Effect of Source–Sink Ratio Manipulation on Growth, Flowering, and Yield Potential of Soybean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site, Plant Material and Agronomic Practices
2.2. Decapitation and Raceme Removal Treatments
2.3. Recorded Data and Analyses
2.4. Statistical Analysis
3. Results
3.1. Effect of Decapitation and Raceme Removal on Growth and Photoassimilation Capacity
3.2. Effect of Decapitation and Raceme Removal on Flowering Potential
3.3. Effect of Decapitation and Raceme Removal on Seed Yield Potential and Seeds’ Quality
3.4. Effect of Decapitation and Raceme Removal on Photosynthetic Pigments, Relative Water Content and Membrane Stability Index
3.5. Effect of Decapitation and Raceme Removal on Auxins and Cytokinins Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ning, L.; Du, W.; Song, H.; Shao, H.; Qi, W.; Sheteiwy, M.S.A.; Yu, D. Identification of responsive miRNAs involved in combination stresses of phosphate starvation and salt stress in soybean root. Environ. Exp. Bot. 2019, 167, 103823. [Google Scholar] [CrossRef]
- Ellis, R.H.; Asumadu, H.; Qi, A.; Summwerfield, R.J. Effects of photoperiod and maturity genes on plant growth, partitioning, radiation use efficiency and yield in soybean [Glycine max (L.) Merr.] ‘Clark’. Ann. Bot. 2000, 85, 335–343. [Google Scholar] [CrossRef] [Green Version]
- Luquez, V.M.; Guiamét, J.J. Effects of the ‘stay green’ genotype GGd1d1d2d2 on leaf gas exchange, dry matter accumulation and seed yield in soybean [Glycine max (L.) Merr.]. Ann. Bot. 2001, 87, 313–318. [Google Scholar] [CrossRef] [Green Version]
- Thomas, H.; Howarth, C.J. Five ways to stay green. J. Exp. Bot. 2000, 51, 329–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregersen, P.L.; Culetic, A.; Boschian, L.; Krupinska, K. Plant senescence and crop productivity. Plant Mol. Biol. 2013, 82, 603–622. [Google Scholar] [CrossRef]
- Guiamét, J.J.; Teeri, J.A.; Nooden, L.D. Effects of nuclear and cytoplasmic genes altering chlorophyll loss on gas exchange during monocarpic senescence in soybean. Plant Cell Physiol. 1990, 31, 1123–1130. [Google Scholar]
- Müller, D.; Leyser, O. Auxin, cytokinin and the control of shoot branching. Ann. Bot. 2011, 107, 1203–1212. [Google Scholar] [CrossRef] [Green Version]
- Amuti, K. Effect of removal of flower buds, open flowers, young pods and shoot apex on growth and pod set in soybean. J. Exp. Bot. 1983, 34, 719–725. [Google Scholar] [CrossRef]
- Colbert, K.A.; Beever, J.F. Effect of debudding on root cytokinin export and leaf senescence in tomato and tobacco. J. Exp. Bot. 1981, 32, 121–127. [Google Scholar] [CrossRef]
- Zavaleta-Mancera, H.A.; Franklin, K.A.; Ougham, H.J.; Thomas, H.; Scott, I.M. Regreening of senescent Nicotiana leaves. I. Reappearance of NADPH-protochlorophyllide oxidoreductase and light-harvesting chlorophyll a/b-binding protein. J. Exp. Bot. 1999, 50, 1677–1682. [Google Scholar]
- Davis, M.P. Alteration of Apical Dominance in Soybeans [Glycine max (L.) Merr.] with Foliar Applications of Benzoic Acid Derivatives or Terminal Bud Removal and the Effects of Salicylic, Acetylsalicylic and Thiosalicylic Acids on Nitrate Reduction in Soybean Leaves. Ph.D. Thesis, University of Nebraska, Lincoln, NE, USA, 1982. [Google Scholar]
- Tayo, T.O. Growth, development and yield of Pigeon pea [Cajanus cajan (L.) Millsp.] in the lowland tropics 3. Effect of early loss of apical dominance. J. Agric. Sci. 1982, 98, 79–84. [Google Scholar] [CrossRef]
- Khan, E.A.; Hussain, I.; Ahmad, H.B.S.; Hussain, I. Influence of nipping and foliar application of nutrients on growth and yield of chickpea in rain-fed condition. Legum. Res. 2018, 41, 740–744. [Google Scholar] [CrossRef] [Green Version]
- Argall, J.E.; Stewart, K.A. Effects of decapitation and benzyladenine on growth and yield of Cowpea [Vigna unguiculate (L.) Walp.]. Ann. Bot. 1984, 54, 439–444. [Google Scholar] [CrossRef]
- Kokubun, M.; Shimada, S.; Takahashi, M. Flower abortion caused by preanthesis water deficit is not attributed to impairment of pollen in soybean. Crop Sci. 2001, 41, 1517–1521. [Google Scholar] [CrossRef]
- Kokubun, M.; Nonokawa, K.; Kaihattttsu, A.; Yashima, Y. Mechanisms controlling flower abortion in soybean. Tohoku J. Agric. Res. 2009, 60, 23–26. [Google Scholar]
- Chakraborty, R.; Chowdhury, T.E.; Sumon, M.D.J.I.; Mostofa, M.; Rahman, M.L. Contribution of flower removal on the performance of Mungbean. Eur. J. Exp. Biol. 2015, 5, 66–71. [Google Scholar]
- Mondal, M.M.A.; Fakir, M.S.A.; Prodhan, A.K.M.A.; Ismail, M.R.; Ashrafuzzaman, M. Deflowering effect on vasculature and yield attributes in raceme of mung bean [Vigna radiata (L.) Wilczek]. Aust. J. Crop Sci. 2011, 5, 1339–1344. [Google Scholar]
- Zhang, X.; Wang, M.; Wu, T.; Wu, C.; Jiang, B.; Guo, C.; Han, T. Physiological and molecular studies of stay green caused by pod removal and seed injury in soybean. Crop J. 2016, 4, 435–443. [Google Scholar] [CrossRef] [Green Version]
- Egli, D.B.; Bruening, W.P. Depodding causes green-stem syndrome in soybean. Crop Manag. 2006, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Shimizu-Sato, S.; Tanaka, M.; Mori, H. Auxin–cytokinin interactions in the control of shoot branching. Plant Mol. Biol. 2009, 69, 429. [Google Scholar] [CrossRef] [Green Version]
- Ongaro, V.; Leyser, O. Hormonal control of shoot branching. J. Exp. Bot. 2008, 59, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.; Guan, S.C.; Wen, C.; Li, P.; Gao, Z.; Chen, X. Auxin and cytokinin coordinate the dormancy and outgrowth of axillary bud in strawberry runner. BMC Plant Biol. 2019, 19, 528. [Google Scholar] [CrossRef]
- Li, C.J.; Guevara, E.; Herrera, J.; Bangerth, F. Effect of apex excision and replacement by 1-naphthylacetic acid on cytokinin concentration and apical dominance in pea plants. Physiol. Plant. 1995, 94, 465–469. [Google Scholar] [CrossRef]
- Cline, M.G. Exogenous auxin effects on lateral bud outgrowth in decapitated shoots. Ann. Bot. 1996, 78, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Huff, A.; Dybing, C.D. Factors affecting shedding of flowers in soybean (Glycine max (L.) Merrill). J. Exp. Bot. 1980, 31, 751–762. [Google Scholar] [CrossRef]
- Miceli, F.; Crafts-Brandner, S.J.; Egli, D.B. Physical restriction of pod growth alters development of soybean plants. Crop Sci. 1995, 35, 1080–1085. [Google Scholar] [CrossRef]
- Gwathmey, C.O.; Hall, A.E.; Madore, M. Adaptive attributes of Cowpea genotypes with delayed monocarpic leaf senescence. Crop Sci. 1992, 32, 765–772. [Google Scholar] [CrossRef]
- Gao, C.; El-Sawah, A.M.; Ali, D.F.I.; Hamoud, Y.A.; Shaghaleh, H.; Sheteiwy, M.S. The integration of bio and organic fertilizers improve plant growth, grain yield, quality and metabolism of hybrid maize (Zea mays L.). Agronomy 2020, 10, 319. [Google Scholar] [CrossRef] [Green Version]
- El-Sawah, A.M.; El-Keblawy, A.; Ali, D.F.I.; Ibrahim, H.M.; El-Sheikh, M.A.; Sharma, A.; Hamoud, Y.A.; Shaghaleh, H.; Brestic, M.; Skalicky, M.; et al. Arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria enhance soil key enzymes, plant growth, seed yield, and qualitative attributes of guar. Agriculture 2021, 11, 194. [Google Scholar] [CrossRef]
- Metwally, A.A.; Safina, S.A.; Abdel-Wahab, E.I.; Abdel-Wahab, S.I.; Abdel-Wahab, T.I. Screening thirty soybean genotypes under solid and intercropping plantings in Egypt. J. Crop Sci. Biotech. 2021, 24, 203–220. [Google Scholar] [CrossRef]
- Sheteiwy, M.S.; Ali, D.F.I.; Xiong, Y.; Brestic, M.; Skalicky, M.; Hamoud, Y.A.; Ulhassan, Z.; Shaghaleh, H.; AbdElgawad, H.; Farooq, M.; et al. Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress. BMC Plant Biol. 2021, 21, 195. [Google Scholar] [CrossRef]
- Sheteiwy, M.S.; Elgawad, H.A.; Xiong, Y.; Macovei, A.; Brestic, M.; Skalicky, M.; Shaghaleh, H.; Hamoud, Y.A.; El-Sawah, A.M. Inoculation with Bacillus amyloliquefaciens and mycorrhiza confers tolerance to drought stress and improve seed yield and quality of soybean plant. Physiol. Plant. 2021, 172, 2153–2169. [Google Scholar] [CrossRef] [PubMed]
- Radford, P.G. Growth Analysis Formulae—Their Use and Abuse. Crop Sci. 1967, 3, 171–175. [Google Scholar] [CrossRef]
- Guffy, R.D.; Hesketh, J.D.; Nelson, R.L.; Bernard, R.L. Seed growth rate, growth duration, and yield in soybean. Biotronics 1991, 20, 19–30. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Rauf, S.; Sadaqat, H.A. Effects of varied water regimes on root length, dry matter partitioning and endogenous plant growth regulators in sunflower (Helianthus annuus L.). J. Plant Interact. 2007, 2, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, L.; Gonzalez-Vilar, M. Determination of relative water content. In Handbook of Plant Ecophysiology Techniques; Reigosa, M.J., Ed.; Kluwer Academic: Dordrecht, The Netherlands, 2001; pp. 207–212. [Google Scholar]
- Premchandra, G.S.; Saneoka, H.; Ogata, S. Cell membrane stability, an indicator of drought tolerance as affected by applied nitrogen in soybean. J. Agric. Sci. Camb. 1990, 115, 63–66. [Google Scholar] [CrossRef]
- A.O.A.C. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- Statistical Analysis Software, Version 8.2; SAS Institute: Cary, NC, USA, 2001.
- Thakur, S.; Lakpale, R. Impact of nipping on soybean (Glycine max) plant architecture, nodulation and yield. Indian J. Agron. 2014, 59, 477–480. [Google Scholar]
- Turnbull, G.N.C.; Raymond, A.A.M.; Dodd, C.I.; Morris, E.S. Rapid increases in Cytokinin concentration in lateral buds of chickpea (Cicer arietinum L.) during release of apical dominance. Planta 1997, 202, 271–276. [Google Scholar] [CrossRef]
- Mader, J.C.; Emery, R.J.N.; Turnbull, C.G.N. Spatial and temporal changes in multiple hormone groups during lateral bud release shortly following apex decapitation of chickpea (Cicer arietinum) seedlings. Physiol. Plant. 2003, 119, 295–308. [Google Scholar] [CrossRef]
- Lindoo, S.J.; Noodén, L.D. The interrelation of fruit development and leaf senescence in ‘Anoka’ soybeans. Bot. Gaz. 1976, 137, 218–223. [Google Scholar] [CrossRef]
- Pandey, R.K. Growth, development and yield physiology of pigeonpea. In Proc. International Workshop on Pigeonpea; International Crops Research Institute for the Semi-Arid Tropics: Patancheru, India, 1980; Volume 2, pp. 15–19. [Google Scholar]
- Parvez, M.A.; Muhammad, F.; Ahmad, M. Effect of depodding on the growth and yield of Peas (Pisum sativum L.). Pak. J. Biol. Sci. 2000, 8, 1281–1282. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Gan, S.S. Translational researches on leaf senescence for enhancing plant productivity and quality. J. Exp. Bot. 2014, 65, 3901–3913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noodén, L.D.; Penney, J.P. Correlative controls of senescence and plant death in Arabidopsis thaliana (Brassicaceae). J. Exp. Bot. 2001, 52, 2151–2159. [Google Scholar] [CrossRef] [PubMed]
- Lindoo, S.J.; Noodén, L.D. Studies on the behavior of the senescence signal in anoka soybeans. Plant Physiol. 1977, 59, 1136–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kokubun, M.; Honda, I. Intra-raceme variation in pod-set probability is associated with cytokinin content in soybeans. Plant Prod. Sci. 2000, 3, 354–359. [Google Scholar] [CrossRef]
- Smart, C.M.; Scofield, S.R.; Bevan, M.W.; Dyer, T.A. Delayed leaf senescence in tobacco plants transformed with tmr, a gene for cytokinin production in Agrobacterium. Plant Cell 1991, 3, 647–656. [Google Scholar] [CrossRef]
- Van Staden, J. Cytokinins and senescence. Senescence Aging Plants 1988, 281–328. [Google Scholar]
- Kim, H.J.; Ryu, H.; Hong, S.H.; Woo, H.; Lim, P.O.; Lee, I.C.; Sheen, J.; Nam, H.G.; Hwang, I. Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc. Natl. Acad. Sci. USA 2006, 103, 814–819. [Google Scholar] [CrossRef] [Green Version]
- Reese, R.N.; Dybing, C.D.; White, C.A.; Page, S.M.; Larson, J.E. Expression of vegetative storage protein (VSP-b) in soybean raceme tissues in response to flower set. J. Exp. Bot. 1995, 46, 957–964. [Google Scholar] [CrossRef]
- Nagel, L.; Brewster, R.; Riedell, W.E.; Reese, R.N. Cytokinin regulation of flower and pod set in soybeans (Glycine max (L.) Merr.). Ann. Bot. 2001, 88, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Hayati, R.; Egli, D.B.; Crafts-Brandner, S.J. Carbon and nitrogen supply during seed filling and leaf senescence in soybean. Crop Sci. 1995, 35, 1063–1069. [Google Scholar] [CrossRef]
- Turc, O.; Tardieu, F. Drought affects abortion of reproductive organs by exacerbating developmentally driven processes via expansive growth and hydraulics. J. Exp. Bot. 2018, 69, 3245–3254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brun, W.A.; Betts, K.J. Source/sink relations of abscising and nonabscising soybean flowers. Plant Physiol. 1984, 75, 187–191. [Google Scholar] [CrossRef] [Green Version]
- Kokubun, M. Design and evaluation of soybean ideotypes. Bull. Tohoku Natl. Agric. Exp. 1988, 77, 77–142. [Google Scholar]
- Yashima, Y.; Kaihatsu, A.; Nakajima, T.; Kokubun, M. Effect of source/sink ratio and Cytokinin application on pod set in soybean. Plant Prod. Sci. 2005, 8, 139–144. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, H.M.; Ali, B.; El-Keblawy, A.; Ksiksi, T.; El-Esawi, M.A.; Jośko, I.; Ulhassan, Z.; Sheteiwy, M.S. Effect of Source–Sink Ratio Manipulation on Growth, Flowering, and Yield Potential of Soybean. Agriculture 2021, 11, 926. https://doi.org/10.3390/agriculture11100926
Ibrahim HM, Ali B, El-Keblawy A, Ksiksi T, El-Esawi MA, Jośko I, Ulhassan Z, Sheteiwy MS. Effect of Source–Sink Ratio Manipulation on Growth, Flowering, and Yield Potential of Soybean. Agriculture. 2021; 11(10):926. https://doi.org/10.3390/agriculture11100926
Chicago/Turabian StyleIbrahim, Heba M., Basharat Ali, Ali El-Keblawy, Taoufik Ksiksi, Mohamed A. El-Esawi, Izabela Jośko, Zaid Ulhassan, and Mohamed S. Sheteiwy. 2021. "Effect of Source–Sink Ratio Manipulation on Growth, Flowering, and Yield Potential of Soybean" Agriculture 11, no. 10: 926. https://doi.org/10.3390/agriculture11100926
APA StyleIbrahim, H. M., Ali, B., El-Keblawy, A., Ksiksi, T., El-Esawi, M. A., Jośko, I., Ulhassan, Z., & Sheteiwy, M. S. (2021). Effect of Source–Sink Ratio Manipulation on Growth, Flowering, and Yield Potential of Soybean. Agriculture, 11(10), 926. https://doi.org/10.3390/agriculture11100926