Simulation of Soil Water and Heat Flow under Plastic Mulching and Different Ridge Patterns
Abstract
:1. Introduction
- (1)
- Calibrate and verify the effectiveness of HYDRUS-2D modeling under the conditions of full-film double-ridge planting;
- (2)
- Simulate the temporal and spatial distribution of soil water–heat flow and laws of water balance under different planting conditions;
- (3)
- Explore the influence of plastic film mulching and different ridge morphologies on the distribution of soil water and heat flow and provide a theoretical basis for the design of ridge and furrow coverage systems.
2. Materials and Methods
2.1. Experimental Site Description
2.2. Experimental Design
2.3. Measurements
2.4. Construction of Mathematical Model of Water and Heat Transport
2.4.1. Soil Water Flow
2.4.2. Root Water Uptake
2.4.3. Soil Heat Flow
2.4.4. Definite Solution Condition
2.4.5. Parameter Calibration
3. Results
3.1. Model Calibration and Validation
3.2. Two-Dimensional Distribution of Soil Water and Heat
3.3. Dynamic Changes of Soil Water and Heat
3.4. Soil Water Balance
4. Discussion
4.1. Effect of Plastic Film Mulching on Soil Moisture and Heat
4.2. The Influence of Ridge Patterns on Soil Moisture and Heat
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zribi, W.; Aragüés, R.; Medina, E.; Faci, J.M. Efficiency of inorganic and organic mulching materials for soil evaporation control. Soil Tillage Res. 2015, 148, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Kader, B.M.; Senge, M.; Mojid, M.A.; Ito, K. Recent advances in mulching materials and methods for modifying soil environment. Soil Tillage Res. 2017, 168, 155–166. [Google Scholar] [CrossRef]
- Shen, Q.; Ding, R.; Du, T.; Tong, L.; Li, S. Water use effectiveness is enhanced using film mulch through increasing transpiration and decreasing evapotranspiration. Water 2019, 11, 1153. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Liao, Y.; Jia, Z. Research advances and prospects of film mulching in arid and semi-arid areas. Agric. Res. Arid Areas 2005, 23, 208–213. [Google Scholar]
- Liu, Q.; Chen, Y.; Liu, Y.; Wen, X.; Liao, Y. Coupling effects of plastic film mulching and urea types on water use efficiency and grain yield of maize in the Loess Plateau, China. Soil Tillage Res. 2016, 157, 1–10. [Google Scholar] [CrossRef]
- Gan, Y.; Siddique, K.; Turner, N.C.; Li, X.; Liu, L. Ridge-furrow mulching systems-an innovative technique for boosting crop productivity in semiarid rain-fed environments. Adv. Agron. 2013, 118, 429–476. [Google Scholar]
- Gu, X.; Cai, H.; Chen, P.; Li, Y.; Fang, H.; Li, Y. Ridge-furrow film mulching improves water and nitrogen use efficiencies under reduced irrigation and nitrogen applications in wheat field. Field Crop. Res. 2021, 270, 108214. [Google Scholar] [CrossRef]
- Gu, X.; Li, Y.; Du, Y.; Yin, M. Ridge-furrow rainwater harvesting with supplemental irrigation to improve seed yield and water use efficiency of winter oilseed rape (Brassica napus L.). J. Integr. Agr. 2017, 16, 1162–1172. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.; Chen, X.; Cai, T.; Wei, T.; Yang, W.; Shahzad, A.; Peng, Z.; Jia, Z. Effects of Ridge-Furrow System Combined with Different Degradable Mulching Materials on Soil Water Conservation and Crop Production in Semi-Humid Areas of China. Front. Plant Sci. 2017, 8, 1877–1886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, P.; Wang, H.; Li, L.; Liu, X.; Qian, R.; Wang, J.; Yan, X.; Cai, T.; Zhang, P.; Jia, Z.; et al. Ridge-furrow mulching system regulates hydrothermal conditions to promote maize yield and efficient water use in rainfed farming area. Agric. Water Manag. 2020, 232, 106041. [Google Scholar] [CrossRef]
- Li, W.; Xiong, L.; Wang, C.; Liao, Y.; Wu, W. Optimized ridge–furrow with plastic film mulching system to use precipitation efficiently for winter wheat production in dry semi–humid areas. Agric. Water Manag. 2019, 218, 211–221. [Google Scholar] [CrossRef]
- Qin, S.; Yeboah, S.; Wang, D.; Zhang, J.; Unc, A. Effects of ridge-furrow and plastic mulching planting patterns on microflora and potato tuber yield in continuous cropping soil. Soil Use Manag. 2016, 32, 465–473. [Google Scholar] [CrossRef]
- Gu, X.; Cai, H.; Du, Y.; Li, Y. Effects of film mulching and nitrogen fertilization on rhizosphere soil environment, root growth and nutrient uptake of winter oilseed rape in northwest China. Soil Tillage Res. 2019, 187, 194–203. [Google Scholar] [CrossRef]
- Yang, J.; Mao, X.; Wang, K.; Yang, W. The coupled impact of plastic film mulching and deficit irrigation on soil water/heat transfer and water use efficiency of spring wheat in Northwest China. Agric. Water Manag. 2018, 201, 232–245. [Google Scholar] [CrossRef]
- Zhao, Y.; Mao, X.; Shukla, M.K.; Li, S. Modeling Soil Water–Heat Dynamic Changes in Seed-Maize Fields under Film Mulching and Deficit Irrigation Conditions. Water 2020, 12, 1330. [Google Scholar] [CrossRef]
- Chen, B.; Liu, E.; Mei, X.; Yan, C.; Garré, S. Modelling soil water dynamic in rain-fed spring maize field with plastic mulching. Agric. Water Manag. 2018, 198, 19–27. [Google Scholar] [CrossRef]
- Elias, E.A.; Rogerio, C.; Torriani, H.H.; Quirijn, D. Analytical soil-temperature model: Correction for temporal variation of daily amplitude. Soil Sci. Soc. Am. J. 2004, 68, 784–788. [Google Scholar] [CrossRef]
- Ma, B.; Wang, C.; Li, F.; Qiang, S.; Zhao, H. Ridge-furrow with full plastic film mulching improves water use efficiency and tuber yields of potato in a semiarid rainfed ecosystem. Field Crop. Res. 2014, 161, 137–148. [Google Scholar]
- Wang, Q.; Ren, X.; Song, X.; Hu, G.; Zhang, E.; Wang, H.; Maureen, V. The optimum ridge–furrow ratio and suitable ridge-covering material in rainwater harvesting for oats production in semiarid regions of China. Field Crop. Res. 2015, 172, 106–118. [Google Scholar]
- Wang, X.; Chen, M.; Yi, X.; Fu, G. Effects of ridge width and planting density on corn yields in rainwater-harvesting system with plastic film mulching on ridge. Trans. Chin. Soc. Agric. Eng. 2009, 25, 40–47. [Google Scholar]
- Zhou, L.; Li, F.; Jin, S.; Song, Y. How two ridges and the furrow mulched with plastic film affect soil water, soil temperature and yield of maize on the semiarid Loess Plateau of China. Field Crop. Res. 2009, 113, 41–47. [Google Scholar] [CrossRef]
- Li, F.; Wang, J.; Xu, J.; Xu, H. Productivity and soil response to plastic film mulching durations for spring wheat on entisols in the semiarid Loess Plateau of China. Soil Tillage Res. 2004, 78, 9–20. [Google Scholar] [CrossRef]
- Li, F.; Guo, A.; Hong, W. Effects of plastic film mulch on yield of spring wheat. Field Crops Res. 1999, 63, 79–86. [Google Scholar] [CrossRef]
- Xia, Z.; Zhang, G.; Zhang, S.; Wang, Q.; Fu, Y.; Lu, H. Efficacy of Root Zone Temperature Increase in Root and Shoot Development and Hormone Changes in Different Maize Genotypes. Agriculture 2021, 11, 477. [Google Scholar] [CrossRef]
- Li, J.; Zou, Z. Effects of air temperature, solar radiation and soil water on dry matter accumulation and allocation of greenhouse muskmelon seedlings and related simulation models. Chin. J. Appl. Ecol. 2007, 18, 2715–2721, (In Chinese with English abstract). [Google Scholar]
- Liu, X.; Wang, Y.; Yan, X.; Hou, H.; Liu, P.; Cai, T.; Zhang, P.; Jia, Z.; Ren, X.; Chen, X. Appropriate ridge-furrow ratio can enhance crop production and resource use efficiency by improving soil moisture and thermal condition in a semi-arid region. Agric. Water Manag. 2020, 240, 106289. [Google Scholar] [CrossRef]
- Šimuůnek, J.; van Genuchten, M.T.; Šejna, M. Recent Developments and Applications of the HYDRUS Computer Software Packages. Vadose Zone J. 2016, 15, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Bufon, V.B.; Lascano, R.J.; Bednarz, C.; Booker, J.D.; Gitz, D.C. Soil water content on drip irrigated cotton: Comparison of measured and simulated values obtained with the Hydrus 2-D model. Irrig. Sci. 2011, 30, 259–273. [Google Scholar] [CrossRef]
- Kanda, E.K.; Senzanje, A.; Mabhaudhi, T. Modelling soil water distribution under Moistube irrigation for cowpea (VIGNA unguiculata (L.) Walp.) crop. Irrig. Drain. 2020, 69, 1116–1132. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, S.; Wang, F.; Binley, A. Simulation of soil water flow and heat transport in drip irrigated potato field with raised beds and full plastic-film mulch in a semiarid area. Agric. Water Manag. 2018, 209, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhai, X.; Wang, Z.; Li, H.; Jiang, R.; Hill, R.L.; Si, B.; Hao, F. Simulation of soil water and heat flow in ridge cultivation with plastic film mulching system on the Chinese Loess Plateau. Agric. Water Manag. 2018, 202, 99–112. [Google Scholar] [CrossRef]
- Kader, M.A.; Nakamura, K.; Senge, M.; Mojid, M.A. Two-dimensional numerical simulations of soil-water and heat flow in a rainfed soybean field under plastic mulching. Water Supply. 2021, 21, 2615–2632. [Google Scholar] [CrossRef]
- Richards, L.A. Capillary conduction of liquids through porous mediuns. Physics 1931, 1, 318–333. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Mualem, Y. A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Feddes, R.A.; Kowalik, P.J.; Zaradny, H. Simulation of Field Water Use and Crop Yield; John Wiley and Sons: New York, NY, USA, 1978. [Google Scholar]
- Wesseling, J.G.; Brandyk, T. Introduction of the Occurrence of High Groundwater Levels and Surface Water Storage in Computer Program SWATRE; Instituut voor Cultuurtechniek en Waterhuishouding: Wageningen, The Netherlands, 1985. [Google Scholar]
- Vrugt, J.A.; Hopmans, J.W.; Šimunek, J. Calibration of a Two-Dimensional Root Water Uptake Model. Soil Sci. Soc. Am. J. 2001, 65, 1027–1037. [Google Scholar] [CrossRef]
- Sophocleous, M. Analysis of water and heat flow in unsaturated-saturated porous media. Water Resour. Res. 1979, 15, 1195–1206. [Google Scholar] [CrossRef]
- Šimůnek, J.; van Genuchten, M.T.; Šejna, M. Development and Applications of the HYDRUS and STANMOD Software Packages and Related Codes. Vadose Zone J. 2008, 7, 587–600. [Google Scholar] [CrossRef] [Green Version]
- Šimůnek, J.; Suarez, D.L. UNSATCHEM-2D Code for Simulating Two-Dimensional Variably Saturated Water Flow, Heat Transport, Carbon Dioxide Production and Transport, and Multicomponent Solute Transport with Major Ion Equilibrium and Kinetic Chemistry; Version 1.1, Research Report No. 128.; U.S. Salinity Laboratory, USDA, ARS: Riverside, CA, USA, 1993. [Google Scholar]
- Chung, S.; Horton, R. Soil heat and water flow with a partial surface mulch. Water Resour. Res. 1987, 23, 2175–2186. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration—Guidelines for computing crop water requirements. FAO Irrig. Drain. Pap. 56. 1998, 300, D05109. [Google Scholar]
- Petrone, R.M.; Waddington, J.M.; Price, J.S. Ecosystem scale evapotranspiration and net CO2 exchange from a restored peatland. Hydrol. Proc. 2001, 15, 2839–2845. [Google Scholar] [CrossRef]
- Wang, J.; Gao, X.; Zhou, Y.; Wu, P.; Zhao, X. Impact of conservation practices on soil hydrothermal properties and crop water use efficiency in a dry agricultural region of the tibetan plateau. Soil Tillage Res. 2020, 200, 104619. [Google Scholar] [CrossRef]
- Qi, Z.; Feng, H.; Zhao, Y.; Zhang, T.; Yang, A.; Zhang, Z. Spatial distribution and simulation of soil moisture and salinity under mulched drip irrigation combined with tillage in an arid saline irrigation district, northwest China. Agric. Water Manag. 2018, 201, 219–231. [Google Scholar] [CrossRef]
- Ruidisch, M.; Kettering, J.; Arnhold, S.; Huwe, B. Modeling water flow in a plastic mulched ridge cultivation system on hillslopes affected by South Korean summer monsoon. Agric. Water Manag. 2013, 116, 204–217. [Google Scholar] [CrossRef]
- Hou, X.; Wang, F.; Han, J.; Kang, S.; Feng, S. Duration of plastic mulch for potato growth under drip irrigation in an arid region of Northwest China. Agric. For. Meteorol. 2010, 150, 115–121. [Google Scholar] [CrossRef]
- Eldoma, I.M.; Li, M.; Zhang, F.; Li, F. Alternate or equal ridge–furrow pattern: Which is better for maize production in the rain-fed semi-arid Loess Plateau of China? Field Crop. Res. 2016, 191, 131–138. [Google Scholar] [CrossRef]
- Parihar, C.M.; Nayak, H.S.; Rai, V.K.; Jat, S.L.; Parihar, N.; Aggarwal, P.; Mishra, A.K. Soil water dynamics, water productivity and radiation use efficiency of maize under multi-year conservation agriculture during contrasting rainfall events. Field Crop. Res. 2019, 241, 107570. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, S.; Zhu, Z.; Jiang, H.; Zhang, X. Assessing the effects of plant density and plastic film mulch on maize evaporation and transpiration using dual crop coefficient approach. Agric. Water Manag. 2019, 225, 105765. [Google Scholar] [CrossRef]
- Doss, B.D.; King, C.; Patterson, R.M. Yield Components and Water Use by Silage Corn with Irrigation, Plastic Mulch, Nitrogen Fertilization, and Plant Spacing. Agron. J. 1970, 62, 541–543. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Li, S.; Gao, Y.; Tian, X. Effect of plastic sheet mulch, wheat straw mulch, and maize growth on water loss by evaporation in dryland areas of China—ScienceDirect. Agric. Water Manag. 2013, 116, 39–49. [Google Scholar] [CrossRef]
- Bu, L.; Liu, J.; Zhu, L.; Luo, S.; Chen, X.; Li, S.; Hill, R.L.; Zhao, Y. The effects of mulching on maize growth, yield and water use in a semi-arid region. Agric. Water Manag. 2013, 123, 71–78. [Google Scholar] [CrossRef]
- Mo, F.; Wang, J.; Zhou, H.; Luo, C.; Zhang, X.; Li, X.; Li, F.; Xiong, L.; Kavagi, L.; Nguluu, S. Ridge-furrow plastic-mulching with balanced fertilization in rainfed maize (Zea mays L.): An adaptive management in east African Plateau. Agric. For. Meteorol. 2017, 236, 100–112. [Google Scholar] [CrossRef]
- Duan, C.; Chen, G.; Hu, Y.; Wu, S.; Feng, H.; Dong, Q. Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions. Agric. Water Manag. 2021, 245, 106559. [Google Scholar] [CrossRef]
- Jiang, X.; Li, X. Assessing the effects of plastic film fully mulched ridge–furrow on rainwater distribution in soil using dye tracer and simulated rainfall. Soil Tillage Res. 2015, 152, 67–73. [Google Scholar] [CrossRef]
Soil Layer cm | Texture | Bulk Density g∙cm−3 | Field Capacity V% | Wilting Coefficient V% |
---|---|---|---|---|
0–20 | silt loam | 1.22 | 32.7 | 11.6 |
20–40 | silt loam | 1.47 | 30.9 | 14.0 |
40–60 | silt loam | 1.39 | 31.6 | 11.9 |
60–80 | loam | 1.37 | 32.9 | 7.1 |
80–100 | silt loam | 1.42 | 35.9 | 10.3 |
Qr (cm3∙cm−3) | Qs (cm3∙cm−3) | α (1∙cm−1) | n | Ks (cm∙d−1) | l | ||
---|---|---|---|---|---|---|---|
Bare soil | 0–30 cm | 0.0806 | 0.4828 | 0.0216 | 1.503 | 192.1 | 0.5 |
30–100 cm | 0.0722 | 0.398 | 0.0116 | 1.472 | 81.61 | 0.5 | |
Mulched | 0–30 cm | 0.0497 | 0.4325 | 0.0324 | 1.581 | 106.7 | 0.5 |
30–100 cm | 0.0549 | 0.4231 | 0.0255 | 1.487 | 61.32 | 0.5 |
θn | θo | DL | DT | b1 | b2 | b3 | Cn | Co | Cw | |
---|---|---|---|---|---|---|---|---|---|---|
cm3∙cm−3 | cm | W∙cm−1∙°C−1 | ||||||||
Bare soil | 0.583 | 0 | 5 | 1 | 8.44 × 10+11 | 5.53 × 10+16 | 1.89 × 10+17 | 1.43 × 10+14 | 1.87 × 10+14 | 3.12 × 10+14 |
Mulched | 0.735 | 0 | 5 | 1 | 8.89 × 10+13 | 3.16 × 10+16 | 9.83 × 10+16 | 1.43 × 10+14 | 1.87 × 10+14 | 3.12 × 10+14 |
Year | Treatments | Infiltration | Evaporation | RWU | Drainage | ET | T/ET | |
---|---|---|---|---|---|---|---|---|
(mm) | (mm) | (mm) | (mm) | (mm) | (mm) | (%) | ||
2018 | CK | 301.60 | 119.71 | 137.39 | 72.25 | −27.75 | 257.10 | 53.44% |
RFWN | 375.20 | 7.50 | 193.69 | 121.09 | 52.92 | 201.19 | 96.27% | |
RFE | 371.60 | 11.51 | 191.54 | 110.98 | 57.57 | 203.05 | 94.33% | |
2019 | CK | 341.90 | 108.20 | 182.94 | 99.29 | −48.53 | 291.14 | 62.84% |
RFWN | 410.40 | 7.50 | 230.27 | 118.24 | 54.39 | 237.77 | 96.85% | |
RFE | 410.40 | 16.54 | 239.61 | 110.23 | 44.02 | 256.15 | 93.54% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Ma, J.; Sun, X.; Guo, X.; Zheng, L. Simulation of Soil Water and Heat Flow under Plastic Mulching and Different Ridge Patterns. Agriculture 2021, 11, 1099. https://doi.org/10.3390/agriculture11111099
Li R, Ma J, Sun X, Guo X, Zheng L. Simulation of Soil Water and Heat Flow under Plastic Mulching and Different Ridge Patterns. Agriculture. 2021; 11(11):1099. https://doi.org/10.3390/agriculture11111099
Chicago/Turabian StyleLi, Ruofan, Juanjuan Ma, Xihuan Sun, Xianghong Guo, and Lijian Zheng. 2021. "Simulation of Soil Water and Heat Flow under Plastic Mulching and Different Ridge Patterns" Agriculture 11, no. 11: 1099. https://doi.org/10.3390/agriculture11111099
APA StyleLi, R., Ma, J., Sun, X., Guo, X., & Zheng, L. (2021). Simulation of Soil Water and Heat Flow under Plastic Mulching and Different Ridge Patterns. Agriculture, 11(11), 1099. https://doi.org/10.3390/agriculture11111099