Short QT Syndrome: A Comprehensive Genetic Interpretation and Clinical Translation of Rare Variants
Abstract
:1. Introduction
2. Experimental Section
3. Results
3.1. The CACNA2D1 Gene
3.2. Other Variants Potentially Associated with Short QT Syndrome in Calcium Channels
3.3. The KCNH2 Gene
3.4. The KCNJ2 Gene
3.5. Other Variants in KCNJ2 Potentially Associated with Short QT Syndrome
3.6. The KCNQ1 Gene
3.7. Other Variants in KCNQ1 Potentially Associated with Short QT Syndrome
3.8. The SCN5A Gene
3.9. The SLC4A3 Gene
4. Discussion
4.1. Variants Reported as Associated with Short QT Syndrome
4.2. Variants Reported as Potentially Associated with Short QT Syndrome
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gussak, I.; Brugada, P.; Brugada, J.; Wright, R.S.; Kopecky, S.L.; Chaitman, B.R.; Bjerregaard, P. Idiopathic Short QT Interval: A New Clinical Syndrome? Cardiology 2000, 94, 99–102. [Google Scholar] [CrossRef]
- Gollob, M.H.; Redpath, C.J.; Roberts, J.D. The short QT syndrome: Proposed diagnostic criteria. J. Am. Coll. Cardiol. 2011, 57, 802–812. [Google Scholar] [CrossRef]
- Priori, S.G.; Wilde, A.A.; Horie, M.; Cho, Y.; Behr, E.R.; Berul, C.; Blom, N.; Brugada, J.; Chiang, C.E.; Huikuri, H.; et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: Document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm 2013, 10, 1932–1963. [Google Scholar] [CrossRef]
- Priori, S.G.; Blomström-Lundqvist, C.; Mazzanti, A.; Blom, N.; Borggrefe, M.; Camm, J.; Elliott, P.M.; Fitzsimons, D.; Hatala, R.; Hindricks, G. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC)Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Europace 2015, 17, 1601–1687. [Google Scholar]
- El-Battrawy, I.; Schlentrich, K.; Besler, J.; Liebe, V.; Schimpf, R.; Lang, S.; EOdening, K.; Wolpert, C.; Zhou, X.; Borggrefe, M.; et al. Sex-differences in short QT syndrome: A systematic literature review and pooled analysis. Eur. J. Prev. Cardiol. 2019, 26. [Google Scholar] [CrossRef]
- Bjerregaard, P. Diagnosis and management of short QT syndrome. Heart Rhythm 2018, 15, 1261–1267. [Google Scholar] [CrossRef]
- El-Battrawy, I.; Besler, J.; Ansari, U.; Liebe, V.; Schimpf, R.; Tülümen, E.; Rudic, B.; Lang, S.; Odening, K.; Cyganek, L.; et al. Long-term follow-up of implantable cardioverter-defibrillators in Short QT syndrome. Clin. Res. Cardiol. 2019, 16, 1–7. [Google Scholar] [CrossRef]
- Brugada, R.; Hong, K.; Dumaine, R.; Cordeiro, J.; Gaita, F.; Borggrefe, M.; Menendez, T.M.; Brugada, J.; Pollevick, G.D.; Wolpert, C.; et al. Sudden Death Associated With Short-QT Syndrome Linked to Mutations in HERG. Circulation 2004, 109, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, H.; Hoshina, S.; Ozawa, J.; Sato, A.; Minamino, T.; Aizawa, Y.; Saitoh, A. Short QT syndrome in a boy diagnosed on screening for heart disease. Pediatr. Int. 2014, 56, 774–776. [Google Scholar] [CrossRef] [Green Version]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–423. [Google Scholar] [CrossRef]
- Lek, M.; Exome Aggregation Consortium; Karczewski, K.J.; Minikel, E.V.; Samocha, K.E.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.H.; Ware, J.S.; Hill, A.J.; et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016, 536, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, Y.; Yang, S.; Nykamp, K.; Garcia, J.; Lincoln, S.E.; Topper, S.E. Pathogenic variant burden in the ExAC database: An empirical approach to evaluating population data for clinical variant interpretation. Genome Med. 2017, 9, 13. [Google Scholar] [CrossRef]
- Tayoun, A.N.A.; Pesaran, T.; Distefano, M.T.; Oza, A.; Rehm, H.L.; Biesecker, L.G.; Harrison, S.M.; ClinGen Sequence Variant Interpretation Working Group (ClinGen SVI). Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion. Hum. Mutat. 2018, 39, 1517–1524. [Google Scholar] [CrossRef]
- Nykamp, K.; The Invitae Clinical Genomics Group; Anderson, M.; Powers, M.; Garcia, J.; Herrera, B.; Ho, Y.-Y.; Kobayashi, Y.; Patil, N.; Thusberg, J.; et al. Sherloc: A comprehensive refinement of the ACMG–AMP variant classification criteria. Genet. Med. 2017, 19, 1105–1117. [Google Scholar] [CrossRef]
- Templin, C.; Ghadri, J.R.; Rougier, J.S.; Baumer, A.; Kaplan, V.; Albesa, M.; Sticht, H.; Rauch, A.; Puleo, C.; Hu, D.; et al. Identification of a novel loss-of-function calcium channel gene mutation in short QT syndrome (SQTS6). Eur. Heart J. 2011, 32, 1077–1088. [Google Scholar] [CrossRef]
- Antzelevitch, C.; Pollevick, G.D.; Cordeiro, J.M.; Casis, O.; Sanguinetti, M.C.; Aizawa, Y.; Guerchicoff, A.; Pfeiffer, R.; Oliva, A.; Wollnik, B.; et al. Loss-of-Function Mutations in the Cardiac Calcium Channel Underlie a New Clinical Entity Characterized by ST-Segment Elevation, Short QT Intervals, and Sudden Cardiac Death. Circulation 2007, 115, 442–449. [Google Scholar] [CrossRef]
- Simms, B.A.; Zamponi, G.W. The Brugada syndrome mutation A39V does not affect surface expression of neuronal rat Cav1.2 channels. Mol. Brain 2012, 5, 9. [Google Scholar] [CrossRef]
- Burashnikov, E.; Pfeiffer, R.; Barajas-Martínez, H.; Delpón, E.; Hu, D.; Desai, M.; Borggrefe, M.; Haissaguerre, M.; Kanter, R.; Pollevick, G.D.; et al. Mutations in the cardiac L-type calcium channel associated with inherited J-wave syndromes and sudden cardiac death. Heart Rhythm 2010, 7, 1872–1882. [Google Scholar] [CrossRef] [Green Version]
- Ye, D.; Tester, D.J.; Zhou, W.; Papagiannis, J.; Ackerman, M.J. A pore-localizing CACNA1C-E1115K missense mutation, identified in a patient with idiopathic QT prolongation, bradycardia, and autism spectrum disorder, converts the L-type calcium channel into a hybrid nonselective monovalent cation channel. Heart Rhythm 2019, 16, 270–278. [Google Scholar] [CrossRef]
- Fukuyama, M.; Ohno, S.; Wang, Q.; Kimura, H.; Makiyama, T.; Itoh, H.; Ito, M.; Horie, M. L-Type Calcium Channel Mutations in Japanese Patients With Inherited Arrhythmias. Circ. J. 2013, 77, 1799–1806. [Google Scholar] [CrossRef] [Green Version]
- Fukuyama, M.; Ohno, S.; Wang, Q.; Shirayama, T.; Itoh, H.; Horie, M. Nonsense-mediated mRNA decay due to a CACNA1C splicing mutation in a patient with Brugada syndrome. Heart Rhythm 2014, 11, 629–634. [Google Scholar] [CrossRef]
- Gaita, F.; Giustetto, C.; Bianchi, F.; Wolpert, C.; Schimpf, R.; Riccardi, R.; Grossi, S.; Richiardi, E.; Borggrefe, M. Short QT Syndrome: A familial cause of sudden death. Circulation 2003, 108, 965–970. [Google Scholar] [CrossRef]
- Whittaker, D.G.; Hancox, J.; Zhang, H. In silico Assessment of Pharmacotherapy for Human Atrial Patho-Electrophysiology Associated With hERG-Linked Short QT Syndrome. Front. Physiol. 2018, 9, 1888. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, X.; El-Battrawy, I.; Lan, H.; Zhong, R.; Xu, Q.; Huang, M.; Liao, Z.; Lang, S.; Zimmermann, W.; et al. Drug Testing in Human-Induced Pluripotent Stem Cell–Derived Cardiomyocytes From a Patient With Short QT Syndrome Type 1. Clin. Pharmacol. Ther. 2019, 4. [Google Scholar] [CrossRef]
- El-Battrawy, I.; Lan, H.; Cyganek, L.; Zhao, Z.; Li, X.; Buljubasic, F.; Lang, S.; Yücel, G.; Sattler, K.; Zimmermann, W.; et al. Modeling Short QT Syndrome Using Human-Induced Pluripotent Stem Cell–Derived Cardiomyocytes. J. Am. Heart Assoc. 2018, 7, e007394. [Google Scholar] [CrossRef]
- Itoh, H.; Sakaguchi, T.; Ashihara, T.; Ding, W.-G.; Nagaoka, I.; Oka, Y.; Nakazawa, Y.; Yao, T.; Jo, H.; Ito, M.; et al. A novel KCNH2 mutation as a modifier for short QT interval. Int. J. Cardiol. 2009, 137, 83–85. [Google Scholar] [CrossRef]
- Redpath, C.J.; Green, M.S.; Birnie, D.H.; Gollob, M.H. Rapid genetic testing facilitating the diagnosis of short QT syndrome. Can. J. Cardiol. 2009, 25, e133–e135. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Quan, X.-Q.; Fromme, S.; Cox, R.H.; Zhang, P.; Zhang, L.; Guo, D.; Guo, J.; Patel, C.; Kowey, P.R.; et al. A novel mutation in the KCNH2 gene associated with short QT syndrome. J. Mol. Cell. Cardiol. 2011, 50, 433–441. [Google Scholar] [CrossRef]
- Hu, D.; Li, Y.; Zhang, J.; Pfeiffer, R.; Gollob, M.H.; Healey, J.; Harrell, D.T.; Makita, N.; Abe, H.; Sun, Y.; et al. The Phenotypic Spectrum of a Mutation Hotspot Responsible for the Short QT Syndrome. JACC Clin. Electrophysiol. 2017, 3, 727–743. [Google Scholar] [CrossRef]
- Guo, F.; Sun, Y.; Wang, X.; Wang, H.; Wang, J.; Gong, T.; Chen, X.; Zhang, P.; Su, L.; Fu, G.; et al. Patient-Specific and Gene-Corrected Induced Pluripotent Stem Cell-Derived Cardiomyocytes Elucidate Single-Cell Phenotype of Short QT Syndrome. Circ. Res. 2019, 124, 66–78. [Google Scholar] [CrossRef]
- Wang, Q.; Ohno, S.; Ding, W.G.; Fukuyama, M.; Miyamoto, A.; Itoh, H.; Makiyama, T.; Wu, J.; Bai, J.; Hasegawa, K.; et al. Gain-of-Function KCNH2 Mutations in Patients with Brugada Syndrome. J. Cardiovasc. Electrophysiol. 2014, 25, 522–530. [Google Scholar] [CrossRef]
- Butler, A.; Zhang, Y.; Stuart, A.G.; Dempsey, C.E.; Hancox, J.C. Functional and pharmacological characterization of an S5 domain hERG mutation associated with short QT syndrome. Heliyon 2019, 5, e01429. [Google Scholar] [CrossRef] [Green Version]
- Akdis, D.; Saguner, A.M.; Medeiros-Domingo, A.; Schaller, A.; Balmer, C.; Steffel, J.; Brunckhorst, C.; Duru, F. Multiple clinical profiles of families with the short QT syndrome. Europace 2018, 20, f113–f121. [Google Scholar] [CrossRef]
- Butler, A.; Zhang, Y.; Stuart, A.G.; Dempsey, C.E.; Hancox, J.C. Action potential clamp characterization of the S631A hERG mutation associated with short QT syndrome. Physiol. Rep. 2018, 6, e13845. [Google Scholar] [CrossRef]
- Priori, S.G.; Pandit, S.V.; Rivolta, I.; Berenfeld, O.; Ronchetti, E.; Dhamoon, A.; Napolitano, C.; Anumonwo, J.; Di Barletta, M.R.; Gudapakkam, S.; et al. A Novel Form of Short QT Syndrome (SQT3) Is Caused by a Mutation in the KCNJ2 Gene. Circ. Res. 2005, 96, 800–807. [Google Scholar] [CrossRef]
- Hattori, T.; Makiyama, T.; Akao, M.; Ehara, E.; Ohno, S.; Iguchi, M.; Nishio, Y.; Sasaki, K.; Itoh, H.; Yokode, M.; et al. A novel gain-of-function KCNJ2 mutation associated with short-QT syndrome impairs inward rectification of Kir2.1 currents. Cardiovasc. Res. 2012, 93, 666–673. [Google Scholar] [CrossRef]
- Hasegawa, K.; Ashihara, T.; Kimura, H.; Jo, H.; Itoh, H.; Yamamoto, T.; Aizawa, Y.; Horie, M. Long-term Pharmacological Therapy of Brugada Syndrome: Is J-wave Attenuation a Marker of Drug Efficacy? Intern. Med. 2014, 53, 1523–1526. [Google Scholar] [CrossRef] [Green Version]
- Deo, M.; Ruan, Y.; Pandit, S.V.; Shah, K.; Berenfeld, O.; Blaufox, A.; Cerrone, M.; Noujaim, S.F.; Denegri, M.; Jalife, J.; et al. KCNJ2 mutation in short QT syndrome 3 results in atrial fibrillation and ventricular proarrhythmia. Proc. Natl. Acad. Sci. USA 2013, 110, 4291–4296. [Google Scholar] [CrossRef]
- Ambrosini, E.; Sicca, F.; Napolitano, C.; Servettini, I.; Moro, F.; Ruan, Y.; Guglielmi, L.; Pieroni, S.; Servillo, G.; Lanciotti, A.; et al. Genetically induced dysfunctions of Kir2.1 channels: Implications for short QT3 syndrome and autism-epilepsy phenotype. Hum. Mol. Genet. 2014, 23, 4875–4886. [Google Scholar] [CrossRef]
- Bellocq, C.; Van Ginneken, A.C.; Bezzina, C.R.; Alders, M.; Escande, D.; Mannens, M.M.; Baró, I.; Wilde, A.A. Mutation in the KCNQ1 Gene Leading to the Short QT-Interval Syndrome. Circulation 2004, 109, 2394–2397. [Google Scholar] [CrossRef]
- Seebohm, G.; Scherer, C.R.; Busch, A.E.; Lerche, C. Identification of Specific Pore Residues Mediating KCNQ1 Inactivation. J. Boil. Chem. 2001, 276, 13600–13605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, K.; Bjerregaard, P.; Gussak, I.; Brugada, R. Short QT Syndrome and Atrial Fibrillation Caused by Mutation in KCNH2. J. Cardiovasc. Electrophysiol. 2005, 16, 394–396. [Google Scholar] [CrossRef] [PubMed]
- Campbell, C.M.; Campbell, J.D.; Thompson, C.H.; Galimberti, E.S.; Darbar, D.; Vanoye, C.G.; George, A.L. Selective Targeting of Gain-of-function KCNQ1 Mutations Predisposing to Atrial Fibrillation. Circ. Arrhythmia Electrophysiol. 2013, 6, 960–966. [Google Scholar] [CrossRef] [PubMed]
- Fischbach, P.; Gebauer, R.; Villafañe, J. Short QT Syndrome Manifesting with Neonatal Atrial Fibrillation and Bradycardia. Cardiology 2014, 128, 236–240. [Google Scholar]
- Sarquella-Brugada, G.; Campuzano, O.; Iglesias, A.; Grueso, J.; Bradley, D.J.; Kerst, G.; Shmorhun, D.; Brugada, J.; Brugada, R. Short QT and atrial fibrillation: A KCNQ1 mutation–specific disease. Late follow-up in three unrelated children. HeartRhythm Case Rep. 2015, 1, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Arnestad, M.; Crotti, L.; Rognum, T.O.; Insolia, R.; Pedrazzini, M.; Ferrandi, C.; Vege, A.; Wang, D.W.; Rhodes, T.E.; George, A.L.; et al. Prevalence of Long-QT Syndrome Gene Variants in Sudden Infant Death Syndrome. Circulation 2007, 115, 361–367. [Google Scholar] [CrossRef] [Green Version]
- Millat, G.; Chevalier, P.; Da Costa, A.; Bouvagnet, P.; Kugener, B.; Fayol, L.; Armengod, C.G.; Oddou, B.; Chanavat, V.; Froidefond, E.; et al. Spectrum of pathogenic mutations and associated polymorphisms in a cohort of 44 unrelated patients with long QT syndrome. Clin. Genet. 2006, 70, 214–227. [Google Scholar] [CrossRef] [PubMed]
- Mazzanti, A.; Kanthan, A.; Monteforte, N.; Memmi, M.; Bloise, R.; Novelli, V.; Miceli, C.; O’Rourke, S.; Borio, G.; Zienciuk-Krajka, A.; et al. Novel Insight Into the Natural History of Short QT Syndrome. J. Am. Coll. Cardiol. 2014, 63, 1300–1308. [Google Scholar] [CrossRef]
- Ackerman, M.J.; Splawski, I.; Makielski, J.C.; Tester, D.J.; Will, M.L.; Timothy, K.W.; Keating, M.T.; Jones, G.; Chadha, M.; Burrow, C.R.; et al. Spectrum and prevalence of cardiac sodium channel variants among black, white, Asian, and Hispanic individuals: Implications for arrhythmogenic susceptibility and Brugada/long QT syndrome genetic testing. Heart Rhythm 2004, 1, 600–607. [Google Scholar] [CrossRef]
- Napolitano, C.; Priori, S.G.; Schwartz, P.J.; Bloise, R.; Ronchetti, E.; Nastoli, J.; Bottelli, G.; Cerrone, M.; Leonardi, S. Genetic testing in the long QT syndrome: Development and validation of an efficient approach to genotyping in clinical practice. JAMA 2005, 294, 2975–2980. [Google Scholar] [CrossRef]
- Nakajima, T.; Kaneko, Y.; Saito, A.; Irie, T.; Tange, S.; Iso, T.; Kurabayashi, M. Identification of Six Novel SCN5A Mutations in Japanese Patients With Brugada Syndrome. Int. Heart J. 2011, 52, 27–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.; Yu, J.; Cheng, X.S.; Brugada, R.; Hong, K. Concomitant brugada-like and short qt electrocardiogram linked to scn5a mutation. Heart 2012, 98, E315.3–E316. [Google Scholar]
- Thorsen, K.; Dam, V.S.; Kjaer-Sorensen, K.; Pedersen, L.N.; Skeberdis, V.A.; Jurevicius, J.; Treinys, R.; Petersen, I.M.B.S.; Nielsen, M.S.; Oxvig, C.; et al. Loss-of-activity-mutation in the cardiac chloride-bicarbonate exchanger AE3 causes short QT syndrome. Nat. Commun. 2017, 8, 1696. [Google Scholar] [CrossRef] [PubMed]
- Riuró, H.; Campuzano, O.; Berne, P.; Arbelo, E.; Iglesias, A.; Pérez-Serra, A.; Coll-Vidal, M.; Partemi, S.; Mademont-Soler, I.; Picó, F.; et al. Genetic analysis, in silico prediction, and family segregation in long QT syndrome. Eur. J. Hum. Genet. 2015, 23, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Sarquella-Brugada, G.; Campuzano, O.; Cesar, S.; Iglesias, A.; Fernández, A.; Brugada, J.; Brugada, R. Sudden infant death syndrome caused by cardiac arrhythmias: Only a matter of genes encoding ion channels? Int. J. Leg. Med. 2016, 130, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.J.; Huang, Y.; Fu, Y.C.; Zhao, X.J.; Zhu, C.; Zhang, Y.; Xu, B.; Zhu, Q.L.; Li, Y. Characterization of a Chinese KCNQ1 mutation (R259H) that shortens repolarization and causes short QT syndrome 2. J. Geriatr. Cardiol. 2015, 12, 394–401. [Google Scholar] [PubMed]
- Fernández-Falgueras, A.; Sarquella-Brugada, G.; Brugada, J.; Brugada, R.; Campuzano, O. Cardiac Channelopathies and Sudden Death: Recent Clinical and Genetic Advances. Biology 2017, 6, 7. [Google Scholar] [CrossRef]
Gene | Protein | dbSNP | EVS MAF (%) EA/AA/All | ExAC Alleles (%) | gnomAD Alleles (%) | HGMD (DM) | ClinVar | ACMG/AMP Classification |
---|---|---|---|---|---|---|---|---|
CACNA1C | p.(Ala39Val) | rs121912776 | - | - | - | BrS + stnQT | P | VUS |
p.(Gly490Arg) | rs121912775 | - | 52/64,254 (0.08) | 154/259,550 (0.059) | VUS (BrS + stnQT) | P | VUS | |
p.(Asn547Ser) | rs768614762 | - | 1/53,304 (0.001) | - | BrS + stnQT | VUS | VUS | |
p.(Arg632Arg) | - | - | - | - | BrS + stnQT | - | VUS | |
p.(Glu1115Lys) | rs199473391 | - | - | - | BrS + stnQT | VUS | VUS | |
p.(Arg1780His) | rs756829999 | - | - | 3/239226 (0.0012) | BrS + stnQT | VUS | VUS | |
p.(Glu1829_Gln1833dup) | - | - | - | - | BrS + stnQT | - | VUS | |
p.(Arg1880Gln) | rs182208896 | - | 59/120,512 (0.048) | 166/276,890 (0.059) | VUS (BrS + stnQT) | VUS | VUS | |
p.(Val2014Ile) | rs199473660 | - | - | 91/268,760 (0.033) | VUS (BrS + stnQT) | VUS | VUS | |
p.(Asp2130Asn) | rs199473392 | - | - | 29/237,712 (0.012) | BrS + stnQT | VUS | VUS | |
CACNA2D1 | p.(Ser755Thr) | rs151327713 | 0.1047/0.0/0.0692 | 93/120,134 (0.07) | 233/275,628 (0.084) | CM111612 | VUS | B |
CACNB2 | p.(Ser481Leu) | - | - | - | - | BrS + stnQT | - | VUS |
KCNH2 | p.(Glu50Asp) | rs199472841 | - | - | - | CM094307 | VUS | LP |
p.(Arg164Cys) | - | - | - | 1/30828 (0.0032) | CM141125 | - | VUS | |
p.(Ile560Thr) | - | - | - | - | CM156034 | - | P | |
p.(Asn588Lys) c.(1764C>A) | rs104894021 | - | - | - | CM040083 | P | P | |
p.(Asn588Lys) c.(1764C>G) | rs104894021 | - | - | - | CM040082 | P | P | |
p.(Thr618Ile) | rs199472947 | - | - | - | CM111008 | VUS | P | |
p.(Ser631Ala) | - | - | - | - | - | - | LP | |
p.(Trp927Gly) | - | - | - | - | CM141126 | - | LP | |
p.(Arg1135His) | rs199473547 | - | - | 2/30,890 (0.0064) | CM086664 | VUS | VUS | |
KCNJ2 | p.(Asp172Asn) | rs104894584 | - | - | - | CM051549 | P | P |
p.(Glu299Val) | rs786205817 | - | - | - | CM131839 | LP | P | |
p.(Met301Lys) | - | - | - | - | CM1110289 | - | P | |
p.(Lys346Thr) | - | - | - | - | Epilepsy + stnQT | - | VUS | |
KCNQ1 | p.(Phe279Ile) | - | - | - | - | CM157723 | - | LP |
p.(Val307Leu) | rs120074195 | - | - | - | CM41383 | P | P | |
p.(Val141Met) | - | - | - | - | SQTS + AF | - | P | |
p.(Ile274Val) | rs199472728 | 0.0116/0.0/0.0077 | 39/119,484 (0.03) | 49/276,714 (0.0177) | SIDS | LP (LQTS, SIDS) | VUS | |
p.(Arg259His) | rs199472720 | - | 1/104,552 (0.0009) | 5/271,834 (0.0018) | LQTS | LP/P (LQTS) | VUS | |
SCN5A | p.(Arg689His) | rs199473145 | 0.0118/0.0/0.0078 | 14/120,204 (0.011) | 25/245,708 (0.01) | VUS (BrS + stnQT) | VUS | VUS |
SLC4A3 | p.(Arg370His) | - | - | - | - | CM1717443 | - | LP |
Gene | Protein | CADD | MetaSVM | GERP | M-CAP | MKL | MetaLR | MT | MA | PhyloP | PROVEAN | PPH2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CACNA1C | p.(Ala39Val) | N | N | NC | PD | D | N | DC | N | NC | N | PD |
p.(Gly490Arg) | N | N | NC | N | N | D | DC | N | NC | N | N | |
p.(Asn547Ser) | N | D | NC | PD | N | D | DC | N | NC | N | B | |
p.(Arg632Arg) | N | D | NC | D | D | D | DC | N | NC | N | N | |
p.(Glu1115Lys) | N | D | NC | N | D | D | DC | N | NC | N | PD | |
p.(Arg1780His) | N | D | NC | PD | N | D | DC | N | NC | N | N | |
p.(Glu1829_Gln1833dup) | PD | D | C | D | D | D | DC | N | C | PD | PD | |
p.(Arg1880Gln) | N | D | NC | N | D | D | DC | N | NC | N | N | |
p.(Val2014Ile) | N | D | NC | N | D | D | DC | N | NC | N | B | |
p.(Asp2130Asn) | N | N | NC | N | D | N | DC | N | NC | N | PD | |
CACNA2D1 | p.(Ser755Thr) | N | N | NC | PD | D | N | DC | N | NC | PD | N |
CACNB2 | p.(Ser481Leu) | N | D | NC | N | D | D | DC | N | NC | N | N |
KCNH2 | p.(Glu50Asp) | PD | D | C | D | D | D | DC | N | C | PD | PD |
p.(Arg164Cys) | N | D | NC | D | D | D | DC | N | NC | N | N | |
p.(Ile560Thr) | PD | D | NC | D | D | D | DC | PD | NC | PD | PD | |
p.(Asn588Lys) c.(1764C>A) | PD | D | C | D | D | D | DC | N | C | N | PD | |
p.(Asn588Lys)c.(1764C>G) | PD | D | C | D | D | D | DC | N | C | N | PD | |
p.(Thr618Ile) | N | D | C | D | D | D | DC | PD | C | N | PD | |
p.(Ser631Ala) | PD | D | C | D | D | D | DC | N | C | N | PD | |
p.(Trp927Gly) | PD | D | NC | D | D | D | DC | N | NC | N | B | |
p.(Arg1135His) | N | D | NC | D | D | D | DC | N | NC | N | B | |
KCNJ2 | p.(Asp172Asn) | PD | D | NC | D | D | D | DC | N | NC | PD | PD |
p.(Glu299Val) | N | D | C | D | D | D | DC | N | C | PD | PD | |
p.(Met301Lys) | PD | D | C | D | D | D | DC | N | C | PD | PD | |
p.(Lys346Thr) | N | D | C | D | D | D | DC | N | C | PD | PD | |
KCNQ1 | p.(Phe279Ile) | PD | D | C | D | PD | D | DC | N | C | D | PD |
p.(Val307Leu) | N | D | C | D | D | D | DC | PD | C | D | PD | |
p.(Val141Met) | PD | D | C | D | D | D | DC | N | C | N | PD | |
p.(Ile274Val) | N | N | NC | PD | D | N | DC | N | NC | PD | N | |
p.(Arg259His) | N | D | NC | D | D | PD | DC | N | NC | N | B | |
SCN5A | p.(Arg689His) | N | D | NC | PD | D | PD | DC | N | NC | N | PD |
SLC4A3 | p.(Arg370His) | N | D | C | D | D | D | DC | N | C | D | PD |
Gene | Protein | Population Data | Computational and Predictive Data | Functional Data | Segregation Data | De novo Data | Allelic Data | Other Database | Other Data | ACMG/AMP Classification |
---|---|---|---|---|---|---|---|---|---|---|
CACNA1C | p.(Ala39Val) | PM2 | C | PP2 | NA | PM6 | NA | C | NA | VUS |
p.(Gly490Arg) | BS1 | C | PP2 | NA | NA | NA | BP6 | NA | VUS | |
p.(Asn547Ser) | PM2 | C | PP2 | NA | PM6 | NA | C | NA | VUS | |
p.(Arg632Arg) | PM2 | C | PP2 | NA | PM6 | NA | C | NA | VUS | |
p.(Glu1115Lys) | PM2 | C | PP2 | NA | NA | NA | C | NA | VUS | |
p.(Arg1780His) | PM2 | C | PP2 | NA | PM6 | NA | C | NA | VUS | |
p.(Glu1829_Gln1833dup) | PM2 | PP3 | PP2 | NA | NA | NA | C | NA | VUS | |
p.(Arg1880Gln) | PM2 | C | PP2 | NA | PM6 | NA | C | NA | VUS | |
p.(Val2014Ile) | PM2 | C | PP2 | NA | PM6 | NA | C | NA | VUS | |
p.(Asp2130Asn | PM2 | C | PP2 | NA | NA | NA | C | NA | VUS | |
CACNA2D1 | p.(Ser755Thr) | BS1 | C | BS3 | NA | NA | NA | C | NA | B |
CACNB2 | p.(Ser481Leu) | PM2 | C | PS3 | NA | NA | NA | C | NA | VUS |
KCNH2 | p.(Glu50Asp) | PM2 | PP3 | PP2 | NA | PM6 | NA | C | NA | LP |
p.(Arg164Cys) | PM2 | C | PP2 | NA | NA | NA | C | NA | VUS | |
p.(Ile560Thr) | PM2 | PP3 | PS3 | NA | PM6 | NA | C | PP4 | P | |
p.(Asn588Lys) c.(1764C>A) | PM2 | PP3 | PS3 | NA | PM6 | NA | PP5 | PP4 | P | |
p.Asn588Lys c.(1764C>G) | PM2 | PP3 | PS3 | NA | PM6 | NA | PP5 | PP4 | P | |
p.(Thr618Ile) | PM2 | PP3 | PS3 | NA | PM6 | NA | C | PP4 | P | |
p.(Ser631Ala) | PM2 | PP3 | PS3 | NA | PM6 | NA | C | NA | LP | |
p.(Trp927Gly) | PM2 | PP3 | PP2 | NA | PM6 | NA | C | NA | LP | |
p.(Arg1135His) | PM2 | C | PS3 | PP1 | NA | NA | C | NA | VUS | |
KCNJ2 | p.(Asp172Asn) | PM2 | PP3 | PS3 | NA | PM6 | NA | PP5 | PP4 | P |
p.(Glu299Val) | PM2 | C | PS3 | NA | PM6 | NA | C | PP4 | P | |
p.(Met301Lys) | PM2 | PP3 | PS3 | NA | PM6 | NA | C | C | P | |
p.(Lys346Thr) | PM2 | C | PP2 | NA | PM6 | NA | C | C | VUS | |
KCNQ1 | p.(Phe279Ile) | PM2 | PP3 | PP2 | NA | PM6 | NA | C | NA | LP |
p.(Val307Leu) | PM2 | PP3 | PS3 | NA | PM6 | NA | PP5 | NA | P | |
p.(Val141Met) | PM2 | PP3 | PS3 | PP1 | PS2 | NA | PP5 | PP4 | P | |
p.(Ile274Val) | BS1 | C | PP2 | NA | NA | NA | C | NA | VUS | |
p.(Arg259His) | PM2 | C | PS3 | NA | NA | NA | C | NA | VUS | |
SCN5A | p.(Arg689His) | PM2 | C | PS3 | NA | PM6 | NA | C | C | VUS |
SLC4A3 | p.(Arg370His) | PM2 | PP3 | PS3 | NA | PM6 | NA | C | PP4 | LP |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campuzano, O.; Fernandez-Falgueras, A.; Lemus, X.; Sarquella-Brugada, G.; Cesar, S.; Coll, M.; Mates, J.; Arbelo, E.; Jordà, P.; Perez-Serra, A.; et al. Short QT Syndrome: A Comprehensive Genetic Interpretation and Clinical Translation of Rare Variants. J. Clin. Med. 2019, 8, 1035. https://doi.org/10.3390/jcm8071035
Campuzano O, Fernandez-Falgueras A, Lemus X, Sarquella-Brugada G, Cesar S, Coll M, Mates J, Arbelo E, Jordà P, Perez-Serra A, et al. Short QT Syndrome: A Comprehensive Genetic Interpretation and Clinical Translation of Rare Variants. Journal of Clinical Medicine. 2019; 8(7):1035. https://doi.org/10.3390/jcm8071035
Chicago/Turabian StyleCampuzano, Oscar, Anna Fernandez-Falgueras, Ximena Lemus, Georgia Sarquella-Brugada, Sergi Cesar, Monica Coll, Jesus Mates, Elena Arbelo, Paloma Jordà, Alexandra Perez-Serra, and et al. 2019. "Short QT Syndrome: A Comprehensive Genetic Interpretation and Clinical Translation of Rare Variants" Journal of Clinical Medicine 8, no. 7: 1035. https://doi.org/10.3390/jcm8071035
APA StyleCampuzano, O., Fernandez-Falgueras, A., Lemus, X., Sarquella-Brugada, G., Cesar, S., Coll, M., Mates, J., Arbelo, E., Jordà, P., Perez-Serra, A., del Olmo, B., Ferrer-Costa, C., Iglesias, A., Fiol, V., Puigmulé, M., Lopez, L., Pico, F., Brugada, J., & Brugada, R. (2019). Short QT Syndrome: A Comprehensive Genetic Interpretation and Clinical Translation of Rare Variants. Journal of Clinical Medicine, 8(7), 1035. https://doi.org/10.3390/jcm8071035