Building an Agroecological Process towards Agricultural Sustainability: A Case Study from Southern Spain
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Area History
2.3. The Creation of the Agroecological Project Experience on Colective Lands (Extiercol)
3. Results and Discussion
3.1. Phase I: Project Initiation
3.2. Phase II: Agroecological Process Begins: Training and Tool Access
3.3. Phase III: Production and Comercializatoin
3.4. Phase IV: Value Chain Increase
3.5. The Extiercol Project as a Model Case
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Informe Anual de Indicadores. Agricultura, Pesca y Alimentación. 2019. Available online: https://www.mapa.gob.es/es/ministerio/servicios/analisis-y-prospectiva/indicadores_semestre.aspx (accessed on 25 May 2021).
- Aguilera, E.; Guzmán, G.I.; de Molina, M.G.; Soto, D.; Infante-Amate, J. From animals to machines. The impact of mechanization on the carbon footprint of traction in Spanish agriculture: 1900–2014. J. Clean. Prod. 2019, 221, 295–305. [Google Scholar] [CrossRef]
- Medina, L.J.G.; Rodrigo, E.C. La ocupación en el sector agrario: Trayectoria y actualidad. Panor. Soc. 2020, 31, 113–124. [Google Scholar]
- Taylor, P.J.; Flint, C. Geografía Política: Economía-Mundo, Estado-Nación y Localidad, 2nd ed.; Trama: Madrid, Spain, 2002; p. 447. [Google Scholar]
- Camilleri, A.R.; Larrick, R.P.; Hossain, S.; Patino-Echeverri, D. Consumers underestimate the emissions associated with food but are aided by labels. Nat. Clim. Chang. 2019, 9, 53–58. [Google Scholar] [CrossRef]
- European Commission. Employment and Social Developments in Europe: 2019 Review; European Commission: Luxembourg, 2019; Available online: https://ec.europa.eu (accessed on 10 May 2021).
- Alons, G. Environmental Policy Integration in the EU’s Common Agricultural Policy: Greening or Greenwashing? J. Eur. Public Policy 2017, 24, 1604–1622. [Google Scholar] [CrossRef]
- Gocht, A.; Ciaian, P.; Bielza, M.; Terres, J.M.; Röder, N.; Himics, M.; Salputra, G. EU-Wide Economic and Environmental Impacts of CAP Greening with High Spatial and Farm-Type Detail. J. Agric. Econ. 2017, 68, 651–681. [Google Scholar] [CrossRef]
- Hristov, J.; Clough, Y.; Sahlin, U.; Smith, H.G.; Stjernman, M.; Olsson, O.; Brady, M.V. Impacts of the EU’s Common Agricultural Policy “Greening” Reform on Agricultural Development, Biodiversity, and Ecosystem Services. Appl. Econ. Perspect. Policy 2020, 42, 716–738. [Google Scholar] [CrossRef]
- European Union. From Farm to Fork Strategy: For a Fair, Healthy and Environmentally-Friendly Food System; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Piorr, A.; Zasada, I.; Doernberg, A.; Zoll, F.; Ramme, W. Research for AGRI Committee—Urban and Peri-Urban Agriculture in the EU; European Parliament: Brussels, Belgium, 2018. [Google Scholar]
- Caporali, F. History and development of agroecology and theory of agroecosystems. In Law and Agroecology; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–29. [Google Scholar]
- IPCC. Special Report on Global Warming of 1.5. Available online: https://www.ipcc.ch/sr15/ (accessed on 20 May 2021).
- Dai, T.; Yang, Y.; Lee, R.; Fleischer, A.S.; Wemhoff, A.P. Life cycle environmental impacts of food away from home and mitigation strategies—A review. J. Environ. Manag. 2020, 265, 110471. [Google Scholar] [CrossRef]
- Sullivan, G.T.; Ozman-Sullivan, S.K. Alarming evidence of widespread mite extinctions in the shadows of plant, insect and vertebrate extinctions. Austr. Ecol. 2021, 46, 163–176. [Google Scholar] [CrossRef]
- Singh, J.; Schädler, M.; Demetrio, W.; Brown, G.G.; Eisenhauer, N. Climate change effects on earthworms—A review. SOIL Org. 2019, 91, 114–138. [Google Scholar] [CrossRef]
- Ghosh, A.; Misra, S.; Bhattacharyya, R.; Sarkar, A.; Singh, A.K.; Tyagi, V.C.; Kumar, R.V.; Meena, V.S. Agriculture, dairy and fishery farming practices and greenhouse gas emission footprint: A strategic appraisal for mitigation. Environ. Sci. Pollut. Res. 2020, 27, 10160–10184. [Google Scholar] [CrossRef]
- González-Rosado, M.; Parras-Alcántara, L.; Aguilera-Huertas, J.; Lozano-García, B. Long-term evaluation of the initiative 4‰ under different soil managements in Mediterranean olive groves. Sci. Total. Environ. 2021, 758, 143591. [Google Scholar] [CrossRef]
- Hendrickson, M.K.; Heffernan, W.D. Opening spaces through relocalization: Locating potential resistance in the weaknesses of the global food system. Sociol. Rural. 2002, 42, 347–369. [Google Scholar] [CrossRef]
- Inventario Nacional de Gases de Efecto Invernadero (GEI). 2019. Available online: https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/sistema-espanol-de-inventario-sei-/es-2021-nir_tcm30-523942.pdf (accessed on 2 May 2021).
- Sanz-Cobena, A.; Lassaletta, L.; Aguilera, E.; del Prado, A.; Garnier, J.; Billen, G.; Smith, P. Strategies for greenhouse gas emissions mitigation in Mediterranean agriculture: A review. Agric. Ecosyst. Environ. 2017, 238, 5–24. [Google Scholar] [CrossRef]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate–smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef]
- Oldfield, E.E.; Wood, S.A.; Bradford, M.A. Direct effects of soil organic matter on productivity mirror those observed with organic amendments. Plant Soil 2018, 423, 363–373. [Google Scholar] [CrossRef]
- González-Rosado, M.; Parras-Alcántara, L.; Aguilera-Huertas, J.; Lozano-García, B. Soil Productivity Degradation in a Long-Term Eroded Olive Orchard under Semiarid Mediterranean Conditions. Agronomy 2021, 11, 812. [Google Scholar] [CrossRef]
- González-Rosado, M.; Lozano-García, B.; Aguilera-Huertas, J.; Parras-Alcántara, L. Short-term effects of land management change linked to cover crop on soil organic carbon in Mediterranean olive grove hillsides. Sci. Total Environ. 2020, 744, 140683. [Google Scholar] [CrossRef]
- Bogunovic, I.; Telak, L.J.; Pereira, P. Agriculture management impacts on soil properties and hydrological response in Istria (Croatia). Agronomy 2020, 10, 282. [Google Scholar] [CrossRef]
- Morugán-Coronado, A.; Linares, C.; Gómez-López, M.D.; Faz, A.; Zornoza, R. The impact of intercropping, tillage and fertilizer type on soil and crop yield in fruit orchards under Mediterranean conditions: A meta-analysis of field studies. Agric. Syst. 2020, 178, 102736. [Google Scholar] [CrossRef]
- Zomer, R.J.; Bossio, D.A.; Sommer, R.; Verchot, L.V. Global sequestration potential of increased organic carbon in cropland soils. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Bombino, G.; Denisi, P.; Gómez, J.A.; Zema, D.A. Mulching as best management practice to reduce surface runoff and erosion in steep clayey olive groves. Int. Soil Water Conserv. Res. 2020, 9, 26–36. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Mayer, S.; Paul, C.; Helming, K.; Don, A.; Franko, U.; Steffens, M.; Kögel-Knabner, I. CO2 certificates for carbon sequestration in soils: Methods, management practices and limitations. BonaRes Ser. 2020, 4, 1–23. [Google Scholar] [CrossRef]
- Veerman, C.; Pinto Correia, T.; Bastioli, C.; Biro, B.; Bouma, J.; Cienciela, E. Caring for soil is caring for life. In EU Soil Health and Food Mission Board; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Puigdueta, I.; Aguilera, E.; Cruz, J.L.; Iglesias, A.; Sanz-Cobena, A. Urban agriculture may change food consumption towards low carbon diets. Glob. Food Secur. 2021, 28, 100507. [Google Scholar] [CrossRef]
- Pichler, P.P.; Zwickel, T.; Chavez, A.; Kretschmer, T.; Seddon, J.; Weisz, H. Reducing urban greenhouse gas footprints. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Kriewald, S.; Pradhan, P.; Costa, L.; Ros, A.G.C.; Kropp, J.P. Hungry cities: How local food self-sufficiency relates to climate change, diets, and urbanisation. Environ. Res. Lett. 2019, 14, 094007. [Google Scholar] [CrossRef]
- Vicente-Vicente, J.L.; Piorr, A. Can a shift to regional and organic diets reduce greenhouse gas emissions from the food system? A case study from Qatar. Carbon Balance Manag. 2021, 16, 2. [Google Scholar] [CrossRef]
- C40 Food Systems Network. 2019. Available online: www.c40.org/networks/food_systems (accessed on 5 June 2021).
- Fabbri, K. Food 2030: Future-proofing our food systems through research and innovation. Brussels 2017, 1, 4–44. [Google Scholar] [CrossRef]
- Van der Ploeg, J.D. The political economy of agroecology. J. Peasant. Stud. 2021, 48, 274–297. [Google Scholar] [CrossRef]
- Anderson, C.R.; Bruil, J.; Chappell, M.J.; Kiss, C.; Pimbert, M.P. From Transition to Domains of Transformation: Getting to Sustainable and Just Food Systems through Agroecology. Sustainability 2019, 11, 5272. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I. Agroecology and the reconstruction of a post-COVID-19 agriculture. J. Peasant. Stud. 2020, 47, 881–898. [Google Scholar] [CrossRef]
- Vaarst, M.; Escudero, A.G.; Chappell, M.J.; Brinkley, C.; Nijbroek, R.; Arraes, N.A.M.; Andreasen, L.; Gattinger, A.; De Almeida, G.F.; Bossio, D. Exploring the concept of agroecological food systems in a city-region context. Agroecol. Sustain. Food Syst. 2018, 42, 686–711. [Google Scholar] [CrossRef]
- De Bernardi, P.; Azucar, D. The Food System Grand Challenge: A Climate Smart and Sustainable Food System for a Healthy Europe. In Innovation in Food Ecosystems; Springer: Cham, Switzerland, 2020; pp. 1–25. [Google Scholar] [CrossRef]
- Bouma, J. Soil security as a roadmap focusing soil contributions on sustainable development agendas. Soil Secur. 2020, 1, 100001. [Google Scholar] [CrossRef]
- Isgren, E.; Ness, B. Agroecology to Promote Just Sustainability Transitions: Analysis of a Civil Society Network in the Rwenzori Region, Western Uganda. Sustainability 2017, 9, 1357. [Google Scholar] [CrossRef]
- Altieri, M.A. Agroecology: A new research and development paradigm for world agriculture. Agric. Ecosyst. Environ. 1989, 27, 37–46. [Google Scholar] [CrossRef]
- Gliessman, S.R. Agroecology: The Ecology of Sustainable Food Systems; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Altieri, M.A. Agroecology: The Science of Sustainable Agriculture; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Del Valle Ramos, C.; Almoguera, P. Envejecimiento demográfico y (des) población en las ciudades medias interiores de Andalucía (2008–2018). Cuad. Geográficos De La Univ. De Granada 2020, 59, 263–286. [Google Scholar] [CrossRef]
- González-Rosado, M. Desarrollo Local en Zonas Rurales Atrasadas: El Caso de Cuevas del Becerro. Master’s Thesis, University of Málaga, Málaga, Spain, 2013. [Google Scholar]
- Martínez, M. Ciencia y Arte en la Metodología Cualitativa; Trillas: México, Mexico, 2009. [Google Scholar]
- McIntyre, A. Participatory Action Research; Sage Publications: Thousand Oaks, CA, USA, 2007. [Google Scholar]
- Decision No 1719/2006/EC of the European Parliament and of the Council of 15 November 2006 Establishing the Youth in Action Programme for the Period 2007 to 2013. Available online: https://eur-lex.europa.eu/eli/dec/2006/1719/oj (accessed on 18 July 2021).
- Estudio Sobre el Acceso a la Tierra: Documento Final del Grupo Focal de Acceso a la Tierra. Ministerio de Agricultura, Pesca y Alimentación. 2020. Available online: https://cpage.mpr.gob.es/producto/estudio-sobre-el-acceso-a-la-tierra/ (accessed on 12 May 2021).
- Commission Staff Working Document. Executive Summary of the Evaluation of the Impact of CAP on Generational Renewal. Local Development and Jobs in Rural Areas. Available online: https://ec.europa.eu/info/sites/default/files/food-farming-fisheries/key_policies/documents/ext-eval-cap-gene-renewal-study-exe-summary_2021_en.pdf (accessed on 18 May 2021).
- Lasanta, T.; Nadal-Romero, E.; Arnáez, J. Managing abandoned farmland to control the impact of re-vegetation on the environment. The state of the art in Europe. Environ. Sci. Policy 2015, 52, 99–109. [Google Scholar] [CrossRef]
- Levers, C.; Schneider, M.; Prishchepov, A.V.; Estel, S.; Kuemmerle, T. Spatial variation in determinants of agricultural land abandonment in Europe. Sci. Total. Environ. 2018, 644, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Dolton-Thornton, N. How should policy respond to land abandonment in Europe? Land Use Policy 2021, 102, 105269. [Google Scholar] [CrossRef]
- Lasanta, T.; Arnáez, J.; Pascual, N.; Ruiz-Flaño, P.; Errea, M.P.; Lana-Renault, N. Space–time process and drivers of land abandonment in Europe. Catena 2017, 149, 810–823. [Google Scholar] [CrossRef]
- Gliessman, S.R.; Rosemeyer, M. The Conversion to Sustainable Agriculture: Principles, Processes and Practices; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Ricciardi, V.; Mehrabi, Z.; Wittman, H.; James, D.; Ramankutty, N. Higher yields and more biodiversity on smaller farms. Nat. Sustain. 2021, 4, 651–657. [Google Scholar] [CrossRef]
- Pe’er, G.; Bonn, A.; Bruelheide, H.; Dieker, P.; Eisenhauer, N.; Feindt, P.H.; Lakner, S. Action needed for the EU Common Agricultural Policy to address sustainability challenges. People Nat. 2020, 2, 305–316. [Google Scholar] [CrossRef]
- Westengen, O.T.; Brysting, A.K. Crop adaptation to climate change in the semi-arid zone in Tanzania: The role of genetic resources and seed systems. Agric. Food Secur. 2014, 3, 3. [Google Scholar] [CrossRef]
- Goldstein, B.; Birkved, M.; Fernández, J.; Hauschild, M. Surveying the environmental footprint of urban food consumption. J. Ind. Ecol. 2016, 21, 151–165. [Google Scholar] [CrossRef]
- Bamberg, S.; Rees, J.; Seebauer, S. Collective climate action: Determinants of participation intention in community-based pro-environmental initiatives. J. Environ. Psychol. 2015, 43, 155–165. [Google Scholar] [CrossRef]
- Tobarra, M.A.; Lopez, L.A.; Cadarso, M.A.; Gomez, N.; Cazcarro, I. Is seasonal households’ consumption good for the nexus carbon/water footprint? The Spanish fruits and vegetables case. Environ. Sci. Technol. 2018, 52, 12066–12077. [Google Scholar] [CrossRef]
- Ivanova, D.; Barrett, J.; Wiedenhofer, D.; Macura, B.; Callaghan, M.; Creutzig, F. Quantifying the potential for climate change mitigation of consumption options. Environ. Res. Lett. 2020, 15, 093001. [Google Scholar] [CrossRef]
- Pradhan, P.; Kriewald, S.; Costa, L.; Rybski, D.; Benton, T.G.; Fischer, G.; Kropp, J.P. Urban food systems: How regionalization can contribute to climate change mitigation. Environ. Sci. Technol. 2020, 54, 10551–10560. [Google Scholar] [CrossRef]
- Wezel, A.; Bellon, S.; Doré, T.; Francis, C.; Vallod, D.; David, C. Agroecology as a science, a movement and a practice. A Review. Agron. Sustain. Dev. 2009, 29, 503–515. [Google Scholar] [CrossRef]
- Vega-Zamora, M.; Parras, R.M.; Murgado, A.E.M.; Torres, R.F.J. The influence of the term organic on food purchasing behaviour. Procedia Soc. Behav. Sci. 2013, 81, 660–671. [Google Scholar] [CrossRef][Green Version]
- Parras-Alcántara, L.; Díaz, J.L.; Lozano-García, B. Organic farming affects C and N in soils under olive groves in Mediterranean areas. Land Degrad Dev. 2013, 26, 800–806. [Google Scholar] [CrossRef]
- Parras-Alcántara, L.; Lozano-García, B. Conventional tillage vs. organic farming in relation to soil organic carbon stock in olive groves inMediterranean rangelands (southern Spain). Solid Earth Discuss 2014, 6, 35–70. [Google Scholar] [CrossRef]
- Soriano, M.A.; Álvarez, S.; Landa, B.B.; Gómez, J.A. Soil properties in organic olive orchards following different weed management in a rolling landscape of Andalusia, Spain. Renew. Agric. Food Syst. 2013, 29, 83–91. [Google Scholar] [CrossRef]
- Pleguezuelo, C.R.R.; Zuazo, V.H.D.; Martínez, J.R.F.; Peinado, F.J.M.; Martín, F.M.; Tejero, I.F.G. Organic olive farming in Andalusia, Spain. A review. Agron. Sustain. Dev. 2018, 38, 1–16. [Google Scholar] [CrossRef]
- Best, H. Organic agriculture and the conventionalization hypothesis: A case study from West Germany. Agric. Hum. Values 2008, 25, 95–106. [Google Scholar] [CrossRef]
- Darnhofer, I.; Lindenthal, T.; Bartel-Kratochvil, R.; Zollitsch, W. Conventionalisation of organic farming practices: From structural criteria towards an assessment based on organic principles. A review. Agron. Sustain. Dev. 2010, 30, 67–81. [Google Scholar] [CrossRef]
- Aguilera, E.; Díaz-Gaona, C.; García-Laureano, R.; Reyes-Palomo, C.; Guzmán, G.I.; Ortolani, L.; Rodríguez-Estévez, V. Agroecology for adaptation to climate change and resource depletion in the Mediterranean region. A review. Agric. Syst. 2020, 181, 102809. [Google Scholar] [CrossRef]
- Navarrete, M. How do farming systems cope with marketing channel requirements in organic horticulture? The case of market-gardening in south eastern France. J. Sustain. Agric. 2009, 33, 552–565. [Google Scholar] [CrossRef]
- Gliessman, S. Transforming food systems with agroecology. Agroecol. Sustain. Food Syst. 2016, 40, 187–189. [Google Scholar] [CrossRef]
- Ramos García, M.; Guzmán, G.I.; González De Molina, M. Dynamics of organic agriculture in Andalusia: Moving toward conventionalization? Agroecol. Sustain. Food Syst. 2018, 42, 328–359. [Google Scholar] [CrossRef]
- Cerdà, A.; Rodrigo-Comino, J.; Giménez-Morera, A.; Keesstra, S.D. Hydrological and erosional impact and farmer’s perception on catch crops and weeds in citrus organic farming in Canyoles river watershed, Eastern Spain. Agric. Ecosyst. Environ. 2018, 258, 49–58. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Rosado, M.; Parras-Alcántara, L.; Aguilera-Huertas, J.; Lozano-García, B. Building an Agroecological Process towards Agricultural Sustainability: A Case Study from Southern Spain. Agriculture 2021, 11, 1024. https://doi.org/10.3390/agriculture11101024
González-Rosado M, Parras-Alcántara L, Aguilera-Huertas J, Lozano-García B. Building an Agroecological Process towards Agricultural Sustainability: A Case Study from Southern Spain. Agriculture. 2021; 11(10):1024. https://doi.org/10.3390/agriculture11101024
Chicago/Turabian StyleGonzález-Rosado, Manuel, Luis Parras-Alcántara, Jesús Aguilera-Huertas, and Beatriz Lozano-García. 2021. "Building an Agroecological Process towards Agricultural Sustainability: A Case Study from Southern Spain" Agriculture 11, no. 10: 1024. https://doi.org/10.3390/agriculture11101024
APA StyleGonzález-Rosado, M., Parras-Alcántara, L., Aguilera-Huertas, J., & Lozano-García, B. (2021). Building an Agroecological Process towards Agricultural Sustainability: A Case Study from Southern Spain. Agriculture, 11(10), 1024. https://doi.org/10.3390/agriculture11101024