Genomics Applied to the Analysis of Flowering Time, Abiotic Stress Tolerance and Disease Resistance: A Review of What We Have Learned in Lolium spp.
Abstract
:1. Introduction
2. Flowering Time
3. Abiotic Stress Control
4. Disease Resistance
4.1. Bacterial Wilt—Xanthomonas translucens pv. graminis
4.2. Ryegrass Crown Rust—Puccinia coronata f. sp. Lolii
4.3. Gray Leaf Spot (GLS)—Magnaporthe Grisea/Oryzae (Anamorph Pyricularia)
5. General Discussion and Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Reheul, D.; De Cauwer, B.; Cougnon, M. The role of forage crops in multifunctional agriculture. In Fodder Crops and Amenity Grasses; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–12. [Google Scholar]
- Terrell, E.E.J.T.B.R. Taxonomic implications of genetics in ryegrasses (Lolium). Bot. Rev. 1966, 32, 138–164. [Google Scholar] [CrossRef]
- Fearon, C.; Hayward, M.; Lawrence, M. Self-incompatibility in ryegrass VI. Self seed-set and incompatibility genotype in Lolium perenne L. Heredity 1983, 50, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Kellogg, E.A. Evolutionary history of the grasses. Plant Physiol. 2001, 125, 1198–1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torrecilla, P.; Catalán, P.J.S.B. Phylogeny of broad-leaved and fine-leaved Festuca lineages (Poaceae) based on nuclear ITS sequences. Syst. Bot. 2002, 27, 241–251. [Google Scholar]
- Polok, K. Molecular Evolution of the Genus Lolium L.; SQL: Olsztyn, Poland, 2007; 317p. [Google Scholar]
- Handbook of Plant Breeding: Fodder Crops and Amenity Grasses; Boller, B.; Posselt, U.K.; Veronesi, F. (Eds.) Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Posselt, U.K. Breeding methods in cross-pollinated species. In Fodder Crops and Amenity Grasses; Springer: Berlin/Heidelberg, Germany, 2010; pp. 39–87. [Google Scholar]
- Xu, Y.; Li, P.; Zou, C.; Lu, Y.; Xie, C.; Zhang, X.; Prasanna, B.M.; Olsen, M.S. Enhancing genetic gain in the era of molecular breeding. J. Exp. Bot. 2017, 68, 2641–2666. [Google Scholar] [CrossRef]
- Kopecký, D.; Studer, B.J.B.A. Emerging technologies advancing forage and turf grass genomics. Biotechnol. Adv. 2014, 32, 190–199. [Google Scholar] [CrossRef]
- Harris-Shultz, K.R.; Jespersen, D.J.P.B.R. Advances in DNA markers and breeding for warm-and cool-season turfgrasses. Plant Breed. Rev. 2018, 42, 119–165. [Google Scholar]
- Knorst, V.; Yates, S.; Byrne, S.; Asp, T.; Widmer, F.; Studer, B.; Kölliker, R. First assembly of the gene-space of Lolium multiflorum and comparison to other Poaceae genomes. Grassl. Sci. 2019, 65, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Kemp, D.R.; Eagles, C.F.; Humphreys, M.O. Leaf growth and apex development of perennial ryegrass during winter and spring. Ann. Bot. 1989, 63, 349–355. [Google Scholar] [CrossRef]
- Skøt, L.; Humphreys, J.; Humphreys, M.O.; Thorogood, D.; Gallagher, J.; Sanderson, R.; Armstead, I.P.; Thomas, I.D. Association of candidate genes with flowering time and water-soluble carbohydrate content in Lolium perenne (L.). Genetics 2007, 177, 535–547. [Google Scholar] [CrossRef] [Green Version]
- Heide, O.M. Control of flowering and reproduction in temperate grasses. New Phytol. 1994, 128, 347–362. [Google Scholar] [CrossRef]
- Cooper, J. Short-day and low-temperature induction in Lolium. Ann. Bot. 1960, 24, 232–246. [Google Scholar] [CrossRef]
- Aamlid, T.S.; Heide, O.M.; Boelt, B. Primary and secondary induction requirements for flowering of contrasting European varieties of Lolium perenne. Ann. Bot. 2000, 86, 1087–1095. [Google Scholar] [CrossRef]
- Armstead, I.P.; Turner, L.B.; Farrell, M.; Skot, L.; Gomez, P.; Montoya, T.; Donnison, I.S.; King, I.P.; Humphreys, M.O. Synteny between a major heading-date QTL in perennial ryegrass (Lolium perenne L.) and the Hd3 heading-date locus in rice. Theor. Appl. Genet. 2004, 108, 822–828. [Google Scholar] [CrossRef] [PubMed]
- Armstead, I.P.; Turner, L.B.; Marshall, A.H.; Humphreys, M.O.; King, I.P.; Thorogood, D. Identifying genetic components controlling fertility in the outcrossing grass species perennial ryegrass (Lolium perenne) by quantitative trait loci analysis and comparative genetics. New Phytol. 2008, 178, 559–571. [Google Scholar] [CrossRef]
- Yamada, T.; Jones, E.; Cogan, N.; Vecchies, A.; Nomura, T.; Hisano, H.; Shimamoto, Y.; Smith, K.; Hayward, M.; Forster, J. QTL analysis of morphological, developmental, and winter hardiness-associated traits in perennial ryegrass. Crop Sci. 2004, 44, 925–935. [Google Scholar]
- Jensen, L.B.; Andersen, J.R.; Frei, U.; Xing, Y.; Taylor, C.; Holm, P.B.; Lubberstedt, T. QTL mapping of vernalization response in perennial ryegrass (Lolium perenne L.) reveals co-location with an orthologue of wheat VRN1. Theor. Appl. Genet. 2005, 110, 527–536. [Google Scholar] [CrossRef]
- Skøt, L.; Humphreys, M.O.; Armstead, I.; Heywood, S.; Skøt, K.P.; Sanderson, R.; Thomas, I.D.; Chorlton, K.H.; Hamilton, N.R.S. An association mapping approach to identify flowering time genes in natural populations of Lolium perenne (L.). Mol. Breed. 2005, 15, 233–245. [Google Scholar] [CrossRef]
- King, J.; Thorogood, D.; Edwards, K.J.; Armstead, I.P.; Roberts, L.; Skot, K.; Hanley, Z.; King, I.P. Development of a genomic microsatellite library in perennial ryegrass (Lolium perenne) and its use in trait mapping. Ann. Bot. 2008, 101, 845–853. [Google Scholar] [CrossRef]
- Studer, B.; Jensen, L.B.; Hentrup, S.; Brazauskas, G.; Kolliker, R.; Lubberstedt, T. Genetic characterisation of seed yield and fertility traits in perennial ryegrass (Lolium perenne L.). Theor. Appl. Genet. 2008, 117, 781–791. [Google Scholar] [CrossRef]
- Barre, P.; Moreau, L.; Mi, F.; Turner, L.; Gastal, F.; Julier, B.; Ghesquiere, M. Quantitative trait loci for leaf length in perennial ryegrass (Lolium perenne L.). Grass Forage Sci. 2009, 64, 310–321. [Google Scholar] [CrossRef]
- Byrne, S.; Guiney, E.; Barth, S.; Donnison, I.; Mur, L.A.J.; Milbourne, D. Identification of coincident QTL for days to heading, spike length and spikelets per spike in Lolium perenne L. Euphytica 2009, 166, 61–70. [Google Scholar] [CrossRef]
- Wang, J.; Baillie, R.; Cogan, N.; McFarlane, N.; Dupal, M.; Smith, K.; Forster, J. Molecular genetic marker-based analysis of species-differentiated phenotypic characters in an interspecific ryegrass mapping population. Crop Pasture Sci. 2012, 62, 892–902. [Google Scholar] [CrossRef]
- Martin, J.; Storgaard, M.; Andersen, C.H.; Nielsen, K.K. Photoperiodic regulation of flowering in perennial ryegrass involving a CONSTANS—like homolog. Plant Mol. Biol. 2004, 56, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Armstead, I.P.; Skot, L.; Turner, L.B.; Skot, K.; Donnison, I.S.; Humphreys, M.O.; King, I.P. Identification of perennial ryegrass (Lolium perenne (L.)) and meadow fescue (Festuca pratensis (Huds.)) candidate orthologous sequences to the rice Hd1(Se1) and barley HvCO1 CONSTANS-like genes through comparative mapping and microsynteny. New Phytol. 2005, 167, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, S.; Matsuo, S.; Wong, H.L.; Yokoi, S.; Shimamoto, K. Hd3a protein is a mobile flowering signal in rice. Science 2007, 316, 1033–1036. [Google Scholar] [CrossRef] [PubMed]
- Skøt, L.; Sanderson, R.; Thomas, A.; Skøt, K.; Thorogood, D.; Latypova, G.; Asp, T.; Armstead, I. Allelic variation in the perennial ryegrass FLOWERING LOCUS T gene is associated with changes in flowering time across a range of populations. Plant Physiol. 2011, 155, 1013–1022. [Google Scholar] [CrossRef] [Green Version]
- Laurie, D.A. Comparative genetics of flowering time. In Oryza: From Molecule to Plant; Springer: Berlin/Heidelberg, Germany, 1997; pp. 167–177. [Google Scholar]
- Gagic, M. Flowering in Ryegrass and Conservation of the Photoperiodic Response. ResearchSpace@ Auckland. 2007. Available online: https://researchspace.auckland.ac.nz/handle/2292/2424 (accessed on 1 June 2020).
- Arojju, S.K.; Barth, S.; Milbourne, D.; Conaghan, P.; Velmurugan, J.; Hodkinson, T.R.; Byrne, S.L. Markers associated with heading and aftermath heading in perennial ryegrass full-sib families. BMC Plant Biol. 2016, 16, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciannamea, S.; Kaufmann, K.; Frau, M.; Tonaco, I.A.; Petersen, K.; Nielsen, K.K.; Angenent, G.C.; Immink, R.G. Protein interactions of MADS box transcription factors involved in flowering in Lolium perenne. J. Exp. Bot. 2006, 57, 3419–3431. [Google Scholar] [CrossRef] [Green Version]
- Williamson, M.L. Differential Responses of Tillers to Floral Induction in Perennial Ryegrass (Lolium perenne L.): Implications for Perenniality. Master’s Thesis, Massey University, Palmerston North, New Zealand, 2008. [Google Scholar]
- Chouard, P. Vernalization and its relations to dormancy. Ann. Rev. Plant Physiol. 1960, 11, 191–238. [Google Scholar] [CrossRef]
- Deng, W.; Casao, M.C.; Wang, P.; Sato, K.; Hayes, P.M.; Finnegan, E.J.; Trevaskis, B. Direct links between the vernalization response and other key traits of cereal crops. Nat. Commun. 2015, 6, 5882. [Google Scholar] [CrossRef] [PubMed]
- Petersen, K.; Didion, T.; Andersen, C.H.; Nielsen, K.K. MADS-box genes from perennial ryegrass differentially expressed during transition from vegetative to reproductive growth. J. Plant Physiol. 2004, 161, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Ciannamea, S.; Busscher-Lange, J.; de Folter, S.; Angenent, G.C.; Immink, R.G. Characterization of the vernalization response in Lolium perenne by a cDNA microarray approach. Plant Cell Physiol. 2006, 47, 481–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, J.R.; Jensen, L.B.; Asp, T.; Lubberstedt, T. Vernalization response in perennial ryegrass (Lolium perenne L.) involves orthologues of diploid wheat (Triticum monococcum) VRN1 and rice (Oryza sativa) Hd1. Plant Mol. Biol. 2006, 60, 481–494. [Google Scholar] [CrossRef]
- Higgins, J.A.; Bailey, P.C.; Laurie, D.A. Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses. PLoS ONE 2010, 5, e10065. [Google Scholar] [CrossRef]
- Yano, M.; Katayose, Y.; Ashikari, M.; Yamanouchi, U.; Monna, L.; Fuse, T.; Baba, T.; Yamamoto, K.; Umehara, Y.; Nagamura, Y.; et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 2000, 12, 2473–2484. [Google Scholar] [CrossRef] [Green Version]
- Nemoto, Y.; Kisaka, M.; Fuse, T.; Yano, M.; Ogihara, Y. Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice. Plant J. 2003, 36, 82–93. [Google Scholar] [CrossRef]
- Gagic, M.; Faville, M.; Kardailsky, I.; Putterill, J. Comparative genomics and functional characterisation of the GIGANTEA gene from the temperate forage perennial ryegrass lolium perenne. Plant Mol. Biol. Rep. 2015, 33, 1098–1106. [Google Scholar] [CrossRef]
- Shinozuka, H.; Hisano, H.; Ponting, R.C.; Cogan, N.O.; Jones, E.S.; Forster, J.W.; Yamada, T. Molecular cloning and genetic mapping of perennial ryegrass casein protein kinase 2 alpha-subunit genes. Theor. Appl. Genet. 2005, 112, 167–177. [Google Scholar] [CrossRef] [Green Version]
- Shinozuka, H.; Cogan, N.O.; Shinozuka, M.; Marshall, A.; Kay, P.; Lin, Y.H.; Spangenberg, G.C.; Forster, J.W. A simple method for semi-random DNA amplicon fragmentation using the methylation-dependent restriction enzyme MspJI. BMC Biotechnol. 2015, 15, 25. [Google Scholar] [CrossRef] [Green Version]
- Winichayakul, S.; Beswick, N.L.; Dean, C.; Macknight, R.C. Components of the Arabidopsis autonomous floral promotion pathway, FCA and FY, are conserved in monocots. Funct. Plant Biol. 2005, 32, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Loukoianov, A.; Blechl, A.; Tranquilli, G.; Ramakrishna, W.; SanMiguel, P.; Bennetzen, J.L.; Echenique, V.; Dubcovsky, J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 2004, 303, 1640–1644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asp, T.; Byrne, S.; Gundlach, H.; Bruggmann, R.; Mayer, K.F.; Andersen, J.R.; Xu, M.; Greve, M.; Lenk, I.; Lubberstedt, T. Comparative sequence analysis of VRN1 alleles of Lolium perenne with the co-linear regions in barley, wheat, and rice. Mol. Genet. Genom. 2011, 286, 433–447. [Google Scholar] [CrossRef] [Green Version]
- Paina, C.; Byrne, S.L.; Domnisoru, C.; Asp, T. Vernalization mediated changes in the Lolium perenne transcriptome. PLoS ONE 2014, 9, e107365. [Google Scholar] [CrossRef] [Green Version]
- Fu, D.; Szűcs, P.; Yan, L.; Helguera, M.; Skinner, J.S.; Von Zitzewitz, J.; Hayes, P.M.; Dubcovsky, J. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol. Genet. Genom. 2005, 273, 54–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiil, A.; Lenk, I.; Petersen, K.; Jensen, C.S.; Nielsen, K.K.; Schejbel, B.; Andersen, J.R.; Lubberstedt, T. Nucleotide diversity and linkage disequilibrium of nine genes with putative effects on flowering time in perennial ryegrass (Lolium perenne L.). Plant Sci. 2011, 180, 228–237. [Google Scholar] [CrossRef]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef] [Green Version]
- Ergon, Å.; Seddaiu, G.; Korhonen, P.; Virkajärvi, P.; Bellocchi, G.; Jørgensen, M.; Østrem, L.; Reheul, D.; Volaire, F. How can forage production in Nordic and Mediterranean Europe adapt to the challenges and opportunities arising from climate change? Eur. J. Agron. 2018, 92, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Jose Ramón, A.; Maria Fernanda, O.; Agustina, B.; Pedro, D.; Maria Jesus, S.; Jose Antonio, H. Plant responses to salt stress: Adaptive mechanisms. Agronomy 2017, 7, 18. [Google Scholar]
- De Chalanika Silva, H.C.; Asaeda, T.J.J.o.P.I. Effects of heat stress on growth, photosynthetic pigments, oxidative damage and competitive capacity of three submerged macrophytes. J. Plant Interact. 2017, 12, 228–236. [Google Scholar] [CrossRef] [Green Version]
- Heidarvand, L.; Amiri, R.M.J.A.P.P. What happens in plant molecular responses to cold stress? Acta Physiol. Plant. 2010, 32, 419–431. [Google Scholar] [CrossRef]
- Hopkins, A.; Wang, Z.-Y.; Mian, R.; Barker, R.E.; Sledge, M. Molecular Breeding of Forage and Turf; Springer Science & Business Media: Berlin, Germany, 2004; Available online: https://link.springer.com/book/10.1007/1-4020-2591-2 (accessed on 23 April 2020).
- Yin, H.; Gao, P.; Liu, C.; Yang, J.; Liu, Z.; Luo, D. SUI-family genes encode phosphatidylserine synthases and regulate stem development in rice. Planta 2013, 237, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Vagujfalvi, A.; Crosatti, C.; Galiba, G.; Dubcovsky, J.; Cattivelli, L. Two loci on wheat chromosome 5A regulate the differential cold-dependent expression of the cor14b gene in frost-tolerant and frost-sensitive genotypes. Mol. Gen. Genet. 2000, 263, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Cattivell, L.; Baldi, P.; Crosatti, C.; Di Fonzo, N.; Faccioli, P.; Grossi, M.; Mastrangelo, A.M.; Pecchioni, N.; Stanca, A.M. Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol. Biol. 2002, 48, 649–665. [Google Scholar] [CrossRef] [PubMed]
- Bray, E.A. Plant responses to water deficit. Trends Plant Sci. 1997, 2, 48–54. [Google Scholar] [CrossRef]
- Colmenero-Flores, J.M.; Moreno, L.P.; Smith, C.E.; Covarrubias, A.A. Pvlea-18, a member of a new late-embryogenesis-abundant protein family that accumulates during water stress and in the growing regions of well-irrigated bean seedlings. Plant Physiol. 1999, 120, 93–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, B.; Ding, Z.; Zhao, M. Alleviation of drought stress inhibition on photosynthesis by overexpression of PEPC gene in rice. Acta Agron. Sin. 2011, 37, 112–118. [Google Scholar]
- Oishi, H.; Takahashi, W.; Ebina, M.; Takamizo, T. Expression and gene structure of the cold-stimulated gene Lcs19 of Italian ryegrass (Lolium multiflorum Lam.). Breed. Sci. 2010, 60, 330–335. [Google Scholar] [CrossRef] [Green Version]
- Alm, V.; Busso, C.S.; Ergon, A.; Rudi, H.; Larsen, A.; Humphreys, M.W.; Rognli, O.A. QTL analyses and comparative genetic mapping of frost tolerance, winter survival and drought tolerance in meadow fescue (Festuca pratensis Huds.). Theor. Appl. Genet. 2011, 123, 369–382. [Google Scholar] [CrossRef]
- Kamoshita, A.; Babu, R.C.; Boopathi, N.M.; Fukai, S. Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. Field Crops Res. 2008, 109, 1–23. [Google Scholar] [CrossRef]
- Latorre, E. Characterisation of Novel Lolium multixorum Germplasm for Abiotic Stress Tolerance; Aberystwyth University: Aberystwyth, UK, 2010. [Google Scholar]
- Haq, T.U.; Gorham, J.; Akhtar, J.; Akhtar, N.; Steele, K.A. Dynamic quantitative trait loci for salt stress components on chromosome 1 of rice. Funct. Plant Biol. 2010, 37, 634–645. [Google Scholar] [CrossRef]
- Kosmala, A.; Zwierzykowska, E.; Zwierzykowski, Z.J.J.o.a.g. Chromosome pairing in triploid intergeneric hybrids ofFestuca pratensis withLolium multiflorum, revealed by GISH. J. Appl. Genet. 2006, 47, 215–220. [Google Scholar] [CrossRef]
- Humphreys, J.; Harper, J.A.; Armstead, I.P.; Humphreys, M.W.J.T.; Genetics, A. Introgression-mapping of genes for drought resistance transferred from Festuca arundinacea var. glaucescens into Lolium multiflorum. Theor. Appl. Genet. 2005, 110, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Bartoš, J.; Sandve, S.R.; Kölliker, R.; Kopecký, D.; Christelová, P.; Stočes, Š.; Østrem, L.; Larsen, A.; Kilian, A.; Rognli, O.-A.J.T.; et al. Genetic mapping of DArT markers in the Festuca–Lolium complex and their use in freezing tolerance association analysis. Theor. Appl. Genet. 2011, 122, 1133–1147. [Google Scholar] [CrossRef] [PubMed]
- Turner, L.B.; Cairns, A.J.; Armstead, I.P.; Thomas, H.; Humphreys, M.W.; Humphreys, M.O. Does fructan have a functional role in physiological traits? Investigation by quantitative trait locus mapping. New Phytol. 2008, 179, 765–775. [Google Scholar] [CrossRef]
- Lee, S.-H.; Rahman, M.A.; Kim, K.-W.; Lee, J.-W.; Ji, H.C.; Choi, G.J.; Song, Y.; Lee, K.-W. Screening of Multiple Abiotic Stress-Induced Genes in Italian Ryegrass leaves. J. Korean Soc. Grassl. Forage Sci. 2018, 38, 190–195. [Google Scholar] [CrossRef]
- Qin, D.; Dong, J.; Xu, F.; Ge, S.; Xu, Q.; Li, M. Genome-wide identification and characterization of light harvesting chlorophyll a/b binding protein genes in barley (Hordeum vulgare L.). Crop Sci. Technol. 2017. [Google Scholar] [CrossRef]
- Pokalsky, A.R.; Hiatt, W.R.; Ridge, N.; Rasmussen, R.; Houck, C.M.; Shewmaker, C.K. Structure and expression of elongation factor 1 alpha in tomato. Nucleic Acids Res. 1989, 17, 4661–4673. [Google Scholar] [CrossRef]
- Zeng, L.; Deng, R.; Guo, Z.; Yang, S.; Deng, X. Genome-wide identification and characterization of Glyceraldehyde-3-phosphate dehydrogenase genes family in wheat (Triticum aestivum). BMC Genom. 2016, 17, 240. [Google Scholar] [CrossRef] [Green Version]
- Chrost, B.; Kolukisaoglu, U.; Schulz, B.; Krupinska, K. An alpha-galactosidase with an essential function during leaf development. Planta 2007, 225, 311–320. [Google Scholar] [CrossRef]
- Chen, L.; Lee, D.; Suh, H. Differential patterns of isozyme loci of Adh and Ldh between upland and lowland rice varieties. In Advances in Rice Genetics: (In 2 Parts); World Scientific: Singapore, 2003; pp. 192–194. [Google Scholar]
- Guo, L.; Devaiah, S.P.; Narasimhan, R.; Pan, X.; Zhang, Y.; Zhang, W.; Wang, X. Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress. Plant Cell 2012, 24, 2200–2212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilon-Smits, E.A.H.; Terry, N.; Sears, T.; Kim, H.; Zayed, A.; Hwang, S.B.; van Dun, K.; Voogd, E.; Verwoerd, T.C.; Krutwagen, R.W.H.H.; et al. Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. J. Plant Physiol. 1998, 152, 525–532. [Google Scholar] [CrossRef]
- Seki, M.; Ishida, J.; Narusaka, M.; Fujita, M.; Nanjo, T.; Umezawa, T.; Kamiya, A.; Nakajima, M.; Enju, A.; Sakurai, T. Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct. Integr. Genom. 2002, 2, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Xue, G.P.; Drenth, J.; Glassop, D.; Kooiker, M.; McIntyre, C.L. Dissecting the molecular basis of the contribution of source strength to high fructan accumulation in wheat. Plant Mol. Biol. 2013, 81, 71–92. [Google Scholar] [CrossRef]
- Pastori, G.M.; Trippi, V.S. Oxidative Stress Induces High-Rate of Glutathione-Reductase Synthesis in a Drought-Resistant Maize Strain. Plant Cell Physiol. 1992, 33, 957–961. [Google Scholar]
- Zheng, H.; Yang, Z.; Wang, W.; Guo, S.; Li, Z.; Liu, K.; Sui, N. Transcriptome analysis of maize inbred lines differing in drought tolerance provides novel insights into the molecular mechanisms of drought responses in roots. Plant Physiol. Biochem. 2020, 149, 11–26. [Google Scholar] [CrossRef]
- Cramer, G.R.; Van Sluyter, S.C.; Hopper, D.W.; Pascovici, D.; Keighley, T.; Haynes, P.A. Proteomic analysis indicates massive changes in metabolism prior to the inhibition of growth and photosynthesis of grapevine (Vitis vinifera L.) in response to water deficit. BMC Plant Biol. 2013, 13, 49. [Google Scholar] [CrossRef] [Green Version]
- Georges, F.; Das, S.; Ray, H.; Bock, C.; Nokhrina, K.; Kolla, V.A.; Keller, W. Over-expression of Brassica napus phosphatidylinositol-phospholipase C2 in canola induces significant changes in gene expression and phytohormone distribution patterns, enhances drought tolerance and promotes early flowering and maturation. Plant Cell Environ. 2009, 32, 1664–1681. [Google Scholar] [CrossRef]
- He, Q.Q.; Zhao, S.Y.; Ma, Q.F.; Zhang, Y.Y.; Huang, L.L.; Li, G.Z.; Hao, L. Endogenous Salicylic Acid Levels and Signaling Positively Regulate Arabidopsis Response to Polyethylene Glycol-Simulated Drought Stress. J. Plant Growth Regul. 2014, 33, 871–880. [Google Scholar] [CrossRef]
- La, V.H.; Lee, B.R.; Islam, M.T.; Park, S.H.; Jung, H.I.; Bae, D.W.; Kim, T.H. Characterization of salicylic acid-mediated modulation of the drought stress responses: Reactive oxygen species, proline, and redox state in Brassica napus. Environ. Exp. Bot. 2019, 157, 1–10. [Google Scholar] [CrossRef]
- Pan, L.; Zhang, X.; Wang, J.; Ma, X.; Zhou, M.; Huang, L.; Nie, G.; Wang, P.; Yang, Z.; Li, J. Transcriptional profiles of drought-related genes in modulating metabolic processes and antioxidant defenses in lolium multiflorum. Front Plant Sci. 2016, 7, 519. [Google Scholar] [CrossRef] [PubMed]
- Broeckling, C.D.; Huhman, D.V.; Farag, M.A.; Smith, J.T.; May, G.D.; Mendes, P.; Dixon, R.A.; Sumner, L.W. Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J. Exp. Bot. 2005, 56, 323–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doubnerová, V.; Ryšlavá, H. What can enzymes of C4 photosynthesis do for C3 plants under stress? Plant Sci. 2011, 180, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Toldi, O. Altered fructose-2, 6-bisphosphatase levels cause phenotypic changes and shift development in plants. Acta Biol. Szeged. 2002, 46, 15–16. [Google Scholar]
- Nielsen, T.H.; Rung, J.H.; Villadsen, D. Fructose-2,6-bisphosphate: A traffic signal in plant metabolism. Trends Plant Sci. 2004, 9, 556–563. [Google Scholar] [CrossRef]
- Ji, H.; Greening, D.W.; Barnes, T.W.; Lim, J.W.; Tauro, B.J.; Rai, A.; Xu, R.; Adda, C.; Mathivanan, S.; Zhao, W.; et al. Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components. Proteomics 2013, 13, 1672–1686. [Google Scholar] [CrossRef]
- Caarls, L.; Pieterse, C.M.; Van Wees, S.C. How salicylic acid takes transcriptional control over jasmonic acid signaling. Front Plant Sci. 2015, 6, 170. [Google Scholar] [CrossRef]
- Shimobayashi, M.; Oppliger, W.; Moes, S.; Jeno, P.; Hall, M.N. TORC1-regulated protein kinase Npr1 phosphorylates Orm to stimulate complex sphingolipid synthesis. Mol. Biol. Cell 2013, 24, 870–881. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Yang, Z.; Wang, J.; Wang, P.; Ma, X.; Zhou, M.; Li, J.; Gang, N.; Feng, G.; Zhao, J.; et al. Comparative proteomic analyses reveal the proteome response to short-term drought in Italian ryegrass (Lolium multiflorum). PLoS ONE 2017, 12, e0184289. [Google Scholar] [CrossRef]
- Schmidt, D.; Nuesch, B. Resistance to Bacterial Wilt (Xanthomonas graminis) Increases Yield and Persistency of Lolium multiflorum 1. EPPO Bull. 1980, 10, 335–339. [Google Scholar] [CrossRef]
- Wang, H.M.; Sletten, A. Infection Biology of Bacterial Wilt of Forage Grasses. J. Phytopathol. Phytopathol. Z. 1995, 143, 141–145. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, S. Rice versus Xanthomonas oryzae pv. oryzae: A unique pathosystem. Curr. Opin. Plant Biol. 2013, 16, 188–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stall, R.E.; Jones, J.B.; Minsavage, G.V. Durability of resistance in tomato and pepper to xanthomonads causing bacterial spot. Ann. Rev. Phytopathol. 2009, 47, 265–284. [Google Scholar] [CrossRef] [PubMed]
- Studer, B.; Boller, B.; Herrmann, D.; Bauer, E.; Posselt, U.K.; Widmer, F.; Kolliker, R. Genetic mapping reveals a single major QTL for bacterial wilt resistance in Italian ryegrass (Lolium multiflorum Lam.). Theor. Appl. Genet. 2006, 113, 661–671. [Google Scholar] [CrossRef]
- Devos, K.M. Updating the ‘crop circle’. Curr. Opin. Plant Biol. 2005, 8, 155–162. [Google Scholar] [CrossRef]
- Mutlu, N.; Miklas, P.; Reiser, J.; Coyne, D. Backcross breeding for improved resistance to common bacterial blight in pinto bean (Phaseolus vulgaris L.). Plant Breed. 2005, 124, 282–287. [Google Scholar] [CrossRef]
- Yang, W.C.; Francis, D.M. Marker-assisted selection for combining resistance to bacterial spot and bacterial speck in tomato. J. Am. Soc. Hortic. Sci. 2005, 130, 716–721. [Google Scholar] [CrossRef] [Green Version]
- Knorst, V.; Byrne, S.; Yates, S.; Asp, T.; Widmer, F.; Studer, B.; Kolliker, R. Pooled DNA sequencing to identify SNPs associated with a major QTL for bacterial wilt resistance in Italian ryegrass (Lolium multiflorum Lam.). Theor. Appl. Genet. 2019, 132, 947–958. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Zhao, Q.; Yang, Q.; Liu, H.; Li, Q.; Yi, X.; Cheng, Y.; Guo, L.; Fan, C.; Zhou, Y. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Sci. Rep. 2016, 6, 19007. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Q.; Mao, W.; Xie, W.; Liu, Q.; Cao, J.; Yuan, M.; Zhang, Q.; Li, X.; Wang, S. Characterization of a disease susceptibility locus for exploring an efficient way to improve rice resistance against bacterial blight. Sci. China Life Sci. 2017, 60, 298–306. [Google Scholar] [CrossRef]
- Chinchilla, D.; Bauer, Z.; Regenass, M.; Boller, T.; Felix, G. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 2006, 18, 465–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, H.C. Physiologic Specialization in Puccinia Coronata Avenae; USDA: Washington, DC, USA, 1935. Available online: https://www.ars.usda.gov/ARSUserFiles/50620500/Cerealrusts/Pca/Murphy_Pca_1935.pdf (accessed on 3 June 2020).
- Bever, W.M. Influence of stripe rust on growth, water economy and yield of wheat and barley. J. Agric. Res 1937, 54, 375–385. [Google Scholar]
- Mattner, S.W.; Parbery, D.G. Rust-enhanced allelopathy of perennial ryegrass against white clover. Agron. J. 2001, 93, 54–59. [Google Scholar] [CrossRef] [Green Version]
- Smit, H.J.; Tas, B.M.; Taweel, H.Z.; Tamminga, S.; Elgersma, A. Effects of perennial ryegrass (Lolium perenne L.) cultivars on herbage production, nutritional quality and herbage intake of grazing dairy cows. Grass Forage Sci. 2005, 60, 297–309. [Google Scholar] [CrossRef]
- Dangl, J.; Holub, E. La dolce vita: A molecular feast in plant–pathogen interactions. Cell 1997, 91, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Ryals, J.A.; Neuenschwander, U.H.; Willits, M.G.; Molina, A.; Steiner, H.Y.; Hunt, M.D. Systemic Acquired Resistance. Plant Cell 1996, 8, 1809–1819. [Google Scholar] [CrossRef] [Green Version]
- Dracatos, P.M.; Cogan, N.O.I.; Keane, P.J.; Smith, K.F.; Forster, J.W. Biology and Genetics of Crown Rust Disease in Ryegrasses. Crop Sci. 2010, 50, 1605–1624. [Google Scholar] [CrossRef]
- Adams, T.H.; Wieser, J.K.; Yu, J.-H. Asexual sporulation in Aspergillus nidulans. Microbiol. Mol. Biol. Rev. 1998, 62, 35–54. [Google Scholar] [CrossRef] [Green Version]
- Kimbeng, C.A. Genetic basis of crown rust resistance in perennial ryegrass, breeding strategies, and genetic variation among pathogen populations: A review. Aust. J. Exp. Agric. 1999, 39, 361–378. [Google Scholar] [CrossRef]
- Roderick, H.W.; Morgan, W.G.; Harper, J.A.; Thomas, H.M. Introgression of crown rust (Puccinia coronata) resistance from meadow fescue (Festuca pratensis) into Italian ryegrass (Lolium multiflorum) and physical mapping of the locus. Heredity (Edinb.) 2003, 91, 396–400. [Google Scholar] [CrossRef] [Green Version]
- Dumsday, J.; Smith, K.; Forster, J.; Jones, E. SSR-based genetic linkage analysis of resistance to crown rust (Puccinia coronata f. sp. lolii) in perennial ryegrass (Lolium perenne). Plant Pathol. 2003, 52, 628–637. [Google Scholar] [CrossRef]
- Muylle, H.; Baert, J.; Van Bockstaele, E.; Pertijs, J.; Roldan-Ruiz, I. Four QTLs determine crown rust (Puccinia coronata f. sp. lolii) resistance in a perennial ryegrass (Lolium perenne) population. Heredity (Edinb.) 2005, 95, 348–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, S.; Dupal, P.; Dumsday, L.; Hughes, J.; Forster, W. An SSR-based genetic linkage map for perennial ryegrass (Lolium perenne L.). Theor. Appl. Genet. 2002, 105, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.X.; Wise, R.P. An anchored AFLP- and retrotransposon-based map of diploid Avena. Genome 2000, 43, 736–749. [Google Scholar] [CrossRef] [PubMed]
- Studer, B.; Boller, B.; Bauer, E.; Posselt, U.K.; Widmer, F.; Kolliker, R. Consistent detection of QTLs for crown rust resistance in Italian ryegrass (Lolium multiflorum Lam.) across environments and phenotyping methods. Theor. Appl. Genet. 2007, 115, 9–17. [Google Scholar] [CrossRef]
- Sim, S.; Diesburg, K.; Casler, M.; Jung, G. Mapping and comparative analysis of QTL for crown rust resistance in an Italian× perennial ryegrass population. Phytopathology 2007, 97, 767–776. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, S. Isolation of disease resistance gene analogs from Italian ryegrass (Lolium multiflorum Lam.). Grassl. Sci. 2005, 51, 63–70. [Google Scholar] [CrossRef]
- Choudhuri, H. The inheritance of stem and leaf rust resistance in common wheat. Indian J. Genet. 1958, 18, 90–115. [Google Scholar]
- Dyck, P.; Kerber, E. Chromosome location of three genes for leaf rust resistance in common wheat. Can. J. Genet. Cytol. 1971, 13, 480–483. [Google Scholar] [CrossRef]
- Feuillet, C.; Schachermayr, G.; Keller, B.J.T.P.J. Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J. 1997, 11, 45–52. [Google Scholar] [CrossRef]
- Cheng, D.W.; Armstrong, K.C.; Tinker, N.; Wight, C.P.; He, S.; Lybaert, A.; Fedak, G.; Molnar, S.J. Genetic and physical mapping of Lrk10-like receptor kinase sequences in hexaploid oat (Avena sativa L.). Genome 2002, 45, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Dracatos, P.M.; Cogan, N.O.; Dobrowolski, M.P.; Sawbridge, T.I.; Spangenberg, G.C.; Smith, K.F.; Forster, J.W. Discovery and genetic mapping of single nucleotide polymorphisms in candidate genes for pathogen defence response in perennial ryegrass (Lolium perenne L.). Theor. Appl. Genet. 2008, 117, 203–219. [Google Scholar] [CrossRef]
- Delgado, N.J.; Casler, M.D.; Grau, C.R.; Jung, H.G. Reactions of smooth bromegrass clones with divergent lignin or etherified ferulic acid concentration to three fungal pathogens. Crop Sci. 2002, 42, 1824–1831. [Google Scholar] [CrossRef] [Green Version]
- Schejbel, B.; Jensen, L.B.; Xing, Y.; Lubberstedt, T. QTL analysis of crown rust resistance in perennial ryegrass under conditions of natural and artificial infection. Plant Breed. 2007, 126, 347–352. [Google Scholar] [CrossRef]
- Dracatos, P.M.; Cogan, N.O.; Sawbridge, T.I.; Gendall, A.R.; Smith, K.F.; Spangenberg, G.C.; Forster, J.W. Molecular characterisation and genetic mapping of candidate genes for qualitative disease resistance in perennial ryegrass (Lolium perenne L.). BMC Plant Biol. 2009, 9, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faris, J.D.; Li, W.L.; Liu, D.J.; Chen, P.D.; Gill, B.S. Candidate gene analysis of quantitative disease resistance in wheat. Theor. Appl. Genet. 1999, 98, 219–225. [Google Scholar] [CrossRef]
- Takahashi, W.; Miura, Y.; Sasaki, T.; Takamizo, T. Identification of a novel major locus for gray leaf spot resistance in Italian ryegrass (Lolium multiflorum Lam.). BMC Plant Biol. 2014, 14, 303. [Google Scholar] [CrossRef] [Green Version]
- Bonos, S.A.; Kubik, C.; Clarke, B.B.; Meyer, W. Breeding perennial ryegrass for resistance to gray leaf spot. Crop Sci. 2004, 44, 575–580. [Google Scholar] [CrossRef]
- Han, Y.H.; Bonos, S.A.; Clarke, B.B.; Meyer, W.A. Inheritance of resistance to gray leaf spot disease in perennial ryegrass. Crop Sci. 2006, 46, 1143–1148. [Google Scholar] [CrossRef]
- Miura, Y.; Ding, C.; Ozaki, R.; Hirata, M.; Fujimori, M.; Takahashi, W.; Cai, H.; Mizuno, K. Development of EST-derived CAPS and AFLP markers linked to a gene for resistance to ryegrass blast (Pyricularia sp.) in Italian ryegrass (Lolium multiflorum Lam.). Theor. Appl. Genet. 2005, 111, 811–818. [Google Scholar] [CrossRef]
- Curley, J.; Sim, S.C.; Warnke, S.; Leong, S.; Barker, R.; Jung, G. QTL mapping of resistance to gray leaf spot in ryegrass. Theor. Appl. Genet. 2005, 111, 1107–1117. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, S.; Xing, Y.; Xu, C.; Hayes, P.M.; Zhang, Q. Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley. Proc. Natl. Acad. Sci. USA 2003, 100, 2544–2549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrne, S.L.; Nagy, I.; Pfeifer, M.; Armstead, I.; Swain, S.; Studer, B.; Mayer, K.; Campbell, J.D.; Czaban, A.; Hentrup, S.; et al. A synteny-based draft genome sequence of the forage grass Lolium perenne. Plant J. 2015, 84, 816–826. [Google Scholar] [CrossRef] [PubMed]
Gene | Position | Putative Ortholog/Homolog | Pathway | References |
---|---|---|---|---|
LpVRN1 | LG4 | TmVrn1 | Vernalization | [21,34,36,39,40,53] |
(LpMADS1) | (AtSOC1) | |||
LpSOC1 | LG6 | AtSOC1 | [34] | |
LpMADS2 | LmMADS2 | Vernalization | [35,39] | |
LpMADS3 | AtAPI1 | Vernalization | [35,36,39] | |
LpLMLC | JUMONJI-like | Vernalization | [40] | |
LpOX1 | 2OG-Fe(II) oxygenase | Vernalization | [40] | |
LpCOL1 | LG6 | AtCO, OsHd1 | Vernalization, Photoperiod | [40] |
LpCO | LG7 | AtCO, OsHD1, HvCO | Photoperiod | [28,29,34,53] |
(LpHD1) | ||||
LpGI | LG3 | OsGI, AtGI, HvGI, Brachypodium GI | Photoperiod, circadian clock | [34,42,45] |
Lpck2a-1 | LG4 | Casein kinase 2a | Circadian clock | [46] |
Lpck2a-2 | LG2 | Casein kinase 2a | Circadian clock | [46] |
LpLHY | LG6 | AtLHY, Brachypodium LHY | Circadian clock | [42,47] |
LpTOC1 | LG7 | AtTOC1 | Circadian clock | [42,47] |
LpFCA | AtFCA | Autonomous | [48] | |
LpFY | AtFY | Autonomous | [48] |
DEG | Biological Pathway | Abiotic Stress | Similar Findings in Other Species |
---|---|---|---|
LHCB | Cell signaling | Cold | Barley [76] |
EF-1 α | Leaf development | Cold | Tomato [77] |
GAPDH | Glycolysis | Cold and salt | Wheat [78] |
α-Gal b | Leaf development | Salt and heat | A. tauschii [79] |
SUI | Leaf development | Salt and heat | B. distachyon [60] |
LDH | Glycolysis | Drought | Rice [80] |
GAPCs | Glycolysis | Drought | Arabidopsis [81] |
TPP | Starch and sucrose metabolism | Drought | Tobacco [82] |
PGM | Starch and sucrose metabolism | Drought | Wheat and Arabidopsis [83,84] |
GSR | Glycerophospholipid metabolism | Drought | Corn [85] |
GGT | Glycerophospholipid metabolism | Drought | Corn [86] |
AP | Glycerophospholipid metabolism and ascorbate pathway | Drought | Grapevine [87] |
PIase C | Signal transduction pathway | Drought | Rapeseed [88] |
NPR1 | Signal transduction pathway | Drought | Rapeseed and Arabidopsis [89,90] |
QTL | LG | Closest Marker | Variance Explained (%) |
---|---|---|---|
QTL 1 | 1 | SSR NFFA012 | 56% |
QTL 2 | 2 | AFLP E35M50_2002 | 35% |
QTL 3 | 3 | LPSSRK03G05 | 11–13% |
QTL | LG | Closest Marker | Variance Explained (%) |
---|---|---|---|
QTL 1 | 2 | RFLP BCD1184 | 8–15% |
QTL 2 | 7 | RFLP BCD782 | 12–19% |
QTL 3 | 3 | RFLP RZ444 | 10% |
QTL 4 | 6 | RZ273 | 8–10% |
QTL | LG | Closest Marker | Variance Explained (%) |
---|---|---|---|
QTL 1 | 2 | AFLP A-E33M62109 | 5–8% |
QTL 2 | 3 | RFLP CDO460 | 20–37% |
QTL 3 | 4 | E3.650 | 4–10% |
QTL 4 | 6 | C19.390 | 6–10% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasquali, E.; Barcaccia, G. Genomics Applied to the Analysis of Flowering Time, Abiotic Stress Tolerance and Disease Resistance: A Review of What We Have Learned in Lolium spp. Agriculture 2020, 10, 425. https://doi.org/10.3390/agriculture10100425
Pasquali E, Barcaccia G. Genomics Applied to the Analysis of Flowering Time, Abiotic Stress Tolerance and Disease Resistance: A Review of What We Have Learned in Lolium spp. Agriculture. 2020; 10(10):425. https://doi.org/10.3390/agriculture10100425
Chicago/Turabian StylePasquali, Elisa, and Gianni Barcaccia. 2020. "Genomics Applied to the Analysis of Flowering Time, Abiotic Stress Tolerance and Disease Resistance: A Review of What We Have Learned in Lolium spp." Agriculture 10, no. 10: 425. https://doi.org/10.3390/agriculture10100425
APA StylePasquali, E., & Barcaccia, G. (2020). Genomics Applied to the Analysis of Flowering Time, Abiotic Stress Tolerance and Disease Resistance: A Review of What We Have Learned in Lolium spp. Agriculture, 10(10), 425. https://doi.org/10.3390/agriculture10100425