop coefficient approach. Agric. Water Manag. 2016, 165, 211–229. [Google Scholar] [CrossRef]
- Zhao, N.; Liu, Y.; Cai, J. Calculation of crop coefficient and water consumption of summer maize. J. Hydraul. Eng. 2010, 41, 953–959. [Google Scholar]
- Cui, N. Efficient Water Use Mechanism and Application Patterns of Optimized Regulated Deficit Irrigation of Pear-Jujube Tree in the Semi Arid Region of Northwest China; Northwest A&F University: Yangling, China, 2009. [Google Scholar]
- Sun, X.; Chai, Z.; Jiang, P. Effects on the Yields of the Red Fuji Apple with Water and Nitrogen Coupling in the South of Xinjiang. North Hortic. 2011, 2, 19–21. [Google Scholar]
- Küçükyumuk, C.; Kacal, E.; Yildiz, H. Effects of Different Deficit Irrigation Strategies on Yield, Fruit Quality and Some Parameters: ‘Braeburn’ Apple Cultivar. Not. Bot. Horti. Agrobo. 2013, 41, 510–517. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Wang, Z.; Li, W.; Dou, Y.; Zhang, J.; Wen, Y. Effect of Water and Fertilizer Coupling on Water Consumption and Crop Coefficient of Drip Irrigated Grape in Extreme Arid Area. J. Soil. Water Conserv. 2019, 33, 279–286. [Google Scholar]
- Zeng, J. Water Consumption Characteristics and Irrigation Schedule of Mountain Apple Tres of Surge-Root Irrigation in Loess Hilly-Gullied Area of Northern Shananxi; Xi’an University of Technology: Xi’an, China, 2018. [Google Scholar]
- Zhong, Y.; Fei, L.; Zeng, J.; Fu, Y.; Dai, Z. Effects of root-zone water deficit on yield, quality and water use efficiency of young apple trees under surge-root irrigation. Trans. Chin. Soc. Agric. Mach. 2019, 35, 78–87. [Google Scholar]
- Wu, N.; Yang, C.; Luo, Y.; Sun, L. Estimating Evapotranspiration and Its Components in Cotton Fields under Deficit Irrigation Conditions. Pol. J. Environ. Stud. 2018, 28, 393–405. [Google Scholar] [CrossRef] [Green Version]
- Martins, J.D.; Rodrigues, G.C.; Paredes, P.; Carlesso, R.; Oliveira, Z.B.; Kniesa, A.E.; Petrya, M.T.; Pereirab, L.S. Dual crop coefficients for maize in southern Brazil: Model testing for sprinkler and drip irrigation and mulched soil. Biosyst. Eng. 2013, 115, 291–310. [Google Scholar] [CrossRef]
- Liao, Y.; Cao, H.; Liu, X.; Xue, W. The effects of mulching and deficit irrigation on growth, evapotranspiration and yield of mountain apple trees. Agric. Res. Arid. Areas 2020, 38, 47–56. [Google Scholar]
Depth (cm) | Bulk Density (g/cm3) | Filed Capacity (m3/m3) | Wilting Point (m3/m3) | Clay (%) | Silt (%) | Sand (%) |
---|---|---|---|---|---|---|
0–20 | 1.41 | 0.12 | 0.06 | 0.77 | 4.24 | 94.99 |
20–40 | 1.52 | 0.13 | 0.07 | 1.08 | 6.33 | 92.59 |
40–60 | 1.57 | 0.14 | 0.07 | 0.67 | 3.15 | 96.17 |
60–80 | 1.54 | 0.14 | 0.07 | 0.73 | 3.73 | 95.54 |
80–100 | 1.50 | 0.23 | 0.12 | 1.28 | 8.42 | 90.3 |
100–120 | 1.51 | 0.35 | 0.18 | 4.41 | 11.75 | 86.84 |
Year | Stage | Irrigation Amount (mm) | Fertilizer (kg/ha) | ||||||
---|---|---|---|---|---|---|---|---|---|
W1 | W2 | W3 | W4 | W5 | Nitrogen | K2O | P2O5 | ||
2019 | 4.23–5.5 (Flowering and fruit period) | 27 | 36 | 45 | 54 | 63 | 13.75 | 9.86 | 15.13 |
5.6–7.20 (Fruit expansion period) | 216 | 288 | 360 | 432 | 504 | 45.11 | 40.89 | 77.06 | |
7.21–8.10 (Fruit maturity) | 40.5 | 54 | 67.5 | 81 | 94.5 | 5.99 | 14.03 | 29.15 | |
8.11–10.26 (Deciduous period) | 94.5 | 126 | 157.5 | 189 | 220.5 | 10.95 | 22.46 | 31.84 | |
Total | 378.0 | 504.0 | 630.0 | 756.0 | 882.0 | 75.81 | 87.25 | 153.18 | |
2020 | 4.22–5.7 (Flowering and fruit period) | 27 | 36 | 45 | 54 | 63 | 13.75 | 9.86 | 15.13 |
5.8–7.21 (Fruit expansion period) | 216 | 288 | 360 | 432 | 504 | 45.11 | 40.89 | 77.06 | |
7.22–8.12 (Fruit maturity) | 40.5 | 54 | 67.5 | 81 | 94.5 | 5.99 | 14.03 | 29.15 | |
8.13–10.26 (Deciduous period) | 94.5 | 126 | 157.5 | 189 | 220.5 | 10.95 | 22.46 | 31.84 | |
Total | 378.0 | 504.0 | 630.0 | 756.0 | 882.0 | 75.81 | 87.25 | 153.18 |
Parameter | Initial Values | Calibrated Values |
---|---|---|
Crop coefficients | ||
Kcb-ini | 1.10 | 1.00 |
Kcb-mid | 1.33 | 1.30 |
Kcb-end | 1.09 | 0.89 |
p | 0.55 | 0.50 |
Soil evaporation | ||
Depth of the surface soil layer, Ze (m) | 0.15 | 0.10 |
Total evaporable water, TEW (mm) | 30 | 21 |
Readily evaporable water, REW (mm) | 10 | 8 |
Year | b | R2 | AAE (mm/day) | RMSE (mm/day) | NSE | Performance Rating |
---|---|---|---|---|---|---|
2019 | 0.97 | 0.97 | 0.28 | 0.34 | 0.97 | Pretty good |
2020 | 1.1 | 0.99 | 0.27 | 0.35 | 0.97 | Pretty good |
Year | Treatment | Ini-Kc-adj | Mid-Kc-adj | Late-Kc-adj | Average |
---|---|---|---|---|---|
2019 | W1 | 0.71 | 0.55 | 0.60 | 0.62 |
W2 | 0.79 | 0.73 | 0.75 | 0.76 | |
W3 | 0.86 | 0.91 | 0.89 | 0.90 | |
W4 | 0.93 | 1.09 | 1.03 | 1.04 | |
W5 | 1.00 | 1.29 | 1.17 | 1.18 | |
2020 | W1 | 0.53 | 0.53 | 0.45 | 0.53 |
W2 | 0.59 | 0.69 | 0.58 | 0.66 | |
W3 | 0.64 | 0.86 | 0.71 | 0.80 | |
W4 | 0.70 | 1.03 | 0.85 | 0.93 | |
W5 | 0.75 | 1.27 | 0.99 | 1.08 |
Year | Treatment | Yield (kg/ha) | ETa (mm) | WP (kg/m3) |
---|---|---|---|---|
2019 | W1 | 16,480.00 d | 415.55 e | 3.97 a |
W2 | 18,384.00 c | 539.69 d | 3.41 a | |
W3 | 26,377.60 a | 665.21 c | 3.97 a | |
W4 | 26,960.00 a | 794.76 b | 3.39 a | |
W5 | 24,659.20 b | 919.12 a | 2.68 b | |
2020 | W1 | 20,856.00 c | 443.04 e | 4.71 b |
W2 | 22,152.00 c | 587.34 d | 3.77 d | |
W3 | 34,704.00 a | 706.03 c | 4.92 a | |
W4 | 35,328.00 a | 831.06 b | 4.25 c | |
W5 | 28,272.00 b | 989.71 a | 2.86 e |
Growing Stage | 2019 | 2020 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
W1 | W2 | W3 | W4 | W5 | W1 | W2 | W3 | W4 | W5 | ||
Flowering and fruit period | E/% | 44.00 | 41.12 | 38.57 | 35.64 | 32.74 | 45.61 | 43.88 | 42.43 | 41.20 | 39.64 |
T/% | 56.00 | 58.88 | 61.43 | 64.36 | 67.26 | 54.39 | 56.12 | 57.57 | 58.80 | 60.36 | |
ETc/mm | 36.05 | 39.89 | 43.65 | 47.30 | 50.79 | 34.44 | 38.05 | 41.75 | 45.46 | 49.05 | |
Fruit expansion period | E/% | 29.74 | 27.53 | 25.03 | 20.45 | 13.41 | 31.16 | 28.66 | 25.39 | 20.20 | 11.93 |
T/% | 70.26 | 72.47 | 74.97 | 79.55 | 86.59 | 68.84 | 71.34 | 74.61 | 79.80 | 88.07 | |
ETc/mm | 221.73 | 285.81 | 349.81 | 412.90 | 470.12 | 214.17 | 283.04 | 350.45 | 417.27 | 473.53 | |
Fruit maturity | E/% | 27.50 | 25.90 | 23.40 | 19.82 | 13.87 | 25.33 | 23.27 | 22.04 | 19.47 | 11.39 |
T/% | 72.50 | 74.10 | 76.60 | 80.18 | 12.20 | 74.67 | 76.73 | 77.96 | 80.53 | 88.61 | |
ETc/mm | 53.65 | 71.42 | 89.13 | 107.05 | 126.75 | 55.57 | 72.85 | 91.45 | 110.55 | 137.28 | |
Deciduous period | E/% | 27.37 | 25.47 | 22.86 | 18.57 | 12.20 | 24.31 | 22.90 | 21.20 | 18.24 | 13.76 |
T/% | 72.63 | 74.53 | 77.14 | 81.43 | 87.80 | 75.69 | 77.10 | 78.80 | 81.76 | 86.24 | |
ETc/mm | 124.57 | 155.37 | 186.25 | 217.20 | 246.48 | 94.84 | 123.50 | 152.20 | 180.94 | 211.98 | |
Whole growth period | E/% | 29.97 | 27.72 | 25.09 | 20.76 | 14.24 | 29.97 | 27.65 | 25.03 | 20.89 | 13.85 |
T/% | 70.03 | 72.28 | 74.91 | 79.24 | 85.76 | 70.03 | 72.35 | 74.97 | 79.11 | 86.15 | |
ETc/mm | 436.00 | 552.49 | 668.83 | 784.45 | 894.13 | 399.02 | 517.44 | 635.85 | 754.22 | 871.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, H.; Wang, H.; Li, Y.; Hamani, A.K.M.; Zhang, N.; Wang, X.; Gao, Y. Evapotranspiration Partition and Dual Crop Coefficients in Apple Orchard with Dwarf Stocks and Dense Planting in Arid Region, Aksu Oasis, Southern Xinjiang. Agriculture 2021, 11, 1167. https://doi.org/10.3390/agriculture11111167
Cao H, Wang H, Li Y, Hamani AKM, Zhang N, Wang X, Gao Y. Evapotranspiration Partition and Dual Crop Coefficients in Apple Orchard with Dwarf Stocks and Dense Planting in Arid Region, Aksu Oasis, Southern Xinjiang. Agriculture. 2021; 11(11):1167. https://doi.org/10.3390/agriculture11111167
Chicago/Turabian StyleCao, Hui, Hongbo Wang, Yong Li, Abdoul Kader Mounkaila Hamani, Nan Zhang, Xingpeng Wang, and Yang Gao. 2021. "Evapotranspiration Partition and Dual Crop Coefficients in Apple Orchard with Dwarf Stocks and Dense Planting in Arid Region, Aksu Oasis, Southern Xinjiang" Agriculture 11, no. 11: 1167. https://doi.org/10.3390/agriculture11111167
APA StyleCao, H., Wang, H., Li, Y., Hamani, A. K. M., Zhang, N., Wang, X., & Gao, Y. (2021). Evapotranspiration Partition and Dual Crop Coefficients in Apple Orchard with Dwarf Stocks and Dense Planting in Arid Region, Aksu Oasis, Southern Xinjiang. Agriculture, 11(11), 1167. https://doi.org/10.3390/agriculture11111167