Effects of Prevalent and Incident Chronic Kidney Disease on Cardiovascular Events in Patients with Atrial Fibrillation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Cohort and Design
2.3. Study Outcomes and Relevant Confounding Variables
2.4. Statistical Analyses
3. Results
3.1. Characteristics of Patients
3.2. Rates of Study Outcomes by CKD Status
3.3. Association of CKD Status with the Risk of Subsequent Outcome Events
3.4. Subgroup Analyses
3.5. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sarnak, M.J.; Levey, A.S.; Schoolwerth, A.C.; Coresh, J.; Culleton, B.; Hamm, L.L.; Parfrey, P.; Klag, M.J.; Wilson, P.W.; Raij, L.; et al. Kidney disease as a risk factor for development of cardiovascular disease: A statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 2003, 108, 2154–2169. [Google Scholar] [CrossRef] [PubMed]
- Go, A.S.; Chertow, G.M.; Fan, D.; McCulloch, C.E.; Hsu, C.Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J Med. 2004, 351, 1296–1305. [Google Scholar] [CrossRef] [PubMed]
- Coresh, J.; Selvin, E.; Stevens, L.A.; Manzi, J.; Kusek, J.W.; Eggers, P.; Levey, A.S.; Lente, F.V. Prevalence of chronic kidney disease in the United States. JAMA 2007, 298, 2038–2047. [Google Scholar] [CrossRef] [PubMed]
- Pálsson, R.; Patel, U.D. Cardiovascular complications of diabetic kidney disease. Adv. Chronic Kidney Dis. 2014, 21, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Go, A.S.; Hylek, E.M.; Phillips, K.A.; Chang, Y.; Henault, L.E.; Selby, J.V.; Singer, D.E. Prevalence of diagnosed atrial fibrillation in adults: National implications for rhythm management and stroke prevention: The AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) study. JAMA 2001, 285, 2370–2375. [Google Scholar] [CrossRef]
- Chugh, S.S.; Havmoeller, R.; Narayanan, K.; Singh, D.; Rienstra, M.; Benjamin, E.J.; Forouzanfar, M.H.; Naghavi, M.; Mensah, G.A.; Ezzati, M.; et al. Worldwide epidemiology of atrial fibrillation: A Global Burden of Disease 2010 Study. Circulation 2014, 129, 837–847. [Google Scholar] [CrossRef]
- Schnabel, R.B.; Rienstra, M.; Sullivan, L.M.; Sun, J.X.; Moser, C.B.; Levy, D.; Lubitz, S.A.; Wang, T.J.; Ellinor, P.T.; Tadros, T.M.; et al. Risk assessment for incident heart failure in individuals with atrial fibrillation. Eur. J Heart Fail 2013, 15, 843–849. [Google Scholar] [CrossRef]
- Soliman, E.Z.; Lopez, F.; O’Neal, W.T.; Chen, L.Y.; Bengtson, L.; Zhang, Z.M.; Alonso, A.; Loehr, L.; Cushman, M. Atrial fibrillation and risk of ST-segment-elevation versus non-ST-segment-elevation myocardial infarction: The Atherosclerosis Risk in Communities (ARIC) study. Circulation 2015, 131, 1843–1850. [Google Scholar] [CrossRef]
- Alonso, A.; Lopez, F.L.; Matsushita, K.; Loehr, L.R.; Agarwal, S.K.; Chen, L.Y.; Coresh, J.; Soliman, E.Z.; Astor, B.C. Chronic kidney disease is associated with the incidence of atrial fibrillation: The Atherosclerosis Risk in Communities (ARIC) study. Circulation 2011, 123, 2946–2953. [Google Scholar] [CrossRef]
- Bansal, N.; Xie, D.; Tao, K.; Chen, J.; Deo, R.; Horwitz, E.; Raj, D.; Kallem, R.K.; Keane, M.G.; Lora, C.M.; et al. CRIC Study. Atrial Fibrillation and Risk of ESRD in Adults with CKD. Clin. J. Am. Soc. Nephrol. 2016, 11, 1189–1196. [Google Scholar] [CrossRef]
- Ananthapanyasut, W.; Napan, S.; Rudolph, E.H.; Harindhanavudhi, T.; Ayash, H.; Guglielmi, K.E.; Lerma, E.V. Prevalence of atrial fibrillation and its predictors in nondialysis patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2010, 5, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Odutayo, A.; Wong, C.X.; Hsiao, A.J.; Hopewell, S.; Altman, D.G.; Emdin, C.A. Atrial fibrillation and risks of cardiovascular disease, renal disease, and death Systematic review and meta-analysis. BMJ 2016, 354, i4482. [Google Scholar] [CrossRef] [PubMed]
- Hsu, T.W.; Liu, J.S.; Hung, S.C.; Kuo, K.L.; Chang, Y.K.; Chen, Y.C.; Tarng, D.C.; Hsu, C.C. Renoprotective effect of renin-angiotensin-aldosterone system blockade in patients with predialysis advanced chronic kidney disease, hypertension, and anemia. JAMA Intern. Med. 2014, 174, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.Y.; Chen, Y.J.; Ho, H.J.; Hsu, Y.C.; Kuo, K.N.; Wu, M.S.; Lin, J.T. Association between nucleoside analogues and risk of hepatitis B virus-related hepatocellular carcinoma recurrence following liver resection. JAMA 2012, 308, 1906–1914. [Google Scholar] [CrossRef] [PubMed]
- January, C.T.; Wann, L.S.; Alpert, J.S.; Calkins, H.; Cigarroa, J.E.; Cleveland, J.C.; Murray, K.T.; Conti, J.B.; Ellinor, P.T.; Ezekowitz, M.D.; et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 2014, 64, e1–e76. [Google Scholar] [CrossRef]
- McCaffrey, D.F.; Griffin, B.A.; Almirall, D.; Slaughter, M.E.; Ramchand, R.; Burgette, L.F. A tutorial on propensity score estimation for multiple treatments using generalized boosted models. Stat. Med. 2013, 32, 3388–3414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, P.K.; Kor, C.T.; Hsieh, Y.P. Effect of New-Onset Diabetes Mellitus on Renal Outcomes and Mortality in Patients with Chronic Kidney Disease. J. Clin. Med. 2018, 7, 550. [Google Scholar] [CrossRef]
- Go, A.S.; Fang, M.C.; Udaltsova, N.; Chang, Y.; Pomernacki, N.K.; Borowsky, L. ATRIA Study Investigators. Impact of proteinuria and glomerular filtration rate on risk of thromboembolism in atrial fibrillation: The anticoagulation and risk factors in atrial fibrillation (ATRIA) study. Circulation 2009, 119, 1363–1369. [Google Scholar] [CrossRef]
- Hohnloser, S.H.; Hijazi, Z.; Thomas, L.; Alexander, J.H.; Amerena, J.; Hanna, M.; Granger, C.B.; Keltai, M.; Lanas, F.; Lopes, R.D.; et al. Efficacy of apixaban when compared with warfarin in relation to renal function in patients with atrial fibrillation: Insights from the ARISTOTLE trial. Eur. Heart J. 2012, 33, 2821–2830. [Google Scholar] [CrossRef]
- Hohnloser, S.H.; Oldgren, J.; Yang, S.; Wallentin, L.; Ezekowitz, M.; Reilly, P.; Connolly, S.J.; Eikelboom, J.; Brueckmann, M.; Yusuf, S. Myocardial ischemic events in patients with atrial fibrillation treated with dabigatran or warfarin in the RE-LY (Randomized Evaluation of Long-Term Anticoagulation Therapy) trial. Circulation 2012, 125, 669–676. [Google Scholar] [CrossRef]
- Nakagawa, K.; Hirai, T.; Takashima, S.; Fukuda, N.; Ohara, K.; Sasahara, E.; Inoue, H.; Taguchi, Y.; Dougu, N.; Nozawa, T.; et al. Chronic kidney disease and CHADS(2) score independently predict cardiovascular events and mortality in patients with nonvalvular atrial fibrillation. Am. J. Cardiol. 2011, 107, 912–916. [Google Scholar] [CrossRef] [PubMed]
- Piccini, J.P.; Stevens, S.R.; Chang, Y.; Singer, D.E.; Lokhnygina, Y.; Go, A.S.; Patel, M.R.; Mahaffey, K.W.; Halperin, J.L.; Breithardt, G.; et al. Renal dysfunction as a predictor of stroke and systemic embolism in patients with nonvalvular atrial fibrillation: Validation of the R2CHADS2 Index in the ROCKET AF and ATRIA Study Cohorts. Circulation 2013, 127, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wang, H.; Zhao, X.; Zhang, Y.; Zhang, D.; Ma, J.; Lip, G.Y.; Wang, Y. Sequential changes in renal function and the risk of stroke and death in patients with atrial fibrillation. Int. J. Cardiol. 2013, 168, 4678–4684. [Google Scholar] [CrossRef] [PubMed]
- Uhlig, K.; Levey, A.S.; Sarnak, M.J. Traditional cardiac risk factors in individuals with chronic kidney disease. Semin. Dial. 2003, 16, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Madore, F. Uremia-related metabolic cardiac risk factors in chronic kidney disease. Semin. Dial. 2003, 16, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Himmelfarb, J.; Stenvinkel, P.; Ikizler, T.A.; Hakim, R.M. The elephant in uremia: Oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 2002, 62, 1524–1538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annuk, M.; Soveri, I.; Zilmer, M.; Lind, L.; Hulthe, J.; Fellström, B. Endothelial function, CRP and oxidative stress in chronic kidney disease. J. Nephrol. 2005, 18, 721–726. [Google Scholar]
- Lau, W.L.; Huisa, B.N.; Fisher, M. The Cerebrovascular-Chronic Kidney Disease Connection: Perspectives and Mechanisms. Transl. Stroke Res. 2017, 8, 67–76. [Google Scholar] [CrossRef]
- Heine, G.H.; Gerhart, M.K.; Ulrich, C.; Kaler, H.; Girndt, M. Renal Doppler resistance indices are associated with systemic atherosclerosis in kidney transplant recipients. Kidney Int. 2005, 68, 878–885. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Liu, H.; Liu, D.; Liu, Y.; Li, H.; Tan, X.; Zhang, H.; Liu, F.; Peng, Y. Effects of RAAS Inhibitors in Patients with Kidney Disease. Curr. Hypertens. Rep. 2017, 19, 72. [Google Scholar] [CrossRef]
- Khatib, R.; Joseph, P.; Briel, M.; Yusuf, S.; Healey, J. Blockade of the renin-angiotensin-aldosterone system (RAAS) for primary prevention of non-valvular atrial fibrillation: A systematic review and meta analysis of randomized controlled trials. Int. J. Cardiol. 2013, 165, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.Y.; Chiu, Y.W.; Chang, J.S.; Lin, H.L.; Lee, C.T.C.; Chiu, G.F.; Hwang, S.J.; Kuo, M.C.; Wu, M.T.; Chen, H.C. Association of prescribed Chinese herbal medicine use with risk of end-stage renal disease in patients with chronic kidney disease. Kidney Int. 2015, 88, 1365–1373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weng, S.C.; Wu, C.L.; Kor, C.T.; Chiu, P.F.; Wu, M.J.; Chang, C.C.; Tarng, D.C. Migraine and subsequent chronic kidney disease risk: A nationwide population-based cohort study. BMJ Open 2017, 7, e018483. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Su, Y.C.; Li, C.Y.; Wu, C.P.; Lee, M.S. A nationwide cohort study suggests chronic hepatitis B virus infection increases the risk of end-stage renal disease among patients in Taiwan. Kidney Int. 2015, 87, 1030–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
AF Cohort | Maximum Standardization Difference between Groups | |||||
---|---|---|---|---|---|---|
Non-CKD | Prevalent CKD | Incident CKD | p-Value | Before IPW a (%) | After IPW a (%) | |
Sample size | 7272 | 2104 | 1507 | |||
Age, years | 69.14 ± 13.85 | 75.37 ± 10.42 | 72.41 ± 11.01 | <0.001 | 0.475 | 0.065 |
Gender, Male | 3915 (53.84%) | 1237 (58.79%) | 877 (58.2%) | <0.001 | 0.100 | 0.037 |
Monthly income, NTD | 13,373.07 ± 14398.08 | 10,225.88 ± 10,842.82 | 10,383.04 ± 11,327.26 | <0.001 | 0.234 | 0.059 |
Geographic location | ||||||
Northern | 3540 (48.68%) | 954 (45.34%) | 669 (44.39%) | 0.001 | 0.086 | 0.027 |
Middle | 1326 (18.23%) | 390 (18.54%) | 307 (20.37%) | 0.152 | 0.054 | 0.024 |
Southern | 2164 (29.76%) | 691 (32.84%) | 474 (31.45%) | 0.019 | 0.066 | 0.013 |
Eastern | 242 (3.33%) | 69 (3.28%) | 57 (3.78%) | 0.647 | 0.027 | 0.026 |
Comorbidities within 1 year before the index date | ||||||
Ischemic heart disease | 2587 (35.57%) | 931 (44.25%) | 679 (45.06%) | <0.001 | 0.195 | 0.036 |
Chronic obstructive pulmonary disease | 1185 (16.3%) | 524 (24.9%) | 329 (21.83%) | <0.001 | 0.221 | 0.033 |
Cancer | 463 (6.37%) | 145 (6.89%) | 98 (6.5%) | 0.690 | 0.021 | 0.006 |
Liver Cirrhosis | 100 (1.38%) | 42 (2%) | 36 (2.39%) | 0.006 | 0.080 | 0.015 |
Dementia | 233 (3.2%) | 149 (7.08%) | 54 (3.58%) | <0.001 | 0.198 | 0.005 |
Rheumatoid disease | 96 (1.32%) | 57 (2.71%) | 25 (1.66%) | <0.001 | 0.110 | 0.022 |
CHA2DS2-VASc score | 2.97 ± 1.78 | 3.93 ± 1.66 | 3.46 ± 1.66 | <0.001 | 0.538 | 0.065 |
Long-term medication use | ||||||
Anti-hypertensive drugs | ||||||
renin-angiotensin system inhibitors | 2458 (33.8%) | 1210 (57.51%) | 631 (41.87%) | <0.001 | 0.485 | 0.053 |
beta-blocker | 2399 (32.99%) | 982 (46.67%) | 549 (36.43%) | <0.001 | 0.285 | 0.013 |
diuretics | 1840 (25.3%) | 1034 (49.14%) | 509 (33.78%) | <0.001 | 0.515 | 0.038 |
Statin | 985 (13.55%) | 574 (27.28%) | 228 (15.13%) | <0.001 | 0.371 | 0.033 |
NSAIDs | 983 (13.52%) | 504 (23.95%) | 195 (12.94%) | <0.001 | 0.305 | 0.040 |
Pentoxifylline | 252 (3.47%) | 208 (9.89%) | 51 (3.38%) | <0.001 | 0.307 | 0.056 |
ESA | 0 (0%) | 11 (0.52%) | 0 (0%) | <0.001 | 0.165 | 0.038 |
Aspirin/ clopidogrel | 2213 (30.43%) | 981 (46.63%) | 545 (36.16%) | <0.001 | 0.341 | 0.012 |
Warfarin | 464 (6.38%) | 145 (6.89%) | 89 (5.91%) | 0.482 | 0.040 | 0.046 |
NOACs | 21 (0.29%) | 2 (0.10%) | 0 (0%) | 0.033 | 0.063 | 0.049 |
Outpatient visit within 1 year before the index date | 26.08 ± 19.47 | 34.6 ± 21.39 | 30.67 ± 21.24 | <0.001 | 0.417 | 0.025 |
Outcome | Event | IR (95% CI) | Weighted Time-Dependent Cox Model | |||||
---|---|---|---|---|---|---|---|---|
cHR (95% CI) | p-Value | aHR (95% CI) | p-Value | aHR (95% CI) | p-Value | |||
Heart failure | ||||||||
Non-CKD | 1174 | 30.49 (28.75–32.23) | 1 | 1 | 0.76 (0.72–0.81) | <0.0001 | ||
Prevalent CKD | 471 | 64.15 (58.35–69.94) | 1.34 (1.27−1.42) | <0.0001 | 1.31 (1.24−1.39) | <0.0001 | 1 | |
Incident CKD | 200 | 66.46 (57.25–75.67) | 2.61 (2.44−2.80) | <0.0001 | 2.36 (2.20−2.53) | <0.0001 | 1.8 (1.67–1.93) | <0.0001 |
Stroke or systemic thromboembolism | ||||||||
Non-CKD | 1264 | 33.38 (31.54–35.22) | 1 | 1 | 1.04 (0.97–1.11) | 0.2308 | ||
Prevalent CKD | 316 | 41.96 (37.33–46.59) | 0.97 (0.91−1.04) | 0.413 | 0.96 (0.90−1.03) | 0.2539 | 1 | |
Incident CKD | 150 | 39.37 (33.07–45.67) | 1.39 (1.28−1.50) | <0.0001 | 1.28 (1.18−1.38) | <0.0001 | 1.33 (1.22–1.45) | <0.0001 |
Acute myocardial infarction | ||||||||
Non-CKD | 198 | 4.85 (4.17–5.52) | 1 | 1 | 0.63 (0.55–0.72) | <0.0001 | ||
Prevalent CKD | 87 | 10.57 (8.35–12.79) | 1.65 (1.44–1.88) | <0.0001 | 1.59 (1.39–1.81) | <0.0001 | 1 | |
Incident CKD | 39 | 9.06 (6.22–11.91) | 2.61 (2.23–3.04) | <0.0001 | 2.32 (1.98–2.71) | <0.0001 | 1.46 (1.25–1.71) | <0.0001 |
All-cause mortality | ||||||||
Non-CKD | 1787 | 43.25 (41.24–45.25) | 1 | 1 | 0.53 (0.5–0.56) | <0.0001 | ||
Prevalent CKD | 827 | 98.53 (91.82–105.25) | 1.98(1.89−2.08) | <0.0001 | 1.90 (1.81−2.00) | <0.0001 | 1 | |
Incident CKD | 648 | 145.21 (134.03–156.39) | 4.05(3.85−4.25) | <0.0001 | 3.37 (3.20−3.54) | <0.0001 | 1.76 (1.68–1.85) | <0.0001 |
Cardiovascular death | ||||||||
Non-CKD | 335 | 8.11 (7.24–8.98) | 1 | 1 | 0.5 (0.45–0.56) | <0.0001 | ||
Prevalent CKD | 172 | 20.49 (17.43–23.56) | 2.10 (1.88−2.35) | <0.0001 | 2.01 (1.79−2.25) | <0.0001 | 1 | |
Incident CKD | 152 | 34.06 (28.65–39.48) | 5.08 (4.55−5.67) | <0.0001 | 4.28 (3.83−4.78) | <0.0001 | 2.13 (1.92–2.36) | <0.0001 |
Subgroup | Heart Failure | Stroke or Systemic Thromboembolism | Acute Myocardial Infarction | All-Cause Mortality | Cardiovascular Mortality | |||||
---|---|---|---|---|---|---|---|---|---|---|
Prevalent CKD vs. Non-CKD | Incident CKD vs. Non-CKD | Prevalent CKD vs. Non-CKD | Incident CKD vs. Non-CKD | Prevalent CKD vs. Non-CKD | Incident CKD vs. Non-CKD | Prevalent CKD vs. Non-CKD | Incident CKD vs. Non-CKD | Prevalent CKD vs. Non-CKD | Incident CKD vs. Non-CKD | |
Age | ||||||||||
Age < 65 | 1.36 (1.20–1.54) | 1.67 (1.42–1.96) | 0.83 (0.58–1.18) | 1.41 (0.97–2.05) | 2.14 (1.64–2.80) | 2.42 (1.71–3.41) | 1.80 (1.55–2.10) | 4.60 (3.97–5.32) | 2.38 (1.74–3.23) | 5.54 (4.12–7.45) |
Age ≥ 65 | 1.31 (1.23–1.40) | 2.60 (2.41–2.81) | 1.04 (0.90–1.19) | 1.26 (1.04–1.53) | 1.40 (1.20–1.64) | 2.33 (1.96–2.78) | 1.88 (1.78–1.98) | 3.24 (3.07–3.42) | 2.00 (1.77–2.26) | 4.18 (3.71–4.72) |
P interaction | 0.7992 | <0.0001 | 0.3017 | 0.0109 | 0.0053 | 0.9686 | 0.5910 | <0.0001 | 0.4433 | 0.0140 |
Sex | ||||||||||
Female | 1.42 (1.30–1.54) | 2.38 (2.15–2.62) | 0.89 (0.72–1.09) | 1.23 (0.96–1.58) | 1.78 (1.45–2.20) | 2.88 (2.29–3.63) | 2.16 (2.00–2.33) | 3.70 (3.43–3.99) | 2.56 (2.2–2.98) | 3.90 (3.33–4.56) |
Male | 1.24 (1.14–1.34) | 2.32 (2.11–2.55) | 1.06 (0.97–1.16) | 1.35 (1.21–1.5) | 1.43 (1.20–1.70) | 1.83 (1.47–2.27) | 1.70 (1.59–1.82) | 3.03 (2.83–3.25) | 1.57 (1.32–1.86) | 4.72 (4.03–5.53) |
P interaction | 0.0285 | 0.7315 | 0.0858 | 0.6618 | 0.0502 | 0.0001 | <0.0001 | 0.0019 | <0.0001 | 0.3975 |
CHA2DS2-VASc Score | ||||||||||
CHA2DS2-VASc Score ≤ 3 | 1.24 (1.13–1.35) | 2.31 (2.09–2.56) | 0.95 (0.86–1.05) | 1.3 (1.16–1.46) | 2.22 (1.85–2.67) | 2.56 (2.04–3.22) | 1.79 (1.66–1.93) | 3.39 (3.13–3.67) | 2.24 (1.86–2.7) | 5.16 (4.31–6.19) |
CHA2DS2-VASc Score > 3 | 1.37 (1.27–1.48) | 2.42 (2.21–2.65) | 0.97 (0.89–1.06) | 1.19 (1.06–1.33) | 1.08 (0.88–1.32) | 2.00 (1.61–2.48) | 1.97 (1.84–2.10) | 3.31 (3.09–3.53) | 1.91 (1.65–2.20) | 3.92 (3.40–4.51) |
P interaction | 0.1575 | 0.6662 | 0.8629 | 0.0209 | <0.0001 | 0.1530 | 0.1592 | 0.6183 | 0.1147 | 0.0075 |
Heart Failure | Stroke or Systemic Thromboembolism | Acute Myocardial Infarction | All-Cause Mortality | Cardiovascular Mortality | ||||||
---|---|---|---|---|---|---|---|---|---|---|
aHR (95% CI) | p-Value | aHR (95% CI) | p-Value | aHR (95% CI) | p-Value | aHR (95% CI) | p-Value | aHR (95% CI) | p-Value | |
Excluding AF patients with valvular heart disease or hyperthyroidism | ||||||||||
Non-CKD | 1 | 1 | 1 | 1 | 1 | |||||
Prevalent CKD | 1.40 (1.31–1.50) | <0.0001 | 1.05 (0.98–1.13) | 0.1606 | 1.36 (1.16–1.59) | 0.0002 | 1.96 (1.85–2.07) | <0.0001 | 2.08 (1.83–2.38) | <0.0001 |
Incident CKD | 2.06 (1.90–2.24) | <0.0001 | 1.20 (1.10–1.32) | <0.0001 | 2.57 (2.16–3.06) | <0.0001 | 3.16 (2.98–3.34) | <0.0001 | 3.51 (3.07–4.02) | <0.0001 |
CKD diagnosis according to ICD-9 codes 585 | ||||||||||
Non-CKD | 1 | |||||||||
Prevalent CKD | 1.36 (1.28–1.45) | <0.0001 | 1.09 (1.02–1.17) | 0.010 | 1.29 (1.11–1.50) | 0.001 | 1.22 (1.17–1.28) | <0.0001 | 1.24 (1.11–1.39) | 0.0001 |
Incident CKD | 2.51 (2.24–2.82) | <0.0001 | 1.29 (1.13–1.48) | 0.0002 | 2.91 (2.3–3.68) | <0.0001 | 2.22 (2.06–2.39) | <0.0001 | 2.46 (2.08–2.90) | <0.0001 |
Adjusted for propensity score | ||||||||||
Non-CKD | 1 | 1 | 1 | 1 | 1 | |||||
Prevalent CKD | 1.54 (1.35–1.76) | <0.0001 | 1.02 (0.88–1.19) | 0.7739 | 1.55 (1.13–2.13) | 0.0063 | 2.41 (2.15–2.69) | <0.0001 | 2.74 (2.14–3.51) | <0.0001 |
Incident CKD | 2.23 (1.88–2.65) | <0.0001 | 1.23 (1.02–1.48) | 0.0319 | 1.90 (1.29–2.80) | 0.0012 | 3.50 (3.09–3.96) | <0.0001 | 4.54 (3.46–5.96) | <0.0001 |
Only those with follow-up of more than 1 year | ||||||||||
Non-CKD | 1 | 1 | 1 | 1 | 1 | |||||
Prevalent CKD | 1.41 (1.31–1.52) | <0.0001 | 1.01 (0.94–1.09) | 0.7707 | 1.57 (1.34–1.84) | <0.0001 | 1.81 (1.72–1.91) | <0.0001 | 2.07 (1.83–2.34) | <0.0001 |
Incident CKD | 2.03 (1.87–2.20) | <0.0001 | 1.16 (1.06–1.27) | 0.001 | 2.03 (1.71–2.41) | <0.0001 | 2.99 (2.83–3.16) | <0.0001 | 3.56 (3.15–4.02) | <0.0001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.-Y.; Kor, C.-T.; Hsieh, Y.-P.; Chiu, P.-F. Effects of Prevalent and Incident Chronic Kidney Disease on Cardiovascular Events in Patients with Atrial Fibrillation. J. Clin. Med. 2019, 8, 1184. https://doi.org/10.3390/jcm8081184
Lin H-Y, Kor C-T, Hsieh Y-P, Chiu P-F. Effects of Prevalent and Incident Chronic Kidney Disease on Cardiovascular Events in Patients with Atrial Fibrillation. Journal of Clinical Medicine. 2019; 8(8):1184. https://doi.org/10.3390/jcm8081184
Chicago/Turabian StyleLin, Hsuan-Yu, Chew-Teng Kor, Yao-Peng Hsieh, and Ping-Fang Chiu. 2019. "Effects of Prevalent and Incident Chronic Kidney Disease on Cardiovascular Events in Patients with Atrial Fibrillation" Journal of Clinical Medicine 8, no. 8: 1184. https://doi.org/10.3390/jcm8081184
APA StyleLin, H.-Y., Kor, C.-T., Hsieh, Y.-P., & Chiu, P.-F. (2019). Effects of Prevalent and Incident Chronic Kidney Disease on Cardiovascular Events in Patients with Atrial Fibrillation. Journal of Clinical Medicine, 8(8), 1184. https://doi.org/10.3390/jcm8081184