Next Article in Journal
Long-Term Water Footprint Assessment in a Rainfed Olive Tree Grove in the Umbria Region, Italy
Previous Article in Journal
Carbon Sequestration and Contribution of CO2, CH4 and N2O Fluxes to Global Warming Potential from Paddy-Fallow Fields on Mineral Soil Beneath Peat in Central Hokkaido, Japan
Open AccessArticle

Automatic Determination of the Parameters of Electrical Signals and Functional Responses of Plants Using the Wavelet Transformation Method

Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod 603950, Russia
*
Author to whom correspondence should be addressed.
Agriculture 2020, 10(1), 7; https://doi.org/10.3390/agriculture10010007
Received: 15 October 2019 / Revised: 17 December 2019 / Accepted: 25 December 2019 / Published: 28 December 2019
Smart agriculture management systems with real-time control of plant health and vegetation are recognized as one of the crucial technologies determining agriculture development, playing a fundamental role in reducing yield losses and improving product quality. The earliest plant responses to various adverse factors are propagating stress signals, including electrical ones, and the changes in physiological processes induced by them. Among the latter, photosynthesis is of particular interest due to its key role in the production process. Of practical importance, photosynthesis activity can be registered not only in contact mode but by remote sensing using optical methods. The aim of the present work was to develop the approach to automatic determination of the main parameters of electrical signals and changes in photosynthesis activity and transpiration using continuous wavelet transform (CWT). Applying CWT based on derivatives of the Gaussian function allows accurate determination of the parameters of electrical signals as well as induced physiological responses. Moreover, CWT was applied for spatio-temporal mapping of the photosynthesis response to stress factors in pea leaf. The offered approach allowed automatic identification of the response start time in every pixel and visualization of the change propagation front. The results indicate high potential of CWT for automatic assessment of plants stress, including monitoring of plant health in large-scale agricultural lands and automated fields. View Full-Text
Keywords: electrical signal; photosynthesis; smart agriculture; stress in plant; wavelet transform electrical signal; photosynthesis; smart agriculture; stress in plant; wavelet transform
Show Figures

Figure 1

MDPI and ACS Style

Mudrilov, M.; Katicheva, L.; Ladeynova, M.; Balalaeva, I.; Sukhov, V.; Vodeneev, V. Automatic Determination of the Parameters of Electrical Signals and Functional Responses of Plants Using the Wavelet Transformation Method. Agriculture 2020, 10, 7.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop