Effectiveness of Transcutaneous and Percutaneous Electrical Nerve Stimulation as Adjunct Therapies in Patients After Anterior Cruciate Ligament Reconstruction: Study Protocol for a Randomized Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Ethics Approval and Enrollment of Participants
2.3. Sample Size Calculation
2.4. Participants and Eligibility Criteria
2.5. Allocation and Randomization
2.6. Blinding
2.7. Interventions
2.8. Outcomes
2.8.1. Primary Outcome
2.8.2. Secondary Outcomes
2.9. Statistical Methods
3. Discussion
3.1. Potential Impact and Significance of the Study
3.2. Limitations
3.3. Contributions to Postoperative Rehabilitation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ACL | Anterior Cruciate Ligament |
| ACLR | Anterior Cruciate Ligament Reconstruction |
| AMI | Arthrogenic muscle inhibition |
| CRP | Conventional Post-ACLR Rehabilitation Program |
| LTP | Long-Term Potentiation |
| QMVIC | Quadriceps Maximal Voluntary Isometric Contraction |
| TENS | Transcutaneous Electric Nerve Stimulation |
| PENS | Percutaneous Electric Nerve Stimulation |
References
- Willinger, L.; Athwal, K.K.; Holthof, S.; Imhoff, A.B.; Williams, A.; Amis, A.A. Role of the Anterior Cruciate Ligament, Anterolateral Complex, and Lateral Meniscus Posterior Root in Anterolateral Rotatory Knee Instability: A Biomechanical Study. Am. J. Sports Med. 2023, 51, 1136–1145. [Google Scholar] [CrossRef]
- Noyes, F.R.; Jetter, A.W.; Grood, E.S.; Harms, S.P.; Gardner, E.J.; Levy, M.S. Anterior cruciate ligament function in providing rotational stability assessed by medial and lateral tibiofemoral compartment translations and subluxations. Am. J. Sports Med. 2015, 43, 683–692. [Google Scholar] [CrossRef]
- Noyes, F.R.; Huser, L.E.; Levy, M.S. The Effect of an ACL Reconstruction in Controlling Rotational Knee Stability in Knees with Intact and Physiologic Laxity of Secondary Restraints as Defined by Tibiofemoral Compartment Translations and Graft Forces. J. Bone Jt. Surg. Am. 2018, 100, 586–597. [Google Scholar] [CrossRef] [PubMed]
- Herbst, E.; Muhmann, R.J.; Raschke, M.J.; Katthagen, J.C.; Oeckenpöhler, S.; Wermers, J.; Glasbrenner, J.; Robinson, J.R.; Kittl, C. The Anterior Fibers of the Superficial MCL and the ACL Restrain Anteromedial Rotatory Instability. Am. J. Sports Med. 2023, 51, 2928–2935. [Google Scholar] [CrossRef] [PubMed]
- Bergstein, V.E.; Ahiarakwe, U.; Haft, M.; Fox, H.; Best, M.J. Decreasing Incidence of Anterior Cruciate Ligament Tears and Increasing Utilization of Anterior Cruciate Ligament Reconstruction in the United States From 2010 to 2020. Arthrosc. J. Arthrosc. Relat. Surg. 2025, 41, 1912–1918.e1. [Google Scholar] [CrossRef] [PubMed]
- Beck, N.A.; Lawrence, J.T.R.; Nordin, J.D.; DeFor, T.A.; Tompkins, M. ACL Tears in School-Aged Children and Adolescents Over 20 Years. Pediatrics 2017, 139, e20161877. [Google Scholar] [CrossRef]
- Brophy, R.H.; Lowry, K.J. American Academy of Orthopaedic Surgeons Clinical Practice Guideline Summary: Management of Anterior Cruciate Ligament Injuries. J. Am. Acad. Orthop. Surg. 2023, 31, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.P.; Calcei, J.G.; Vogel, N.; Magnussen, R.A.; Clatworthy, M.; Spalding, T.; Campbell, J.D.; Bergfeld, J.A.; Sherman, S.L. ACL Study Group survey reveals the evolution of anterior cruciate ligament reconstruction graft choice over the past three decades. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 3871–3876. [Google Scholar] [CrossRef]
- Hasan, M.; Berkovich, Y.; Khatib, M.; Yonai, Y.; Ben Zvi, L.; Abu Alhija, A.; Shpigelman, A.; Ginesin, E. Graft selection in ACL reconstruction: Clinical and functional outcomes based on level I-II evidence. Knee Surg. Sports Traumatol. Arthrosc. 2025. [Google Scholar] [CrossRef]
- Musahl, V.; Karlsson, J. Anterior Cruciate Ligament Tear. N. Engl. J. Med. 2019, 380, 2341–2348. [Google Scholar] [CrossRef]
- Vincent, J.; Magnussen, R.A.; Gezmez, F.; Uguen, A.; Jacobi, M.; Weppe, F.; Al-Saati, M.F.; Lustig, S.; Demey, G.; Servien, E.; et al. The anterolateral ligament of the human knee: An anatomic and histologic study. Knee Surg. Sports Traumatol. Arthrosc. 2012, 20, 147–152. [Google Scholar]
- Saithna, A.; Geeslin, A.G.; Sonnery-Cottet, B. Lateral Extra-articular Procedures with Anterior Cruciate Ligament Reconstruction: International Consensus. Arthrosc. J. Arthrosc. Relat. Surg. 2025, 41, 3300–3302. [Google Scholar] [CrossRef]
- Jones, E.N.; Post, H.K.; Stovall, B.A.; Ierulli, V.K.; Vopat, B.G.; Mulcahey, M.K. Lateral Extra-articular Tenodesis Augmentation of Anterior Cruciate Ligament Reconstruction Is Most Commonly Indicated for Pivot Shift of Grade 2 or Greater and for Revision Anterior Cruciate Ligament Reconstruction. Arthrosc. J. Arthrosc. Relat. Surg. 2024, 40, 2624–2632. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, S.S.H.; Lim, A.K.S.; Hui, J.H.P. Comparative outcomes of anterior cruciate ligament reconstruction with and without lateral extra-articular tenodesis: A meta-analysis. Knee Surg. Sports Traumatol Arthrosc. 2025. [Google Scholar] [CrossRef]
- Kan, A.; English, T.; Penny, A.; Franc-Smith, J.; Tudor, F.; Sattler, L. Does the Addition of a Lateral Extra-articular Procedure to a Primary Anterior Cruciate Ligament Reconstruction Result in Superior Functional and Clinical Outcomes? A Systematic Review and Meta-analysis of Randomized Controlled Trials. Am. J. Sports Med. 2025, 53, 2749–2760. [Google Scholar] [CrossRef] [PubMed]
- Zabrzyński, J.; Kwapisz, A.; Erdmann, J.; Zabrzyńska, M.; Błachowski, M.; Ohla, J.; Adamczyk, M.; Sokołowski, M.; Majchrzak, B.; Huri, G. Indications for Lateral Extra-articular Tenodesis in Anterior Cruciate Ligament Reconstruction: A Systematic Review. Am. J. Sports Med. 2025, 53, 2995–3002. [Google Scholar] [CrossRef] [PubMed]
- Laudet, F.; Noailles, T.; Lutz, C.; Hardy, A. Technical Details of Lateral Tenodesis at the Fascia Lata: A Systematic Review of the Literature. J. Clin. Med. 2025, 14, 7613. [Google Scholar] [CrossRef] [PubMed]
- Volz, R.; Borchert, G.H. Re-rupture rate and the post-surgical meniscal injury after anterior cruciate ligament reconstruction with the Press-Fit-Hybrid®-technique in comparison to the interference screw technique: A retrospective analysis of 200 patients with at least 3 years follow-up. Arch. Orthop. Trauma. Surg. 2023, 143, 935–949. [Google Scholar]
- Shen, X.; Liu, T.; Xu, S.; Chen, B.; Tang, X.; Xiao, J.; Qin, Y. Optimal Timing of Anterior Cruciate Ligament Reconstruction in Patients with Anterior Cruciate Ligament Tear: A Systematic Review and Meta-analysis. JAMA Netw. Open 2022, 5, e2242742. [Google Scholar]
- McAleese, T.; Welch, N.; King, E.; Roshan, D.; Keane, N.; Moran, K.A.; Jackson, M.; Withers, D.; Moran, R.; Devitt, B.M. Primary Anterior Cruciate Ligament Reconstruction in Level 1 Athletes: Factors Associated with Return to Play, Reinjury, and Knee Function at 5 Years of Follow-up. Am. J. Sports Med. 2025, 53, 777–790. [Google Scholar] [CrossRef]
- Janssen, R.P.A.; Scheffler, S.U. Intra-articular remodelling of hamstring tendon grafts after anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2014, 22, 2102–2108. [Google Scholar] [CrossRef]
- Hexter, A.T.; Thangarajah, T.; Blunn, G.; Haddad, F.S. Biological augmentation of graft healing in anterior cruciate ligament reconstruction: A systematic review. Bone Jt. J. 2018, 100-B, 271–284. [Google Scholar] [CrossRef]
- Maniar, N.; Cole, M.H.; Bryant, A.L.; Opar, D.A. Muscle Force Contributions to Anterior Cruciate Ligament Loading. Sports Med. 2022, 52, 1737–1750. [Google Scholar] [CrossRef]
- Forelli, F.; Moiroux-Sahraoui, A.; Mazeas, J.; Dugernier, J.; Cerrito, A. Rethinking the Assessment of Arthrogenic Muscle Inhibition After ACL Reconstruction: Implications for Return-to-Sport Decision-Making-A Narrative Review. J. Clin. Med. 2025, 14, 2633. [Google Scholar] [CrossRef] [PubMed]
- Nuccio, S.; Del Vecchio, A.; Casolo, A.; Labanca, L.; Rocchi, J.E.; Felici, F.; Macaluso, A.; Mariani, P.P.; Falla, D.; Farina, D.; et al. Deficit in knee extension strength following anterior cruciate ligament reconstruction is explained by a reduced neural drive to the vasti muscles. J. Physiol. 2021, 599, 5103–5120. [Google Scholar] [CrossRef] [PubMed]
- Zunzarren, G.; Garet, B.; Vinciguerra, B.; Murgier, J. Persistence of neuromuscular activation deficit in the lower limb at 3-years of follow-up after ACL reconstruction surgery. Knee 2023, 43, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Schilaty, N.D.; McPherson, A.L.; Nagai, T.; Bates, N.A. Arthrogenic muscle inhibition manifests in thigh musculature motor unit characteristics after anterior cruciate ligament injury. Eur. J. Sport. Sci. 2023, 23, 840–850. [Google Scholar] [CrossRef]
- Zarzycki, R.; Morton, S.M.; Charalambous, C.C.; Pietrosimone, B.; Williams, G.N.; Snyder-Mackler, L. Athletes after anterior cruciate ligament reconstruction demonstrate asymmetric intracortical facilitation early after surgery. J. Orthop. Res. 2021, 39, 147–153. [Google Scholar] [CrossRef]
- DeJesus, B.M.; Rodrigues, I.K.L.; Azevedo-Santos, I.F.; DeSantana, J.M. Effect of Transcutaneous Electrical Nerve Stimulation on Pain-related Quantitative Sensory Tests in Chronic Musculoskeletal Pain and Acute Experimental Pain: Systematic Review and Meta-analysis. J. Pain 2023, 24, 1337–1382. [Google Scholar] [CrossRef]
- Plaza-Manzano, G.; Gómez-Chiguano, G.F.; Cleland, J.A.; Arías-Buría, J.L.; Fernández-de-las-Peñas, C.; Navarro-Santana, M.J. Effectiveness of percutaneous electrical nerve stimulation for musculoskeletal pain: A systematic review and meta-analysis. Eur. J. Pain 2020, 24, 1023–1044. [Google Scholar] [CrossRef]
- Beltran-Alacreu, H.; Serrano-Muñoz, D.; Martín-Caro Álvarez, D.; Fernández-Pérez, J.J.; Gómez-Soriano, J.; Avendaño-Coy, J. Percutaneous Versus Transcutaneous Electrical Nerve Stimulation for the Treatment of Musculoskeletal Pain. A Systematic Review and Meta-Analysis. Pain Med. 2022, 23, 1387–1400. [Google Scholar] [CrossRef]
- Rodriguez Lagos, L.; Arribas-Romano, A.; Fernández-Carnero, J.; González-Zamorano, Y.; Laguarta Val, S. Effects of Percutaneous and Transcutaneous Electrical Nerve Stimulation on Endogenous Pain Mechanisms in Patients with Musculoskeletal Pain: A Systematic Review and Meta-Analysis. Pain Med. 2023, 24, 397–414. [Google Scholar] [CrossRef]
- García-Bermejo, P.; Morales, C.; Torres, B. Effect of ultrasound-guided percutaneous neuromodulation applied to the femoral nerve on pain and range of motion in patients with anterior knee pain: A case study. Rev. Fisioter. Invasiva 2020, 3, 30–34. [Google Scholar] [CrossRef]
- León-Hernández, J.V.; Martín-Pintado-Zugasti, A.; Frutos, L.G.; Alguacil-Diego, I.M.; de la Llave-Rincón, A.I.; Fernandez-Carnero, J. Immediate and short-term effects of the combination of dry needling and percutaneous TENS on post-needling soreness in patients with chronic myofascial neck pain. Braz. J. Phys. Ther. 2016, 20, 422–431. [Google Scholar] [CrossRef]
- Raphael, J.H.; Raheem, T.A.; Southall, J.L.; Bennett, A.; Ashford, R.L.; Williams, S. Randomized double-blind sham-controlled crossover study of short-term effect of percutaneous electrical nerve stimulation in neuropathic pain. Pain Med. 2011, 12, 1515–1522. [Google Scholar] [CrossRef]
- Pérez-Palomares, S.; Oliván-Blázquez, B.; Magallón-Botaya, R.; De-La-Torre-Beldarraín, M.L.; Gaspar-Calvo, E.; Romo-Calvo, L.; García-Lázaro, R.; Serrano-Aparicio, B. Percutaneous Electrical Nerve Stimulation Versus Dry Needling: Effectiveness in the Treatment of Chronic Low Back Pain. J. Musculoskelet. Pain 2010, 18, 23–30. [Google Scholar] [CrossRef]
- De-la-Cruz-Torres, B.; Abuín-Porras, V.; Navarro-Flores, E.; Calvo-Lobo, C.; Romero-Morales, C. Ultrasound-Guided Percutaneous Neuromodulation in Patients with Chronic Lateral Epicondylalgia: A Pilot Randomized Clinical Trial. Int. J. Environ. Res. Public Health 2021, 18, 4877. [Google Scholar] [CrossRef] [PubMed]
- García-Bermejo, P.; Torres, B.; Morales, C. Ultrasound-Guided Percutaneous Neuromodulation in Patients with Unilateral Anterior Knee Pain: A Randomized Clinical Trial. Appl. Sci. 2020, 10, 4647. [Google Scholar] [CrossRef]
- San-Emeterio-Iglesias, R.; Minaya-Muñoz, F.; Romero-Morales, C.; De-la-Cruz-Torres, B. Correct Sciatic Nerve Management to Apply Ultrasound-Guided Percutaneous Neuromodulation in Patients with Chronic Low Back Pain: A Pilot Study. Neuromodul. J. Int. Neuromodul. Soc. 2021, 24, 1067–1074. [Google Scholar] [CrossRef]
- Caballero-López, J.; Navarro-Santana, M.; Almazán-Polo, J.; García-Sanz, F.; Díaz-Arribas, M.J.; Minaya-Muñoz, F.; Romero-Morales, C. Short-term effects of percutaneous electrical nerve stimulation on pain and muscle function in patients undergoing anterior cruciate ligament surgery: A randomized clinical trial. Front. Rehabil. Sci. 2025, 6, 1501703. [Google Scholar] [CrossRef]
- Alvarez Prats, D.; Carvajal-Fernández, Ó.; Perez Mallada, N.; Minaya-Muñoz, F. Changes in Maximal Isometric Quadriceps Strength after the Application of Ultrasound-Guided Percutaneous Neuromodulation of the Femoral Nerve: A Case Series. Rev. Fisioter. Invasiva 2019, 2, 39–45. [Google Scholar] [CrossRef]
- Urhausen, A.P.; Berg, B.; Øiestad, B.E.; Whittaker, J.L.; Culvenor, A.G.; Crossley, K.M.; Juhl, C.B.; Risberg, M.A. Measurement properties for muscle strength tests following anterior cruciate ligament and/or meniscus injury: What tests to use and where do we need to go? A systematic review with meta-analyses for the OPTIKNEE consensus. Br. J. Sports Med. 2022, 56, 1422–1431. [Google Scholar] [CrossRef]
- Farquhar, S.J.; Chmielewski, T.L.; Snyder-Mackler, L. Accuracy of predicting maximal quadriceps force from submaximal effort contractions after anterior cruciate ligament injury. Muscle Nerve 2005, 32, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Sdrulla, A.D.; Xu, Q.; He, S.-Q.; Tiwari, V.; Yang, F.; Zhang, C.; Shu, B.; Shechter, R.; Raja, S.N.; Wang, Y.; et al. Electrical stimulation of low-threshold afferent fibers induces a prolonged synaptic depression in lamina II dorsal horn neurons to high-threshold afferent inputs in mice. Pain 2015, 156, 1008. [Google Scholar] [CrossRef] [PubMed]
- Beltrá, P.; Ruiz-Del-Portal, I.; Ortega, F.J.; Valdesuso, R.; Delicado-Miralles, M.; Velasco, E. Sensorimotor effects of plasticity-inducing percutaneous peripheral nerve stimulation protocols: A blinded, randomized clinical trial. Eur. J. Pain 2022, 26, 1039–1055. [Google Scholar] [CrossRef]
- Butcher, N.J.; Monsour, A.; Mew, E.J.; Chan, A.W.; Moher, D.; Mayo-Wilson, E.; Terwee, C.B.; Chee-A-Tow, A.; Baba, A.; Gavin, F.; et al. Guidelines for Reporting Outcomes in Trial Protocols: The SPIRIT-Outcomes 2022 Extension. JAMA 2022, 328, 2345–2356. [Google Scholar] [CrossRef] [PubMed]
- Welch, V.; Jull, J.; Petkovic, J.; Armstrong, R.; Boyer, Y.; Cuervo, L.; Edwards, S.; Lydiatt, A.; Gough, D.; Grimshaw, J.; et al. Protocol for the development of a CONSORT-equity guideline to improve reporting of health equity in randomized trials. Implement Sci. 2015, 10, 146. [Google Scholar] [CrossRef]
- Butcher, N.J.; Monsour, A.; Mew, E.J.; Chan, A.W.; Moher, D.; Mayo-Wilson, E.; Terwee, C.B.; Chee-A-Tow, A.; Baba, A.; Gavin, F.; et al. Guidelines for Reporting Outcomes in Trial Reports: The CONSORT-Outcomes 2022 Extension. JAMA 2022, 328, 2252–2264. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Holt, G.R. Declaration of Helsinki-the world’s document of conscience and responsibility. South. Med. J. 2014, 107, 407. [Google Scholar] [CrossRef]
- Rodríguez, N.M. Ley Orgánica 3/2018, de 5 de diciembre, de Protección de Datos Personales y garantía de los derechos digitales. AIS Ars. Iuris Salmant. 2019, 7, 254–259. [Google Scholar]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Valera-Garrido, F.; Minaya-Muñoz, F. Fisioterapia Invasiva; Elsevier: Barcelona, Spain, 2016. [Google Scholar]
- Ghoname, E.S.; Craig, W.F.; White, P.F.; Ahmed, H.E.; Hamza, M.A.; Gajraj, N.M.; Vakharia, A.S.; Noe, C.E. The Effect of Stimulus Frequency on the Analgesic Response to Percutaneous Electrical Nerve Stimulation in Patients with Chronic Low Back Pain. Anesth. Analg. 1999, 88, 841. [Google Scholar]
- Albornoz Cabello, M.; Rebollo Roldán, J.; García Pérez, R. Escala de Aprensión Psicológica Personal (EAPP) en Fisioterapia. Rev. Iberoam. Fisioter. Kinesiol. 2005, 8, 77–87. [Google Scholar] [CrossRef]
- De La Cruz-Torres, B.; Barrera-García-Martín, I.; Albornoz-Cabello, M. Immediate effects of ultrasound-guided percutaneous neuromodulation versus physical exercise on performance of the flexor hallucis longus muscle in professional dancers: A randomised clinical trial. Acupunct. Med. 2019, 37, 91–97. [Google Scholar] [CrossRef]
- De-la-Cruz-Torres, B.; Barrera-García-Martín, I.; Romero-Morales, C. Comparative Effects of One-Shot Electrical Stimulation on Performance of the Flexor Hallucis Longus Muscle in Professional Dancers: Percutaneous Versus Transcutaneous? Neuromodul. Technol. Neural. Interface 2020, 23, 865–870. [Google Scholar] [CrossRef]
- Gallego-Sendarrubias, G.M.; Arias-Buría, J.L.; Úbeda-D’ocasar, E.; Hervás-Pérez, J.P.; Rubio-Palomino, M.A.; Fernández-De-Las-Peñas, C.; Valera-Calero, J.A. Effects of Percutaneous Electrical Nerve Stimulation on Countermovement Jump and Squat Performance Speed in Male Soccer Players: A Pilot Randomized Clinical Trial. J. Clin. Med. 2021, 10, 690. [Google Scholar] [CrossRef]
- Deyo, R.A.; Walsh, N.E.; Martin, D.C.; Schoenfeld, L.S.; Ramamurthy, S. A Controlled Trial of Transcutaneous Electrical Nerve Stimulation (TENS) and Exercise for Chronic Low Back Pain. N. Engl. J. Med. 1990, 322, 1627–1634. [Google Scholar] [CrossRef]
- Elbadawy, M.A. Effectiveness of Periosteal Stimulation Therapy and Home Exercise Program in the Rehabilitation of Patients with Advanced Knee Osteoarthritis. Clin. J. Pain 2017, 33, 254–263. [Google Scholar] [CrossRef]
- Alveal-Mellado, D.; Sousa-Rodrigues, C.F.; Olave, E.; Alveal-Mellado, D.; Sousa-Rodrigues, C.F.; Olave, E. Localización Biométrica de los Puntos Motores del Músculo Cuádriceps Femoral de Individuos Brasileños. Int. J. Morphol. 2019, 37, 1498–1503. [Google Scholar] [CrossRef]
- Page, B.J.; Mrowczynski, O.D.; A Payne, R.; E Tilden, S.; Lopez, H.; Rizk, E.; Harbaugh, K. The Relative Location of the Major Femoral Nerve Motor Branches in the Thigh. Cureus 2019, 11, e3882. [Google Scholar] [CrossRef]
- CaballeroLópez, J.J. Eficacia de la Estimulación Nerviosa Eléctrica Percutánea Enpacientes Intervenidos Quirúrgicamente de Ligamento Cruzado Anterior: Un Ensayoclínico Aleatorizado. Ph.D. Thesis, Universidad Europea de Madrid, Madrid, Spain, 2025. [Google Scholar]
- Sluka, K.A.; Bjordal, J.M.; Marchand, S.; Rakel, B.A. What Makes Transcutaneous Electrical Nerve Stimulation Work? Making Sense of the Mixed Results in the Clinical Literature. Phys. Ther. 2013, 93, 1397–1402. [Google Scholar] [CrossRef]
- Sato, K.L.; Sanada, L.S.; Rakel, B.A.; Sluka, K.A. Increasing intensity of TENS prevents analgesic tolerance in rats. J. Pain 2012, 13, 884–890. [Google Scholar] [CrossRef]
- Velázquez-Saornil, J.; Ruíz-Ruíz, B.; Rodríguez-Sanz, D.; Romero-Morales, C.; López-López, D.; Calvo-Lobo, C. Efficacy of quadriceps vastus medialis dry needling in a rehabilitation protocol after surgical reconstruction of complete anterior cruciate ligament rupture. Medicine 2017, 96, e6726. [Google Scholar] [CrossRef] [PubMed]
- Weiner, D.K.; Rudy, T.E.; Morone, N.; Glick, R.; Kwoh, C.K. Efficacy of Periosteal Stimulation Therapy for the Treatment of Osteoarthritis-Associated Chronic Knee Pain: An Initial Controlled Clinical Trial. J. Am. Geriatr. Soc. 2007, 55, 1541–1547. [Google Scholar] [CrossRef] [PubMed]
- Weiner, D.K.; Moore, C.G.; Morone, N.E.; Lee, E.S.; Kent Kwoh, C. Efficacy of Periosteal Stimulation for Chronic Pain Associated with Advanced Knee Osteoarthritis: A Randomized, Controlled Clinical Trial. Clin. Ther. 2013, 35, 1703–1720.e5. [Google Scholar] [CrossRef] [PubMed]
- Bjørn, S.; Nielsen, T.D.; Jensen, A.E.; Jessen, C.; Kolsen-Petersen, J.A.; Moriggl, B.; Hoermann, R.; Bendtsen, T.F. The Anterior Branch of the Medial Femoral Cutaneous Nerve Innervates Cutaneous and Deep Surgical Incisions in Total Knee Arthroplasty. J. Clin. Med. 2024, 13, 3270. [Google Scholar] [CrossRef]
- Johnson, K.S.; Rowe, J.; Hans, K.; Gordon, V.; Lewis, A.L.; Marolt, C.; Willett, G.M.; Orth, C.; Keim-Janssen, S.; Olinger, A. Effects of Leg Length, Sex, Laterality, and the Intermediate Femoral Cutaneous Nerve on Infrapatellar Innervation. Orthop. J. Sports Med. 2022, 10, 23259671221085272. [Google Scholar] [CrossRef]
- Ruffilli, A.; De Fine, M.; Traina, F.; Pilla, F.; Fenga, D.; Faldini, C. Saphenous nerve injury during hamstring tendons harvest: Does the incision matter? A systematic review. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 3140–3145. [Google Scholar] [CrossRef]
- Romanoff, M.E.; Cory, P.C.; Kalenak, A.; Keyser, G.C.; Marshall, W.K. Saphenous nerve entrapment at the adductor canal. Am. J. Sports Med. 1989, 17, 478–481. [Google Scholar] [CrossRef]
- Mettu, S.; Saran, S.; Shirodkar, K.; Shah, A.B.; Shah, B.R.; Ganie, I.S.; Teja, K.J.S.S.R.; Iyengar, K.P.; Botchu, R. Anatomy and pathology of adductor canal (Hunter’s canal). Skeletal. Radiol. 2024, 54, 1169–1177. [Google Scholar] [CrossRef]
- Almeida, G.P.L.; Albano, T.R.; Melo, A.K.P. Hand-held dynamometer identifies asymmetries in torque of the quadriceps muscle after anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 2494–2501. [Google Scholar] [CrossRef]
- Sisk, T.D.; Stralka, S.W.; Deering, M.B.; Griffin, J.W. Effect of electrical stimulation on quadriceps strength after reconstructive surgery of the anterior cruciate ligament. Am. J. Sports Med. 1987, 15, 215–220. [Google Scholar] [CrossRef]
- Rebai, H.; Barra, V.; Laborde, A.; Bonny, J.M.; Poumarat, G.; Coudert, J. Effects of Two Electrical Stimulation Frequencies in Thigh Muscle After Knee Surgery. Int. J. Sports Med. 2002, 23, 604–609. [Google Scholar] [CrossRef]
- Parker, M.G. Biomechanical and Histological Concepts in the Rehabilitation of Patients with Anterior Cruciate Ligament Reconstructions. J. Orthop. Sports Phys. Ther. 1994, 20, 44–50. [Google Scholar] [CrossRef]
- Akhil, J.; Banu, T.J.; Sontakke, Y.A.; Balaji, G. Postoperative Rehabilitation of Anterior Cruciate Ligament Reconstruction. Clin. Med. Health Res. J. 2022, 2, 187–190. [Google Scholar] [CrossRef]
- Norkin, C.C.; White, D.J.; González Guirado, A. Goniometría: Evaluación de la Movilidad Articular; Editorial Marbán: Madrid, Spain, 2006. [Google Scholar]
- Meldrum, D.; Cahalane, E.; Conroy, R.; Fitzgerald, D.; Hardiman, O. Maximum voluntary isometric contraction: Reference values and clinical application. Amyotroph. Lateral Scler. 2007, 8, 47–55. [Google Scholar] [CrossRef]
- Ogrodzka-Ciechanowicz, K.; Głąb, G.; Ślusarski, J.; Gądek, A. Quadriceps muscle strength recovery with the use of high tone power therapy after anterior cruciate ligament reconstruction: A randomized controlled trial. BMC Musculoskelet. Disord. 2021, 22, 975. [Google Scholar] [CrossRef]
- Thong, I.S.K.; Jensen, M.P.; Miró, J.; Tan, G. The validity of pain intensity measures: What do the NRS, VAS, VRS, and FPS-R measure? Scand. J. Pain 2018, 18, 99–107. [Google Scholar] [CrossRef]
- Martin-Alguacil, J.L.; Arroyo-Morales, M.; Martin-Gómez, J.L.; Lozano-Lozano, M.; Galiano-Castillo, N.; Cantarero-Villanueva, I. Comparison of knee sonography and pressure pain threshold after anterior cruciate ligament reconstruction with quadriceps tendon versus hamstring tendon autografts in soccer players. Acta Orthop. Traumatol. Turc. 2019, 53, 260. [Google Scholar] [CrossRef]
- Ediz, L.; Ceylan, M.F.; Turktas, U.; Yanmis, I.; Hiz, O. A randomized controlled trial of electrostimulation effects on effussion, swelling and pain recovery after anterior cruciate ligament reconstruction: A pilot study. Clin. Rehabil. 2012, 26, 413–422. [Google Scholar] [CrossRef]
- Peña, D.O.R.; Gómez Gelvez, A.; Torres, L.P.; García, G.L.F. Adaptación transcultural al Español y Validación de la Escala de Lysholm para evaluar la funcionalidad de la rodilla. Rev. Colomb. Ortop. Traumatol. 2021, 35, 223–228. [Google Scholar] [CrossRef]
- Donat-Roca, R.; Tárrega, S.; Estapé-Madinabeitia, T.; Escalona-Marfil, C.; Ruíz-Moreno, J.; Seijas, R.; Romero-Cullerés, G.; Roig-Busquets, R.; Mohtadi, N.G. Spanish Version of the Anterior Cruciate Ligament–Quality of Life Questionnaire: Translation, Cross-cultural Adaptation, and Validation. Orthop. J. Sports Med. 2023, 11, 23259671231183405. [Google Scholar] [CrossRef]
- Varela-Rodríguez, S.; Sánchez-González, J.L.; Sánchez-Sánchez, J.L.; Delicado-Miralles, M.; Velasco, E.; Fernández-De-Las-Peñas, C.; Calderón-Díez, L. Effects of Percutaneous Electrolysis on Endogenous Pain Modulation: A Randomized Controlled Trial Study Protocol. Brain Sci. 2021, 11, 801. [Google Scholar] [CrossRef]
- Melzack, R.; Wall, P.D. Pain Mechanisms: A New Theory. Science 1965, 150, 971–979. [Google Scholar] [CrossRef]
- Hsieh, R.L.; Lee, W.C. One-shot percutaneous electrical nerve stimulation vs. transcutaneous electrical nerve stimulation for low back pain: Comparison of therapeutic effects. Am. J. Phys. Med. Rehabil. 2002, 81, 838–843. [Google Scholar] [CrossRef]
- Requena, B.; Gapeyeva, H.; Ereline, J.; Pääsuke, M. Acute effect of percutaneous electrical stimulation of knee extensor muscles on isokinetic torque and power production performance. Isokinet. Exerc. Sci. 2007, 15, 203–209. [Google Scholar] [CrossRef]
- Botter, A.; Oprandi, G.; Lanfranco, F.; Allasia, S.; Maffiuletti, N.A.; Minetto, M.A. Atlas of the muscle motor points for the lower limb: Implications for electrical stimulation procedures and electrode positioning. Eur. J. Appl. Physiol. 2011, 111, 2461–2471. [Google Scholar] [CrossRef]
- Gobbo, M.; Maffiuletti, N.A.; Orizio, C.; Minetto, M.A. Muscle motor point identification is essential for optimizing neuromuscular electrical stimulation use. J. Neuroeng. Rehabil. 2014, 11, 17. [Google Scholar] [CrossRef]
- da Graca-Tarragó, M.; Lech, M.; Angoleri, L.D.M.; Santos, D.S.; Deitos, A.; Brietzke, A.P.; Torres, I.L.; Fregni, F.; Caumo, W. Intramuscular electrical stimulus potentiates motor cortex modulation effects on pain and descending inhibitory systems in knee osteoarthritis: A randomized, factorial, sham-controlled study. J. Pain Res. 2019, 12, 209–221. [Google Scholar] [CrossRef]
- Hadizadeh, M.; Bashardoust Tajali, S.; Attarbashi Moghadam, B.; Jalaie, S.; Bazzaz, M. Effects of Intramuscular Electrical Stimulation on Symptoms Following Trigger Points; A Controlled Pilot Study. J. Mod. Rehabil. 2017, 11, 3. [Google Scholar] [CrossRef]


| Control Group | TENS Group | PENS Group | |
|---|---|---|---|
| Sample recruitment | Week 6 post-ACLR | Week 6 post-ACLR | Week 6 post-ACLR |
| CRP | Yes | Yes | Yes |
| Neuromodulatory intervention | None | HF-TENS | LTP PENS |
| Mode of application | - | Transcutaneous (surface electrodes) | Percutaneous (needle insertion) |
| Skin preparation | - | - | Chlorhexidine disinfected before needle insertion |
| Target tissue | - | Vastus medialis motor point | Vastus medialis motor point |
| Vastus lateralis motor point | Infrapatellar branch of the saphenous nerve | ||
| Type of current | - | biphasic, symmetrical, square-wave | biphasic, symmetrical, square-wave |
| Frequency | - | 100 Hz | 100 Hz |
| Pulse width | - | 200 μs | 250 μs |
| Intensity | - | Adjusted to individual pain threshold | Perceptible but non-painful (≈200 μA above detection threshold) |
| Stimulation pattern | - | Continuous | Five 5 s bursts with 55 s rest intervals |
| Session duration | - | 30 min | 5 min |
| Number of sessions | - | Single session | Single session |
| Blinding assessment | Same assessor | Same assessor | Same assessor |
| Clinician delivering intervention | - | Same experienced clinician | Same experienced clinician |
| Pre-Intervention Assessment (A1) | Post-Intervention Assessment (A2) | 24 h Follow-Up Assessment (A3) | 7 Day Follow-Up Assessment (A4) | |
|---|---|---|---|---|
| Descriptive variables | X | |||
| QMVIC | X | X | X | X |
| Pain intensity | X | X | X | X |
| PPT | X | X | X | X |
| ROM | X | X | X | X |
| Thigh muscle perimeter | X | X | X | X |
| Knee effusion | X | X | X | X |
| Knee swelling | X | X | X | X |
| Functional performance | X | X | ||
| Quality of life | X | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Blanco-López, L.; Nácher-Moltò, I.; Sánchez-González, J.L.; Casado-Gómez, D.; Cases-Sebastià, A.; Reina-Abellán, J. Effectiveness of Transcutaneous and Percutaneous Electrical Nerve Stimulation as Adjunct Therapies in Patients After Anterior Cruciate Ligament Reconstruction: Study Protocol for a Randomized Controlled Trial. J. Clin. Med. 2026, 15, 989. https://doi.org/10.3390/jcm15030989
Blanco-López L, Nácher-Moltò I, Sánchez-González JL, Casado-Gómez D, Cases-Sebastià A, Reina-Abellán J. Effectiveness of Transcutaneous and Percutaneous Electrical Nerve Stimulation as Adjunct Therapies in Patients After Anterior Cruciate Ligament Reconstruction: Study Protocol for a Randomized Controlled Trial. Journal of Clinical Medicine. 2026; 15(3):989. https://doi.org/10.3390/jcm15030989
Chicago/Turabian StyleBlanco-López, Luis, Iván Nácher-Moltò, Juan Luis Sánchez-González, Daniel Casado-Gómez, Adrián Cases-Sebastià, and Javier Reina-Abellán. 2026. "Effectiveness of Transcutaneous and Percutaneous Electrical Nerve Stimulation as Adjunct Therapies in Patients After Anterior Cruciate Ligament Reconstruction: Study Protocol for a Randomized Controlled Trial" Journal of Clinical Medicine 15, no. 3: 989. https://doi.org/10.3390/jcm15030989
APA StyleBlanco-López, L., Nácher-Moltò, I., Sánchez-González, J. L., Casado-Gómez, D., Cases-Sebastià, A., & Reina-Abellán, J. (2026). Effectiveness of Transcutaneous and Percutaneous Electrical Nerve Stimulation as Adjunct Therapies in Patients After Anterior Cruciate Ligament Reconstruction: Study Protocol for a Randomized Controlled Trial. Journal of Clinical Medicine, 15(3), 989. https://doi.org/10.3390/jcm15030989

