Life Cycle Assessment of Water in Sport Equine Production in Argentina: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Functional Units
2.2. Inventory Analysis
3. Results and Discussion
Impact Assessment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- UNECLAC/UNW-DPAC. Water and a Green Economy in Latin America and the Caribbean (LAC); UNECLAC/UNW-DPAC: Santiago, Chile, 2012. [Google Scholar]
- World Economic Forum. Global Risks 20165, 10th ed.; World Economic Forum: Geneva, Switzerland, 2016. [Google Scholar]
- Amore, L. The United Nations World Water Development Report–N 4–Groundwater and Global Change: Trends, Opportunities and Challenges; Unesco: Paris, France, 2012; Volume 1. [Google Scholar]
- UN. 2021 State of the World’s Hand Hygiene Report. 2021. Available online: https://www.unwater.org/ (accessed on 15 July 2021).
- Zamagni, A. Life cycle sustainability assessment. Int. J. Life Cycle Assess. 2012, 17, 373–376. [Google Scholar] [CrossRef] [Green Version]
- Falcone, P.M.; Imbert, E. Social Life Cycle Approach as a Tool for Promoting the Market Uptake of Bio-Based Products from a Consumer Perspective. Sustainability 2018, 10, 1031. [Google Scholar] [CrossRef] [Green Version]
- Boulay, A.M.; Bare, J.; Benini, L.; Berger, M.; Lathuillière, M.J.; Manzardo, A.; Pfister, S. The WULCA consensus characterization model for water scarcity footprints: Assessing impacts of water consumption based on available water remaining (AWARE). Int. J. Life Cycle Assess. 2018, 23, 368–378. [Google Scholar] [CrossRef] [Green Version]
- Martínez, A.; Chargoy, J.; Puerto, M.; Suppen, N.; Rojas, D. Huella de Agua (ISO 14046) en América Latina, Análisis y Recomendaciones para una Coherencia Regional; Centro de Análisis de Ciclo de Vida y Diseño Sustentable CADIS, Embajada de Suiza en Colombia, Agencia Suiza para la Cooperación y el Desarrollo COSUDE: Bogota, Colombia, 2016; p. 90. [Google Scholar]
- Martínez-Arce, A.; Chargoy, J.P.; Puerto, M.; Rojas, D.; Suppen, N. Water Footprint (ISO 14046) in Latin America, state of the art and recommendations for assessment and communication. Environments 2018, 5, 114. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y. Virtual water: An introduction. Virtual Water Trade 2003, 13, 108. [Google Scholar]
- Hooda, P.S.; Edwards, A.C.; Anderson, H.A.; Miller, A.A. Review of wáter quality concerns in livestock farming areas. Sci. Total. Environ. 2000, 250, 143–167. [Google Scholar] [CrossRef]
- Burgess, B.A.; Lohmann, K.L.; Blakley, B.R. Excessive sulfate and poor wáter quality as a cause of sudden deaths and an outbreak of diarrhea in horses. Can. Vet. J. 2010, 51, 267–277. [Google Scholar]
- Parvage, M.M.; Ulén, B.; Kirchmann, H. Are horse paddocks threatening water quality through excess loading of nutrients. J. Environ. Manag. 2015, 147, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Spore, T.J.; Mekonnen, M.M.; Neale, C.M.; Watson, A.K.; MacDonald, J.C.; Erickson, G.E. Evaluation of the water footprint of beef cattle production in Nebraska. Nebraska Beef Cattle Reports. 2020. Available online: https://digitalcommons.unl.edu/animalscinbcr/1071/ (accessed on 20 July 2021).
- Legesse, G.; Ominski, K.H.; Beauchemin, K.A.; Pfister, S.; Martel, M.; McGeough, E.J.; McAllister, T.A. Quantifying water use in ruminant production. J. Anim. Sci. 2017, 95, 2001–2018. [Google Scholar] [PubMed]
- Westerndorf, M.L. Environmetal Impacts of equine Operations: AU.S Departament of A Multiste Proyects agricultura. J. Equine Vet. Sci. 2012, 32, 324–326. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. A global assessment of the water footprint of farm animal products. Ecosystems 2012, 15, 401–415. [Google Scholar] [CrossRef] [Green Version]
- Baldini, C.; Gardoni, D.; Garino, M. A critical review of the recent evolution of Life Cycle assessment applied to milk production. J. Clean. Prod. 2007, 140, 421–435. [Google Scholar] [CrossRef]
- Vaccaro, M.-M.; Garcia-Liñeiro, A.; Fernández-Cirelli, A. Management of Equine production and its environmental impact: The case of settlements in Buenos Aires (Argentina). Sustain. Agric. Food Environ. Res. 2017, 5, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Vaccaro, M.M.; Volpedo, A.V.; Liñeiro, A.G.; Cirelli, A.F. Water quality in equine production in Buenos Aires Province, Argentina. SN Appl. Sci. 2020, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Gestión Ambiental—Huella de Agua—Principios, Requisitos y Directrices Environmental Management—Water Footprint—Principles, Requirements and Guidelines. ISO 14046:2014(es). Available online: https://www.iso.org/standard/43263.html (accessed on 15 July 2021).
- Klein, B.G. Cunningham. Fisiología Veterinaria, 5th ed.; Elsevier: Barcelona, España, 2014; p. 680. [Google Scholar]
- APHA, AWWA, WPCF Métodos Normalizados Para el Análisis de Aguas Potables y Residuales, 22nd ed.; Díaz de Santos, S.A: Barcelona, España, 2002; p. 1816.
- Sollenberger, L.E.; Vanzant, E.S. Interrelationships among forage nutritive value and quantity and individual animal performance. Crop. Sci. 2011, 51, 420–432. [Google Scholar] [CrossRef]
- Nemecek, T.; Bengoa, X.; Lansche, J.; Roesch, A.; Faist-Emmenegger, M.; Rossi, V.; Riedener, E. World Food LCA Database project: Towards more accurate food datasets. In Proceedings of the 6th International Conference on Life Cycle Management (LCM 2013), Gothenburg, Sweden, 25–28 August 2013. [Google Scholar]
- Fernández Cirelli, A.; Moscuzza, H.; Pérez Carrera, A.; Volpedo, A.V. Aspectos Ambientales de Las Actividades Agropecuarias; Agrovet: Buenos Aires, Argentina, 2010; p. 189. [Google Scholar]
- Asano, R.; Suzuki, K.; Otsuka, T.; Otsuka, M.; Sakurai, H. Concentrations of toxic metals and essential minerals in the main hair of healthy racing horses and their relation to age. J. Vet. Med. Sci. 2002, 64, 607–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smedley, P.; Kinninburgh, D. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
- Farías, S.S.; Casa, V.A.; Vázquez, C.; Ferpozzi, L.; Pucci, G.N.; Cohen, I.M. Natural contamination with arsenic and other trace elements in ground waters of Argentine Pampean Plain. Sci. Total. Environ. 2003, 309, 187–199. [Google Scholar] [CrossRef]
- CCME Canadian Environmental Quality Guidelines CEQFs. Available online: http://ceqgrcqe.ccme.ca/en/index.html (accessed on 15 August 2021).
- United States Environmental Protection Agency. USEPA Water Quality Guidelines. Available online: https://www.epa.gov/laws-regulations/regulations (accessed on 15 August 2021).
- Basigalupo, D.H. El Cultivo de la Alfalfa en la Argentina; Ediciones INTA: Buenos Aires, Argentina, 2007; p. 479. ISBN 978-987-521-242-8. [Google Scholar]
- SMN. Servicio Meteorológico Nacional. 2021. Available online: https://www.smn.gob.ar/clima/tendencias (accessed on 15 August 2021).
- Bongiovanni, R.G.; Anschau, R.A. Water footprint of alfalfa hay production in Córdoba, Argentina. In Proceedings of the Second World Alfalfa Congress, Cordoba, Argentina, 11–14 November 2018; Available online: http://www.worldalfalfacongress.org/ (accessed on 15 August 2021).
- Chapagain, A.K.; Hoekstra, A.Y. Water Footprints of Nations. Value of Water Research Report Series; UNESCO-IHE: Delft, The Netherlands, 2004; Available online: http://www.waterfootprint.org/Reports/Report16.pdf (accessed on 15 August 2021).
- FAO. Maize Crop Water Management; FAOSTAT: Rome, Italy, 2002. [Google Scholar]
- Della Maggiora, A.I.; Gardiol, J.M.; Irigoyen, A.I. Requerimientos hídricos. In Bases Para el Manejo del Maíz, el Girasol y la Soja; Andrade, F.E., Sadras, V.O., Eds.; Editorial Médica Panamericana SA: Madrid, España, 2000; pp. 430–443. ISBN 987-521-016-1. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. Daugherty Water for Food Global Institute: Faculty Publications. The Green, Blue and Grey Water Footprint of Farm Animals and Animal Products. Volume 2: Appendices. 2010. Available online: https://digitalcommons.unl.edu/wffdocs/82 (accessed on 20 August 2021).
Activity | Intensity | N | Monthly Water Consumption (L) | ||
---|---|---|---|---|---|
Animal Consumption | Animal Bathing | Box Cleaning | |||
Jumping | Medium performance | 20 | 32,400 ± 3300 | 21,600 ± 1900 | 2400 ± 200 |
High performance | 30 | 56,700 ± 4900 | 75,600 ± 7300 | 3600 ± 350 |
Activity | Intensity | N | Monthly Water Consumption (L) | |
---|---|---|---|---|
Alfalfa | Feed Supplements (Mix 50–50%) | |||
Jumping | Medium performance | 20 | ≅3.3 × 106 | ≅342 × 106 |
High performance | 30 | ≅4.9 × 106 | ≅539 × 106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaccaro, M.M.; García-Liñeiro, A.; Fernández-Cirelli, A.; Volpedo, A.V. Life Cycle Assessment of Water in Sport Equine Production in Argentina: A Case Study. Agriculture 2021, 11, 1084. https://doi.org/10.3390/agriculture11111084
Vaccaro MM, García-Liñeiro A, Fernández-Cirelli A, Volpedo AV. Life Cycle Assessment of Water in Sport Equine Production in Argentina: A Case Study. Agriculture. 2021; 11(11):1084. https://doi.org/10.3390/agriculture11111084
Chicago/Turabian StyleVaccaro, Mariana M., Alberto García-Liñeiro, Alicia Fernández-Cirelli, and Alejandra V. Volpedo. 2021. "Life Cycle Assessment of Water in Sport Equine Production in Argentina: A Case Study" Agriculture 11, no. 11: 1084. https://doi.org/10.3390/agriculture11111084
APA StyleVaccaro, M. M., García-Liñeiro, A., Fernández-Cirelli, A., & Volpedo, A. V. (2021). Life Cycle Assessment of Water in Sport Equine Production in Argentina: A Case Study. Agriculture, 11(11), 1084. https://doi.org/10.3390/agriculture11111084