Building an Agroecological Process towards Agricultural Sustainability: A Case Study from Southern Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Area History
2.3. The Creation of the Agroecological Project Experience on Colective Lands (Extiercol)
3. Results and Discussion
3.1. Phase I: Project Initiation
3.2. Phase II: Agroecological Process Begins: Training and Tool Access
3.3. Phase III: Production and Comercializatoin
3.4. Phase IV: Value Chain Increase
3.5. The Extiercol Project as a Model Case
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Informe Anual de Indicadores. Agricultura, Pesca y Alimentación. 2019. Available online: https://www.mapa.gob.es/es/ministerio/servicios/analisis-y-prospectiva/indicadores_semestre.aspx (accessed on 25 May 2021).
- Aguilera, E.; Guzmán, G.I.; de Molina, M.G.; Soto, D.; Infante-Amate, J. From animals to machines. The impact of mechanization on the carbon footprint of traction in Spanish agriculture: 1900–2014. J. Clean. Prod. 2019, 221, 295–305. [Google Scholar] [CrossRef]
- Medina, L.J.G.; Rodrigo, E.C. La ocupación en el sector agrario: Trayectoria y actualidad. Panor. Soc. 2020, 31, 113–124. [Google Scholar]
- Taylor, P.J.; Flint, C. Geografía Política: Economía-Mundo, Estado-Nación y Localidad, 2nd ed.; Trama: Madrid, Spain, 2002; p. 447. [Google Scholar]
- Camilleri, A.R.; Larrick, R.P.; Hossain, S.; Patino-Echeverri, D. Consumers underestimate the emissions associated with food but are aided by labels. Nat. Clim. Chang. 2019, 9, 53–58. [Google Scholar] [CrossRef]
- European Commission. Employment and Social Developments in Europe: 2019 Review; European Commission: Luxembourg, 2019; Available online: https://ec.europa.eu (accessed on 10 May 2021).
- Alons, G. Environmental Policy Integration in the EU’s Common Agricultural Policy: Greening or Greenwashing? J. Eur. Public Policy 2017, 24, 1604–1622. [Google Scholar] [CrossRef] [Green Version]
- Gocht, A.; Ciaian, P.; Bielza, M.; Terres, J.M.; Röder, N.; Himics, M.; Salputra, G. EU-Wide Economic and Environmental Impacts of CAP Greening with High Spatial and Farm-Type Detail. J. Agric. Econ. 2017, 68, 651–681. [Google Scholar] [CrossRef]
- Hristov, J.; Clough, Y.; Sahlin, U.; Smith, H.G.; Stjernman, M.; Olsson, O.; Brady, M.V. Impacts of the EU’s Common Agricultural Policy “Greening” Reform on Agricultural Development, Biodiversity, and Ecosystem Services. Appl. Econ. Perspect. Policy 2020, 42, 716–738. [Google Scholar] [CrossRef] [Green Version]
- European Union. From Farm to Fork Strategy: For a Fair, Healthy and Environmentally-Friendly Food System; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Piorr, A.; Zasada, I.; Doernberg, A.; Zoll, F.; Ramme, W. Research for AGRI Committee—Urban and Peri-Urban Agriculture in the EU; European Parliament: Brussels, Belgium, 2018. [Google Scholar]
- Caporali, F. History and development of agroecology and theory of agroecosystems. In Law and Agroecology; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–29. [Google Scholar]
- IPCC. Special Report on Global Warming of 1.5. Available online: https://www.ipcc.ch/sr15/ (accessed on 20 May 2021).
- Dai, T.; Yang, Y.; Lee, R.; Fleischer, A.S.; Wemhoff, A.P. Life cycle environmental impacts of food away from home and mitigation strategies—A review. J. Environ. Manag. 2020, 265, 110471. [Google Scholar] [CrossRef]
- Sullivan, G.T.; Ozman-Sullivan, S.K. Alarming evidence of widespread mite extinctions in the shadows of plant, insect and vertebrate extinctions. Austr. Ecol. 2021, 46, 163–176. [Google Scholar] [CrossRef]
- Singh, J.; Schädler, M.; Demetrio, W.; Brown, G.G.; Eisenhauer, N. Climate change effects on earthworms—A review. SOIL Org. 2019, 91, 114–138. [Google Scholar] [CrossRef]
- Ghosh, A.; Misra, S.; Bhattacharyya, R.; Sarkar, A.; Singh, A.K.; Tyagi, V.C.; Kumar, R.V.; Meena, V.S. Agriculture, dairy and fishery farming practices and greenhouse gas emission footprint: A strategic appraisal for mitigation. Environ. Sci. Pollut. Res. 2020, 27, 10160–10184. [Google Scholar] [CrossRef]
- González-Rosado, M.; Parras-Alcántara, L.; Aguilera-Huertas, J.; Lozano-García, B. Long-term evaluation of the initiative 4‰ under different soil managements in Mediterranean olive groves. Sci. Total. Environ. 2021, 758, 143591. [Google Scholar] [CrossRef]
- Hendrickson, M.K.; Heffernan, W.D. Opening spaces through relocalization: Locating potential resistance in the weaknesses of the global food system. Sociol. Rural. 2002, 42, 347–369. [Google Scholar] [CrossRef]
- Inventario Nacional de Gases de Efecto Invernadero (GEI). 2019. Available online: https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/sistema-espanol-de-inventario-sei-/es-2021-nir_tcm30-523942.pdf (accessed on 2 May 2021).
- Sanz-Cobena, A.; Lassaletta, L.; Aguilera, E.; del Prado, A.; Garnier, J.; Billen, G.; Smith, P. Strategies for greenhouse gas emissions mitigation in Mediterranean agriculture: A review. Agric. Ecosyst. Environ. 2017, 238, 5–24. [Google Scholar] [CrossRef] [Green Version]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate–smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Oldfield, E.E.; Wood, S.A.; Bradford, M.A. Direct effects of soil organic matter on productivity mirror those observed with organic amendments. Plant Soil 2018, 423, 363–373. [Google Scholar] [CrossRef]
- González-Rosado, M.; Parras-Alcántara, L.; Aguilera-Huertas, J.; Lozano-García, B. Soil Productivity Degradation in a Long-Term Eroded Olive Orchard under Semiarid Mediterranean Conditions. Agronomy 2021, 11, 812. [Google Scholar] [CrossRef]
- González-Rosado, M.; Lozano-García, B.; Aguilera-Huertas, J.; Parras-Alcántara, L. Short-term effects of land management change linked to cover crop on soil organic carbon in Mediterranean olive grove hillsides. Sci. Total Environ. 2020, 744, 140683. [Google Scholar] [CrossRef]
- Bogunovic, I.; Telak, L.J.; Pereira, P. Agriculture management impacts on soil properties and hydrological response in Istria (Croatia). Agronomy 2020, 10, 282. [Google Scholar] [CrossRef] [Green Version]
- Morugán-Coronado, A.; Linares, C.; Gómez-López, M.D.; Faz, A.; Zornoza, R. The impact of intercropping, tillage and fertilizer type on soil and crop yield in fruit orchards under Mediterranean conditions: A meta-analysis of field studies. Agric. Syst. 2020, 178, 102736. [Google Scholar] [CrossRef]
- Zomer, R.J.; Bossio, D.A.; Sommer, R.; Verchot, L.V. Global sequestration potential of increased organic carbon in cropland soils. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bombino, G.; Denisi, P.; Gómez, J.A.; Zema, D.A. Mulching as best management practice to reduce surface runoff and erosion in steep clayey olive groves. Int. Soil Water Conserv. Res. 2020, 9, 26–36. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Mayer, S.; Paul, C.; Helming, K.; Don, A.; Franko, U.; Steffens, M.; Kögel-Knabner, I. CO2 certificates for carbon sequestration in soils: Methods, management practices and limitations. BonaRes Ser. 2020, 4, 1–23. [Google Scholar] [CrossRef]
- Veerman, C.; Pinto Correia, T.; Bastioli, C.; Biro, B.; Bouma, J.; Cienciela, E. Caring for soil is caring for life. In EU Soil Health and Food Mission Board; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Puigdueta, I.; Aguilera, E.; Cruz, J.L.; Iglesias, A.; Sanz-Cobena, A. Urban agriculture may change food consumption towards low carbon diets. Glob. Food Secur. 2021, 28, 100507. [Google Scholar] [CrossRef]
- Pichler, P.P.; Zwickel, T.; Chavez, A.; Kretschmer, T.; Seddon, J.; Weisz, H. Reducing urban greenhouse gas footprints. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kriewald, S.; Pradhan, P.; Costa, L.; Ros, A.G.C.; Kropp, J.P. Hungry cities: How local food self-sufficiency relates to climate change, diets, and urbanisation. Environ. Res. Lett. 2019, 14, 094007. [Google Scholar] [CrossRef]
- Vicente-Vicente, J.L.; Piorr, A. Can a shift to regional and organic diets reduce greenhouse gas emissions from the food system? A case study from Qatar. Carbon Balance Manag. 2021, 16, 2. [Google Scholar] [CrossRef]
- C40 Food Systems Network. 2019. Available online: www.c40.org/networks/food_systems (accessed on 5 June 2021).
- Fabbri, K. Food 2030: Future-proofing our food systems through research and innovation. Brussels 2017, 1, 4–44. [Google Scholar] [CrossRef]
- Van der Ploeg, J.D. The political economy of agroecology. J. Peasant. Stud. 2021, 48, 274–297. [Google Scholar] [CrossRef] [Green Version]
- Anderson, C.R.; Bruil, J.; Chappell, M.J.; Kiss, C.; Pimbert, M.P. From Transition to Domains of Transformation: Getting to Sustainable and Just Food Systems through Agroecology. Sustainability 2019, 11, 5272. [Google Scholar] [CrossRef] [Green Version]
- Altieri, M.A.; Nicholls, C.I. Agroecology and the reconstruction of a post-COVID-19 agriculture. J. Peasant. Stud. 2020, 47, 881–898. [Google Scholar] [CrossRef]
- Vaarst, M.; Escudero, A.G.; Chappell, M.J.; Brinkley, C.; Nijbroek, R.; Arraes, N.A.M.; Andreasen, L.; Gattinger, A.; De Almeida, G.F.; Bossio, D. Exploring the concept of agroecological food systems in a city-region context. Agroecol. Sustain. Food Syst. 2018, 42, 686–711. [Google Scholar] [CrossRef]
- De Bernardi, P.; Azucar, D. The Food System Grand Challenge: A Climate Smart and Sustainable Food System for a Healthy Europe. In Innovation in Food Ecosystems; Springer: Cham, Switzerland, 2020; pp. 1–25. [Google Scholar] [CrossRef]
- Bouma, J. Soil security as a roadmap focusing soil contributions on sustainable development agendas. Soil Secur. 2020, 1, 100001. [Google Scholar] [CrossRef]
- Isgren, E.; Ness, B. Agroecology to Promote Just Sustainability Transitions: Analysis of a Civil Society Network in the Rwenzori Region, Western Uganda. Sustainability 2017, 9, 1357. [Google Scholar] [CrossRef] [Green Version]
- Altieri, M.A. Agroecology: A new research and development paradigm for world agriculture. Agric. Ecosyst. Environ. 1989, 27, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Gliessman, S.R. Agroecology: The Ecology of Sustainable Food Systems; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Altieri, M.A. Agroecology: The Science of Sustainable Agriculture; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Del Valle Ramos, C.; Almoguera, P. Envejecimiento demográfico y (des) población en las ciudades medias interiores de Andalucía (2008–2018). Cuad. Geográficos De La Univ. De Granada 2020, 59, 263–286. [Google Scholar] [CrossRef]
- González-Rosado, M. Desarrollo Local en Zonas Rurales Atrasadas: El Caso de Cuevas del Becerro. Master’s Thesis, University of Málaga, Málaga, Spain, 2013. [Google Scholar]
- Martínez, M. Ciencia y Arte en la Metodología Cualitativa; Trillas: México, Mexico, 2009. [Google Scholar]
- McIntyre, A. Participatory Action Research; Sage Publications: Thousand Oaks, CA, USA, 2007. [Google Scholar]
- Decision No 1719/2006/EC of the European Parliament and of the Council of 15 November 2006 Establishing the Youth in Action Programme for the Period 2007 to 2013. Available online: https://eur-lex.europa.eu/eli/dec/2006/1719/oj (accessed on 18 July 2021).
- Estudio Sobre el Acceso a la Tierra: Documento Final del Grupo Focal de Acceso a la Tierra. Ministerio de Agricultura, Pesca y Alimentación. 2020. Available online: https://cpage.mpr.gob.es/producto/estudio-sobre-el-acceso-a-la-tierra/ (accessed on 12 May 2021).
- Commission Staff Working Document. Executive Summary of the Evaluation of the Impact of CAP on Generational Renewal. Local Development and Jobs in Rural Areas. Available online: https://ec.europa.eu/info/sites/default/files/food-farming-fisheries/key_policies/documents/ext-eval-cap-gene-renewal-study-exe-summary_2021_en.pdf (accessed on 18 May 2021).
- Lasanta, T.; Nadal-Romero, E.; Arnáez, J. Managing abandoned farmland to control the impact of re-vegetation on the environment. The state of the art in Europe. Environ. Sci. Policy 2015, 52, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Levers, C.; Schneider, M.; Prishchepov, A.V.; Estel, S.; Kuemmerle, T. Spatial variation in determinants of agricultural land abandonment in Europe. Sci. Total. Environ. 2018, 644, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Dolton-Thornton, N. How should policy respond to land abandonment in Europe? Land Use Policy 2021, 102, 105269. [Google Scholar] [CrossRef]
- Lasanta, T.; Arnáez, J.; Pascual, N.; Ruiz-Flaño, P.; Errea, M.P.; Lana-Renault, N. Space–time process and drivers of land abandonment in Europe. Catena 2017, 149, 810–823. [Google Scholar] [CrossRef]
- Gliessman, S.R.; Rosemeyer, M. The Conversion to Sustainable Agriculture: Principles, Processes and Practices; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Ricciardi, V.; Mehrabi, Z.; Wittman, H.; James, D.; Ramankutty, N. Higher yields and more biodiversity on smaller farms. Nat. Sustain. 2021, 4, 651–657. [Google Scholar] [CrossRef]
- Pe’er, G.; Bonn, A.; Bruelheide, H.; Dieker, P.; Eisenhauer, N.; Feindt, P.H.; Lakner, S. Action needed for the EU Common Agricultural Policy to address sustainability challenges. People Nat. 2020, 2, 305–316. [Google Scholar] [CrossRef]
- Westengen, O.T.; Brysting, A.K. Crop adaptation to climate change in the semi-arid zone in Tanzania: The role of genetic resources and seed systems. Agric. Food Secur. 2014, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, B.; Birkved, M.; Fernández, J.; Hauschild, M. Surveying the environmental footprint of urban food consumption. J. Ind. Ecol. 2016, 21, 151–165. [Google Scholar] [CrossRef] [Green Version]
- Bamberg, S.; Rees, J.; Seebauer, S. Collective climate action: Determinants of participation intention in community-based pro-environmental initiatives. J. Environ. Psychol. 2015, 43, 155–165. [Google Scholar] [CrossRef]
- Tobarra, M.A.; Lopez, L.A.; Cadarso, M.A.; Gomez, N.; Cazcarro, I. Is seasonal households’ consumption good for the nexus carbon/water footprint? The Spanish fruits and vegetables case. Environ. Sci. Technol. 2018, 52, 12066–12077. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, D.; Barrett, J.; Wiedenhofer, D.; Macura, B.; Callaghan, M.; Creutzig, F. Quantifying the potential for climate change mitigation of consumption options. Environ. Res. Lett. 2020, 15, 093001. [Google Scholar] [CrossRef]
- Pradhan, P.; Kriewald, S.; Costa, L.; Rybski, D.; Benton, T.G.; Fischer, G.; Kropp, J.P. Urban food systems: How regionalization can contribute to climate change mitigation. Environ. Sci. Technol. 2020, 54, 10551–10560. [Google Scholar] [CrossRef]
- Wezel, A.; Bellon, S.; Doré, T.; Francis, C.; Vallod, D.; David, C. Agroecology as a science, a movement and a practice. A Review. Agron. Sustain. Dev. 2009, 29, 503–515. [Google Scholar] [CrossRef] [Green Version]
- Vega-Zamora, M.; Parras, R.M.; Murgado, A.E.M.; Torres, R.F.J. The influence of the term organic on food purchasing behaviour. Procedia Soc. Behav. Sci. 2013, 81, 660–671. [Google Scholar] [CrossRef] [Green Version]
- Parras-Alcántara, L.; Díaz, J.L.; Lozano-García, B. Organic farming affects C and N in soils under olive groves in Mediterranean areas. Land Degrad Dev. 2013, 26, 800–806. [Google Scholar] [CrossRef]
- Parras-Alcántara, L.; Lozano-García, B. Conventional tillage vs. organic farming in relation to soil organic carbon stock in olive groves inMediterranean rangelands (southern Spain). Solid Earth Discuss 2014, 6, 35–70. [Google Scholar] [CrossRef]
- Soriano, M.A.; Álvarez, S.; Landa, B.B.; Gómez, J.A. Soil properties in organic olive orchards following different weed management in a rolling landscape of Andalusia, Spain. Renew. Agric. Food Syst. 2013, 29, 83–91. [Google Scholar] [CrossRef]
- Pleguezuelo, C.R.R.; Zuazo, V.H.D.; Martínez, J.R.F.; Peinado, F.J.M.; Martín, F.M.; Tejero, I.F.G. Organic olive farming in Andalusia, Spain. A review. Agron. Sustain. Dev. 2018, 38, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Best, H. Organic agriculture and the conventionalization hypothesis: A case study from West Germany. Agric. Hum. Values 2008, 25, 95–106. [Google Scholar] [CrossRef]
- Darnhofer, I.; Lindenthal, T.; Bartel-Kratochvil, R.; Zollitsch, W. Conventionalisation of organic farming practices: From structural criteria towards an assessment based on organic principles. A review. Agron. Sustain. Dev. 2010, 30, 67–81. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, E.; Díaz-Gaona, C.; García-Laureano, R.; Reyes-Palomo, C.; Guzmán, G.I.; Ortolani, L.; Rodríguez-Estévez, V. Agroecology for adaptation to climate change and resource depletion in the Mediterranean region. A review. Agric. Syst. 2020, 181, 102809. [Google Scholar] [CrossRef]
- Navarrete, M. How do farming systems cope with marketing channel requirements in organic horticulture? The case of market-gardening in south eastern France. J. Sustain. Agric. 2009, 33, 552–565. [Google Scholar] [CrossRef]
- Gliessman, S. Transforming food systems with agroecology. Agroecol. Sustain. Food Syst. 2016, 40, 187–189. [Google Scholar] [CrossRef]
- Ramos García, M.; Guzmán, G.I.; González De Molina, M. Dynamics of organic agriculture in Andalusia: Moving toward conventionalization? Agroecol. Sustain. Food Syst. 2018, 42, 328–359. [Google Scholar] [CrossRef]
- Cerdà, A.; Rodrigo-Comino, J.; Giménez-Morera, A.; Keesstra, S.D. Hydrological and erosional impact and farmer’s perception on catch crops and weeds in citrus organic farming in Canyoles river watershed, Eastern Spain. Agric. Ecosyst. Environ. 2018, 258, 49–58. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Rosado, M.; Parras-Alcántara, L.; Aguilera-Huertas, J.; Lozano-García, B. Building an Agroecological Process towards Agricultural Sustainability: A Case Study from Southern Spain. Agriculture 2021, 11, 1024. https://doi.org/10.3390/agriculture11101024
González-Rosado M, Parras-Alcántara L, Aguilera-Huertas J, Lozano-García B. Building an Agroecological Process towards Agricultural Sustainability: A Case Study from Southern Spain. Agriculture. 2021; 11(10):1024. https://doi.org/10.3390/agriculture11101024
Chicago/Turabian StyleGonzález-Rosado, Manuel, Luis Parras-Alcántara, Jesús Aguilera-Huertas, and Beatriz Lozano-García. 2021. "Building an Agroecological Process towards Agricultural Sustainability: A Case Study from Southern Spain" Agriculture 11, no. 10: 1024. https://doi.org/10.3390/agriculture11101024
APA StyleGonzález-Rosado, M., Parras-Alcántara, L., Aguilera-Huertas, J., & Lozano-García, B. (2021). Building an Agroecological Process towards Agricultural Sustainability: A Case Study from Southern Spain. Agriculture, 11(10), 1024. https://doi.org/10.3390/agriculture11101024