Bioavailability of Dietary Zinc Sources and Their Effect on Mineral and Antioxidant Status in Lambs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Experimental Design
2.2. Sample Collection and Analysis
2.3. Mineral Analysis
2.4. Enzyme Analysis
2.5. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Mineral Status
3.3. Antioxidant Status
3.4. Bioavailability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Dell, B.L. Bioavailability of Trace Elements. Nutr. Rev. 1984, 42, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Pietro, C.; Viviane, V.; Calvo, P.; Jerome, S.; Anna-Maria, K. Biomarkers of gastrointestinal functionality in animal nutrition and health. Anim. Feed Sci. Technol. 2019, 250, 9–31. [Google Scholar] [CrossRef]
- Spears, J.W. Comparative Trace Element Nutrition Trace Mineral Bioavailability in Ruminants. J. Nutr. 2003, 133, 1506–1509. [Google Scholar] [CrossRef] [Green Version]
- Underwood, E.J.; Suttle, N.F. (Eds.) The Mineral Nutrition of Livestock; CAB International: Wallingford, UK, 1999; pp. 484–493. [Google Scholar]
- Prasad, A.S. Zinc: An antioxidant and anti-inflammatory agent: Role of zinc in degenerative disorders of aging. J. Trace Elem. Med. Biol. 2014, 28, 364–371. [Google Scholar] [CrossRef]
- Spears, J.W.; Kegley, E.B. Effect of zinc source (zinc oxide vs zinc proteinate) and level on performance, carcass characteristics, and immune response of growing and finishing steers. J. Anim. Sci. 2002, 80, 2747–2752. [Google Scholar]
- Alimohamady, R.; Aliarabi, H.; Bruckmaier, R.M.; Christensen, R.G. Effect of Different Sources of Supplemental Zinc on Performance, Nutrient Digestibility, and Antioxidant Enzyme Activities in Lambs. Biol. Trace Elem. Res. 2019, 189, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Angeles-Hernandez, J.C.; Miranda, M.; Muñoz-Benitez, A.L.; Vieyra-Alberto, R.; Morales-Aguilar, N.; Paz, E.A.; Gonzalez-Ronquillo, M.; Angeles-Hernandez, J.C.; Miranda, M.; Muñoz-Benitez, A.L.; et al. Zinc supplementation improves growth performance in small ruminants: A systematic review and meta-regression analysis. Anim. Prod. Sci. 2021, 61, 621–629. [Google Scholar] [CrossRef]
- Carmichael-Wyatt, R.N.; Genther-Schroeder, O.N.; Hansen, S.L. The influence of dietary energy and zinc source and concentration on performance, trace mineral status, and gene expression of beef steers. Transl. Anim. Sci. 2020, 4, 1–13. [Google Scholar] [CrossRef]
- Abdelnour, S.A.; Alagawany, M.; Hashem, N.M.; Farag, M.R.; Alghamdi, E.S.; Hassan, F.U.; Bilal, R.M.; Elnesr, S.S.; Dawood, M.A.O.; Nagadi, S.A.; et al. Nanominerals: Fabrication Methods, Benefits and Hazards, and Their Applications in Ruminants with Special Reference to Selenium and Zinc Nanoparticles. Animals 2021, 11, 1916. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, P.; Durosoy, S.; Jongbloed, A.W. Trace Elements in Animal Production Systems; Wageningen Academic Publishers: Wageningen, The Netherlands, 2008; pp. 1–347. [Google Scholar] [CrossRef]
- VanValin, K.R.; Genther-Schroeder, O.N.; Carmichael, R.N.; Blank, C.P.; Deters, E.L.; Hartman, S.J.; Niedermayer, E.K.; Laudert, S.B.; Hansen, S.L. Influence of dietary zinc concentration and supplemental zinc source on nutrient digestibility, zinc absorption, and retention in sheep. J. Anim. Sci. 2018, 96, 5336–5344. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.K.; Mudgal, V.; Dass, R.S. Effect of organic zinc supplementation on growth, nutrient utilization and mineral profile in lambs. Anim. Feed Sci. Technol. 2008, 144, 82–96. [Google Scholar] [CrossRef]
- Čobanová, K.; Váradyová, Z.; Grešáková, L.; Kucková, K.; Mravčáková, D.; Várady, M. Does herbal and/or zinc dietary supplementation improve the antioxidant and mineral status of lambs with parasite infection? Antioxidants 2020, 9, 1172. [Google Scholar] [CrossRef] [PubMed]
- Mallaki, M.; Norouzian, M.A.; Khadem, A.A. Effect of organic zinc supplementation on growth, nutrient utilization, and plasma zinc status in lambs. Turk. J. Vet. Anim. Sci. 2015, 39, 75–80. [Google Scholar] [CrossRef]
- Spears, J.W. Zinc methionine for ruminants: Relative bioavailability of zinc in lambs and effects of growth and performance of growing heifers. J. Anim. Sci. 1989, 67, 835–843. [Google Scholar] [CrossRef]
- Spears, J.W.; Schlegel, P.; Seal, M.C.; Lloyd, K.E. Bioavailability of zinc from zinc sulfate and different organic zinc sources and their effects on ruminal volatile fatty acid proportions. Livest. Prod. Sci. 2004, 90, 211–217. [Google Scholar] [CrossRef]
- Wang, R.L.; Liang, J.G.; Lu, L.; Zhang, L.Y.; Li, S.F.; Luo, X.G. Effect of Zinc Source on Performance, Zinc Status, Immune Response, and Rumen Fermentation of Lactating Cows. Biol. Trace Elem. Res. 2013, 152, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Goff, J.P. Invited review: Mineral absorption mechanisms, mineral interactions that affect acid–base and antioxidant status, and diet considerations to improve mineral status. J. Dairy Sci. 2018, 101, 2763–2813. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Nutrient Requirements of Small Ruminants; The National Academies Press: Washington, DC, USA, 2007. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1997; Available online: http://www.sciepub.com/reference/81577 (accessed on 5 October 2021).
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Gresakova, L.; Venglovska, K.; Cobanova, K. Dietary manganese source does not affect Mn, Zn and Cu tissue deposition and the activity of manganese-containing enzymes in lambs. J. Trace Elem. Med. Biol. 2016, 38, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 1974, 47, 469–474. [Google Scholar] [CrossRef]
- Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967, 70, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, C.; Ahn, D.U. Fluorometric Analysis of 2-Thiobarbituric Acid Reactive Substances in Turkey. Chemicals and Reagents Sample Preparation and Storage. Poult. Sci. 1998, 7, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Littell, R.C.; Lewis, A.J.; Henry, P.R. Statistical evaluation of bioavailability assays. In Bioavailability of Nutrients for Animals; Academic Press: Cambridge, MA, USA, 1995; pp. 5–33. [Google Scholar] [CrossRef]
- Wright, C.L.; Spears, J.W. Effect of Zinc Source and Dietary Level on Zinc Metabolism in Holstein Calves. J. Dairy Sci. 2004, 87, 1085–1091. [Google Scholar] [CrossRef] [Green Version]
- Kessler, J.; Morel, I.; Dufey, P.A.; Gutzwiller, A.; Stern, A.; Geyer, H. Effect of organic zinc sources on performance, zinc status and carcass, meat and claw quality in fattening bulls. Livest. Prod. Sci. 2003, 81, 161–171. [Google Scholar] [CrossRef]
- Rojas, L.X.; McDowell, L.R.; Martin, F.G.; Wilkinson, N.S.; Johnson, A.B.; Njeru, C.A. Relative Bioavailability of Zinc Methionine and Two Inorganic Zinc Sources Fed to Cattle. J. Trace Elem. Med. Biol. 1996, 10, 205–209. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the potential reduction of the currently authorised maximum zinc content in complete feed 1 EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). EFSA J. 2014, 12, 3668. [Google Scholar] [CrossRef] [Green Version]
- Page, C.M.; Van Emon, M.L.; Murphy, T.W.; Larson, C.K.; Berardinelli, J.G.; McGregor, I.R.; Taylor, J.B.; Stewart, W.C. Effects of zinc source and dietary concentration on serum zinc concentrations, growth performance, wool and reproductive characteristics in developing rams. Animal 2020, 14, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Aliarabi, H.; Fadayifar, A.; Mehdi Tabatabaei, M.; Zamani, P.; Bahari, A.; Farahavar, A.; Dezfoulian, H.A. Effect of Zinc Source on Hematological, Metabolic Parameters and Mineral Balance in Lambs. Biol. Trace Elem. Res. 2015, 168, 82–90. [Google Scholar] [CrossRef]
- Hambidge, K.M.; Miller, L.V.; Westcott, J.E.; Sheng, X.; Krebs, N.F. Zinc bioavailability and homeostasis. Am. J. Clin. Nutr. 2010, 91, 1478–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kincaid, R.L. Assessment of trace mineral status of ruminants: A review. J. Anim. Sci. 2000, 77, 1. [Google Scholar] [CrossRef]
- Cao, J.; Henry, P.R.; Guo, R.; Holwerda, R.A.; Totht, J.P.; Littell, R.C.; Miles, R.D.; Ammerman, C.B. Chemical characteristics and relative bioavailability of supplemental organic zinc sources for poultry and ruminants. J. Anim. Sci. 2000, 78, 2039–2054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kincaid, R.L.; Chew, B.P.; Cronrath, J.D. Zinc Oxide and Amino Acids as Sources of Dietary Zinc for Calves: Effects on Uptake and Immunity. J. Dairy Sci. 1997, 80, 1381–1388. [Google Scholar] [CrossRef]
- Kinal, S.; Slupczynska, M. The bioavailability of different chemical forms of zinc in fattening lambs. Arch. Anim. Breed. 2011, 54, 391–398. [Google Scholar] [CrossRef] [Green Version]
- Oteiza, P.I. Zinc and the modulation of redox homeostasis. Free Radic. Biol. Med. 2012, 53, 1748–1759. [Google Scholar] [CrossRef] [Green Version]
- Marreiro, D.D.N.; Cruz, K.J.C.; Morais, J.B.S.; Beserra, J.B.; Severo, J.S.; De Oliveira, A.R.S. Zinc and Oxidative Stress: Current Mechanisms. Antioxidants 2017, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Nagalakshmi, D.; Dhanalakshmi, K.; Himabindu, D. Effect of dose and source of supplemental zinc on immune response and oxidative enzymes in lambs. Vet. Res. Commun. 2009, 33, 631–644. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, J.W.; Ma, W.Q.; Feng, J. Dietary zinc glycine chelate on growth performance, tissue mineral concentrations, and serum enzyme activity in weanling piglets. Biol. Trace Elem. Res. 2010, 133, 325–334. [Google Scholar] [CrossRef]
- Ma, W.; Niu, H.; Feng, J.; Wang, Y.; Feng, J. Effects of Zinc Glycine Chelate on Oxidative Stress, Contents of Trace Elements, and Intestinal Morphology in Broilers. Biol. Trace Elem Res 2011, 142, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Yue, M.; Fang, S.L.; Zhuo, Z.; Li, D.D.; Feng, J. Zinc glycine chelate absorption characteristics in sprague dawley rat. J. Anim. Physiol. Anim. Nutr. 2015, 99, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Pal, D.T.; Gowda, N.K.S.; Prasad, C.S.; Amarnath, R.; Bharadwaj, U.; Suresh Babu, G.; Sampath, K.T. Effect of copper- and zinc-methionine supplementation on bioavailability, mineral status and tissue concentrations of copper and zinc in ewes. J. Trace Elem. Med. Biol. 2010, 24, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, P.G.; Swenson, C.K.; Kott, R.W.; Ansotegui, R.P.; Roth, N.J.; Robinson, B.L. Zinc and copper status in ewes supplemented with sulfate- and amino acid-complexed forms of zinc and copper. J. Anim. Sci. 2001, 79, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Spears, J.W.; Weiss, W.P. INVITEd REVIEW: Mineral and vitamin nutrition in ruminants. Prof. Anim. Sci. 2014, 30, 180–191. [Google Scholar] [CrossRef]
- Ammerman, C.B. Methods for estimation of mineral bioavailability. In Bioavailability of Nutrients for Animals; Academic Press: Cambridge, MA, USA, 1995; pp. 83–94. [Google Scholar] [CrossRef]
- Greene, L.W.; Lunt, D.K.; Byers, F.M.; Chirase, N.K.; Richmond, C.E.; Knutson, R.E.; Schelling, G.T. Performance and Carcass Quality of Steers Supplemented with Zinc Oxide or Zinc Methionine. J. Anim. Sci. 1988, 66, 1818–1823. [Google Scholar] [CrossRef] [Green Version]
- Irato, P.; Albergoni, V. Interaction between copper and zinc in metal accumulation in rats with particular reference to the synthesis of induced-metallothionein. Chem. Biol. Interact. 2005, 155, 155–164. [Google Scholar] [CrossRef]
- Minervino, A.; López-Alonso, M.; Barrêto Júnior, R.; Rodrigues, F.; Araújo, C.; Sousa, R.; Mori, C.; Miranda, M.; Oliveira, F.; Antonelli, A.; et al. Dietary Zinc Supplementation to Prevent Chronic Copper Poisoning in Sheep. Animals 2018, 8, 227. [Google Scholar] [CrossRef] [Green Version]
- Blalock, T.L.; Dunn, M.A.; Cousins, R.J. Metallothionein gene expression in rats: Tissue-specific regulation by dietary copper and zinc. J. Nutr. 1988, 118, 222–228. [Google Scholar] [CrossRef]
- Holodova, M.; Cobanova, K.; Sefcikova, Z.; Barszcz, M.; Tuśnio, A.; Taciak, M.; Gresakova, L. Dietary zinc and fibre source can influence the mineral and antioxidant status of piglets. Animals 2019, 9, 497. [Google Scholar] [CrossRef] [Green Version]
- Yeh, H.S.; Lien, T.F. Effects of supplemental levels of hesperetin and naringenin on egg quality, serum traits and antioxidant activity of laying hens. Anim. Feed Sci. Technol. 2011, 163, 59–66. [Google Scholar] [CrossRef]
Ingredient | g/kg of DM |
---|---|
Grass hay | 709 |
Barley ground | 165 |
Wheat bran | 81 |
Soybean meal | 41 |
Limestone | 4 |
Chemical composition (analyzed) | |
Dry matter (g/kg) | 891 |
Crude protein | 113 |
Acid detergent fiber | 230 |
Neutral detergent fiber | 357 |
Ash | 66 |
Mn, mg/kg of DM | 34 |
Zn, mg/kg of DM | 33 |
Cu, mg/kg of DM | 8.5 |
Parameters | Dietary Treatments 1 | SEM | p-Value 2 | |||
---|---|---|---|---|---|---|
C | ZnSO4 | ZnGly | ZnProt | |||
Initial body weight, kg | 24.89 | 24.76 | 24.39 | 24.78 | 0.526 | 0.9981 |
Final body weight, kg | 31.46 | 30.96 | 31.29 | 31.11 | 0.521 | 0.9892 |
ADFI, g/d | 1059 | 1059 | 1081 | 1059 | 12.49 | 0.9102 |
ADG, g/d | 54.82 | 51.64 | 57.60 | 53.74 | 2.484 | 0.8700 |
Feed/gain | 20.32 | 20.83 | 20.47 | 20.97 | 0.831 | 0.9931 |
Parameters | Dietary Treatments 1 | SEM | p-Value 2 | |||
---|---|---|---|---|---|---|
C | ZnSO4 | ZnGly | ZnProt | |||
SOD, U/g Hb | 2221 ab | 2620 a | 1561 ab | 1244 b | 329 | 0.0402 |
GPx, U/g Hb | 224 ab | 281 a | 263 ab | 175 b | 14.5 | 0.0391 |
Zn, mg/L | 0.917 a | 0.947 ab | 0.994 ab | 1.15 b | 0.029 | 0.0359 |
Cu, mg/L | 0.535 a | 0.773 b | 0.703 ab | 0.517 a | 0.032 | 0.0019 |
Zn/Cu ratio | 1.09 ab | 0.79 b | 0.97 bc | 1.28 c | 0.05 | 0.0024 |
Fe, mg/L | 2.45 | 2.53 | 2.35 | 2.65 | 0.06 | 0.4136 |
MT, µg/L | 2.28 a | 2.20 ab | 2.06 ab | 1.95 b | 0.03 | 0.0392 |
ALB, g/L | 34.3 | 33.2 | 34.9 | 35.1 | 0.33 | 0.1474 |
TSH, mmol/L | 0.389 | 0.412 | 0.393 | 0.447 | 0.01 | 0.1919 |
TAS, µmol/L | 0.396 | 0.353 | 0.362 | 0.375 | 0.01 | 0.0948 |
MDA, µmol/L | 0.160 | 0.146 | 0.175 | 0.163 | 0.01 | 0.4099 |
Tissue, mg/kg of DM | Dietary Treatments 1 | SEM | p-Value 2 | |||
---|---|---|---|---|---|---|
C | ZnSO4 | ZnGly | ZnProt | |||
Liver | 118.4 a | 134.7 b | 130.3 ab | 126.4 ab | 1.99 | 0.0354 |
Kidney | 109.9 a | 110.6 a | 107.8 a | 120.2 b | 1.41 | 0.0038 |
Muscle Longissimus dorsi Psoas major | 109.8 101.3 | 108.8 105.9 | 103.8 106.6 | 107.7 109.3 | 2.04 2.36 | 0.7508 0.6981 |
Spleen | 97.64 | 97.83 | 101.3 | 101.6 | 1.12 | 0.5772 |
Pancreas | 68.9 | 66.9 | 68.5 | 70.1 | 0.62 | 0.5322 |
Heart | 68.11 | 66.57 | 68.96 | 66.86 | 0.76 | 0.7805 |
Rib bone, mg/kg ash | 140.9 | 132.1 | 131.3 | 146.2 | 2.44 | 0.1764 |
Tissue, mg/kg of DM | Dietary Treatments 1 | SEM | p-Value 2 | |||
---|---|---|---|---|---|---|
C | ZnSO4 | ZnGly | ZnProt | |||
Copper | ||||||
Liver | 302.2 a | 240.0 ab | 252.7 ab | 221.1 b | 10.4 | 0.0353 |
Kidney | 20.13 a | 21.32 b | 20.52 ab | 21.40 b | 0.17 | 0.0011 |
Pancreas | 4.384 a | 4.701 a | 5.232 b | 5.378 b | 0.12 | 0.0081 |
Heart | 14.56 | 14.01 | 13.81 | 12.47 | 0.29 | 0.1384 |
Spleen | 4.233 | 4.142 | 4.207 | 4.147 | 0.12 | 0.9953 |
Muscle | ||||||
Longissimus dorsi | 2.853 | 2.611 | 2.899 | 2.605 | 0.21 | 0.9493 |
Psoas major | 1.278 | 1.187 | 1.260 | 1.281 | 0.07 | 0.9705 |
Iron | ||||||
Liver | 230.5 | 188.0 | 232.8 | 230.0 | 13.4 | 0.6152 |
Kidney | 204.2 a | 199.1 ab | 172.5 b | 207.8 a | 5.00 | 0.0164 |
Pancreas | 73.47 | 74.62 | 75.00 | 87.15 | 2.15 | 0.2443 |
Heart | 150.4 a | 151.7 a | 135.2 b | 135.2 b | 2.13 | 0.0042 |
Spleen | 1364 | 975.4 | 1037 | 1531 | 114.6 | 0.4184 |
Muscle | ||||||
Longissimus dorsi | 63.09 | 63.12 | 56.06 | 69.54 | 2.13 | 0.2997 |
Psoas major | 56.07 ab | 60.31 ab | 51.84 a | 62.02 b | 1.23 | 0.0300 |
Manganese | ||||||
Liver | 8.733 | 9.124 | 9.579 | 9.990 | 0.29 | 0.5105 |
Kidney | 5.087 | 5.496 | 5.320 | 5.077 | 0.11 | 0.4678 |
Pancreas | 7.134 a | 8.021 ab | 8.440 b | 8.121 a | 0.16 | 0.0126 |
Heart | 1.340 ab | 1.408 a | 1.300 b | 1.133 b | 0.04 | 0.0623 |
Spleen | 1.214 | 1.195 | 1.439 | 1.393 | 0.04 | 0.1432 |
Muscle | ||||||
Longissimus dorsi | 0.321 ab | 0.348 a | 0.237 b | 0.327 ab | 0.02 | 0.0450 |
Psoas major | 0.334 | 0.368 | 0.275 | 0.278 | 0.02 | 0.1004 |
Enzyme Activity | Dietary Treatments 1 | SEM | p-Value 2 | |||
---|---|---|---|---|---|---|
C | ZnSO4 | ZnGly | ZnProt | |||
Liver | ||||||
SOD, U/mg protein | 90.8 a | 123 b | 161 c | 108 ab | 6.60 | 0.0001 |
Cu/Zn SOD, U/mg protein | 78.7 a | 107 ab | 130 b | 95.4 a | 5.45 | 0.0021 |
GPx, U/g protein | 19.6 | 21.6 | 19.7 | 19.6 | 0.55 | 0.5282 |
MDA, nmol/g protein | 157 | 165.5 | 142.1 | 161.8 | 6.53 | 0.6374 |
TAS, µmol/g protein | 38.7 | 37.37 | 37.58 | 39.96 | 1.20 | 0.8805 |
TSH, µmol/g tissue | 15.5 | 16.0 | 15.3 | 15.3 | 0.24 | 0.8028 |
NPSH, µmol/g tissue | 5.20 | 4.75 | 4.50 | 4.73 | 0.10 | 0.1481 |
Kidney cortex | ||||||
SOD, U/mg protein | 55.9 | 47.4 | 50.0 | 46.9 | 2.17 | 0.4627 |
Cu/Zn SOD, U/mg protein | 44.8 | 35.6 | 37.8 | 37.8 | 2.03 | 0.4218 |
GPx, U/g protein | 21.5 | 21.9 | 21.5 | 21.3 | 0.62 | 0.9907 |
MDA, nmol/g protein | 74.2 | 75.2 | 69.6 | 80.4 | 1.95 | 0.3056 |
TAS, µmol/g protein | 21.5 | 21.4 | 21.5 | 21.9 | 0.51 | 0.9896 |
TSH, µmol/g tissue | 8.31 | 8.54 | 8.31 | 9.32 | 0.16 | 0.1426 |
NPSH, µmol/g tissue | 2.44 | 2.70 | 2.43 | 2.71 | 0.05 | 0.1242 |
Pancreas | ||||||
SOD, U/mg protein | 5.38 | 5.29 | 5.78 | 4.20 | 0.36 | 0.4847 |
Cu/Zn SOD, U/mg protein | 5.12 | 4.93 | 5.51 | 4.04 | 0.35 | 0.5142 |
GPx, U/g protein | 17.9 | 14.7 | 19.8 | 17.3 | 1.10 | 0.4590 |
MDA, nmol/g protein | 69.6 | 72.9 | 69.6 | 71.7 | 3.16 | 0.9801 |
TAS, µmol/g protein | 3.31 a | 6.68 b | 9.08 b | 7.40 b | 0.55 | 0.0001 |
TSH, µmol/g tissue | 8.70 | 9.05 | 10.11 | 8.93 | 0.26 | 0.3787 |
NPSH, µmol/g tissue | 1.92 | 1.73 | 1.98 | 1.71 | 0.06 | 0.3463 |
Dependent Variable | Zinc Source | Regression Coefficient | RBV, % | p-Value | |
---|---|---|---|---|---|
Slope | SE | ||||
Plasma Zn, mg/L a | Zn sulphate | 0.000405 | 0.000576 | 100 | 0.6154 |
Zn glycinate | 0.001357 | 0.000839 | 335 | ||
Zn proteinate | 0.001029 | 0.000641 | 254 | ||
Liver Zn, mg/kg DM b | Zn sulphate | 0.2335 | 0.0841 | 100 | 0.7136 |
Zn glycinate | 0.1903 | 0.1028 | 81.5 | ||
Zn proteinate | 0.1309 | 0.0679 | 56.1 | ||
Kidney Zn, mg/kg DM c | Zn sulphate | 0.1220 | 0.0726 | 100 | 0.8926 |
Zn glycinate | 0.1046 | 0.0711 | 85.7 | ||
Zn proteinate | 0.1538 | 0.0776 | 126 | ||
Liver Cu/Zn SOD, U/mg protein d | Zn sulphate | 0.4089 | 0.1450 | 100 | 0.085 |
Zn glycinate | 0.7338 | 0.1840 | 179 | ||
Zn proteinate | 0.2378 | 0.1272 | 58.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grešáková, Ľ.; Tokarčíková, K.; Čobanová, K. Bioavailability of Dietary Zinc Sources and Their Effect on Mineral and Antioxidant Status in Lambs. Agriculture 2021, 11, 1093. https://doi.org/10.3390/agriculture11111093
Grešáková Ľ, Tokarčíková K, Čobanová K. Bioavailability of Dietary Zinc Sources and Their Effect on Mineral and Antioxidant Status in Lambs. Agriculture. 2021; 11(11):1093. https://doi.org/10.3390/agriculture11111093
Chicago/Turabian StyleGrešáková, Ľubomíra, Katarína Tokarčíková, and Klaudia Čobanová. 2021. "Bioavailability of Dietary Zinc Sources and Their Effect on Mineral and Antioxidant Status in Lambs" Agriculture 11, no. 11: 1093. https://doi.org/10.3390/agriculture11111093
APA StyleGrešáková, Ľ., Tokarčíková, K., & Čobanová, K. (2021). Bioavailability of Dietary Zinc Sources and Their Effect on Mineral and Antioxidant Status in Lambs. Agriculture, 11(11), 1093. https://doi.org/10.3390/agriculture11111093