Establishment and Validation of Serum Ferritin Reference Intervals Based on Real-World Big Data and Multi-Strategy Partitioning Algorithms
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Instruments and Reagents
2.3. Establishment of Reference Intervals
2.4. Statistical Analysis
3. Results
3.1. SF Data Characteristics
3.2. RI Partitioning Analysis
3.3. Establishment of SF Reference Intervals
3.4. Validation and Comparison of RIs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CAP | College of American Pathologists |
| CI | Confidence interval |
| CLSI | Clinical and Laboratory Standards Institute |
| CV | Coefficient of variation |
| IQR | Interquartile range |
| NCCL | National Center for Clinical Laboratories |
| QC | Quality control |
| RI | Reference interval (population-based) |
| SF | Serum ferritin |
| SD | Standard deviation |
| LL | Lower limit |
| UL | Upper limit |
References
- Camaschella, C. Iron deficiency. Blood 2019, 133, 30–39. [Google Scholar] [CrossRef]
- Pasricha, S.R.; Tye-Din, J.; Muckenthaler, M.U.; Swinkels, D.W. Iron deficiency. Lancet 2021, 397, 233–248. [Google Scholar] [CrossRef]
- Truong, J.; Naveed, K.; Beriault, D.; Lightfoot, D.; Fralick, M.; Sholzberg, M. The origin of ferritin reference intervals: A systematic review. Lancet Haematol. 2024, 11, e530–e539. [Google Scholar] [CrossRef]
- Sezgin, G.; Monagle, P.; Loh, T.P.; Ignjatovic, V.; Hoq, M.; Pearce, C.; McLeod, A.; Westbrook, J.; Li, L.; Georgiou, A. Clinical thresholds for diagnosing iron deficiency: Comparison of functional assessment of serum ferritin to population based centiles. Sci. Rep. 2020, 10, 18233. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.P.; Guo, L.Y.; Lu, Z.Y.; Gu, J.W. Reference intervals established using indirect method for serum ferritin assayed on Abbott Architect i2000(SR) analyzer in Chinese adults. J. Clin. Lab. Anal. 2020, 34, e23083. [Google Scholar] [CrossRef]
- Floegel, A.; Intemann, T.; Siani, A.; Moreno, L.A.; Molnar, D.; Veidebaum, T.; Hadjigeorgiou, C.; De Henauw, S.; Hunsberger, M.; Eiben, G.; et al. Cohort-Based Reference Values for Serum Ferritin and Transferrin and Longitudinal Determinants of Iron Status in European Children Aged 3–15 Years. J. Nutr. 2024, 154, 658–669. [Google Scholar] [CrossRef]
- Addo, O.Y.; Mei, Z.; Jefferds, M.E.D.; Jenkins, M.; Flores-Ayala, R.; Williams, A.M.; Young, M.F.; Luo, H.; Ko, Y.-A.; Papassotiriou, I.; et al. Physiologically based serum ferritin thresholds for iron deficiency among women and children from Africa, Asia, Europe, and central America: A multinational comparative study. Lancet Glob. Health 2025, 13, e831–e842. [Google Scholar] [CrossRef]
- Harris, E.K.; Boyd, J.C. On dividing reference data into subgroups to produce separate reference ranges. Clin. Chem. 1990, 36, 265–270. [Google Scholar] [CrossRef]
- CLSI. Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory; Approved Guideline, 3rd ed.; CLSI Document EP28-A3c; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2010. [Google Scholar]
- Ahanchi, N.S.; Khatami, F.; Llanaj, E.; Quezada-Pinedo, H.G.; Dizdari, H.; Bano, A.; Glisic, M.; Eisenga, M.F.; Vidal, P.-M.; Muka, T. The complementary roles of iron and estrogen in menopausal differences in cardiometabolic outcomes. Clin. Nutr. 2024, 43, 1136–1150. [Google Scholar] [CrossRef] [PubMed]
- Cancado, R.D.; Leite, L.A.C.; Munoz, M. Defining Global Thresholds for Serum Ferritin: A Challenging Mission in Establishing the Iron Deficiency Diagnosis in This Era of Striving for Health Equity. Diagnostics 2025, 15, 289. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.R.D.; Haeckel, R.; Loh, T.P.; Sikaris, K.; Streichert, T.; Katayev, A.; Barth, J.H.; Ozarda, Y.; Null, N. Indirect methods for reference interval determination—Review and recommendations. Clin. Chem. Lab. Med. 2018, 57, 20–29. [Google Scholar] [CrossRef]
- Doyle, K.; Bunch, D.R. Reference intervals: Past, present, and future. Crit. Rev. Clin. Lab. Sci. 2023, 60, 466–482. [Google Scholar] [CrossRef]
- Miao, Q.; Lei, S.; Chen, F.; Niu, Q.; Luo, H.; Cai, B. A preliminary study on the reference intervals of serum tumor marker in apparently healthy elderly population in southwestern China using real-world data. BMC Cancer 2024, 24, 657. [Google Scholar] [CrossRef]
- Wei, B.; Guo, Y.; Zhang, L.; Zhong, H.; Miao, Q.; Yan, L.; Bai, Y.; Feng, W.; Liu, W.; Niu, Q.; et al. Reference ranges of T lymphocyte subsets by single-platform among healthy population in southwest China. BMC Immunol. 2021, 22, 80. [Google Scholar] [CrossRef]
- Dirks, N.F.; den Elzen, W.P.J.; Hillebrand, J.J.; Jansen, H.I.; Boekel, E.T.; Brinkman, J.; Buijs, M.M.; Demir, A.Y.; Dijkstra, I.M.; Endenburg, S.C.; et al. Should we depend on reference intervals from manufacturer package inserts? Comparing TSH and FT4 reference intervals from four manufacturers with results from modern indirect methods and the direct method. Clin. Chem. Lab. Med. 2024, 62, 1352–1361. [Google Scholar] [CrossRef] [PubMed]
- Jansen, H.I.; Dirks, N.F.; Hillebrand, J.J.; Ten Boekel, E.; Brinkman, J.W.; Buijs, M.M.; Demir, A.Y.; Dijkstra, I.M.; Endenburg, S.C.; Engbers, P.; et al. Age-Specific Reference Intervals for Thyroid-Stimulating Hormones and Free Thyroxine to Optimize Diagnosis of Thyroid Disease. Thyroid 2024, 34, 1346–1355. [Google Scholar] [CrossRef]
- Johansen, M.B.; Christensen, P.A. A simple transformation independent method for outlier definition. Clin. Chem. Lab. Med. 2018, 56, 1524–1532. [Google Scholar] [CrossRef] [PubMed]
- Putora, P.M.; Panje, C.M.; Papachristofilou, A.; Dal Pra, A.; Hundsberger, T.; Plasswilm, L. Objective consensus from decision trees. Radiat. Oncol. 2014, 9, 270. [Google Scholar] [CrossRef]
- Peng, X.; Lv, Y.; Feng, G.; Peng, Y.; Li, Q.; Song, W.; Ni, X. Algorithm on age partitioning for estimation of reference intervals using clinical laboratory database exemplified with plasma creatinine. Clin. Chem. Lab. Med. 2018, 56, 1514–1523. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Carmona, W.; Diaz-Fabregat, B.; Yuri Yoshigae, A.; Musa de Aquino, A.; Scarano, W.R.; de Souza Castilho, A.C.; Marsicano, J.A.; Prado, R.L.D.; Pessan, J.P.; Mendes, L.d.O. Are Serum Ferritin Levels a Reliable Cancer Biomarker? A Systematic Review and Meta-Analysis. Nutr. Cancer 2022, 74, 1917–1926. [Google Scholar] [CrossRef]
- Shesh, B.P.; Connor, J.R. A novel view of ferritin in cancer. Biochim. Biophys. Acta Rev. Cancer 2023, 1878, 188917. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Lin, L.; Mo, Z.; Qin, X.; Lv, H.; Gao, Y.; Tan, A.; Yang, X.; Huang, S.; Chen, Z. Reference values for serum ferritin in Chinese Han ethnic males: Results from a Chinese male population survey. Clin. Biochem. 2011, 44, 1325–1328. [Google Scholar] [CrossRef]
- Han, L.L.; Wang, Y.X.; Li, J.; Zhang, X.L.; Bian, C.; Wang, H.; Du, S.; Suo, L. Gender differences in associations of serum ferritin and diabetes, metabolic syndrome, and obesity in the China Health and Nutrition Survey. Mol. Nutr. Food Res. 2014, 58, 2189–2195. [Google Scholar] [CrossRef]
- Rushton, D.H.; Barth, J.H. What is the evidence for gender differences in ferritin and haemoglobin? Crit. Rev. Oncol. Hematol. 2010, 73, 1–9. [Google Scholar] [CrossRef]
- Merlo, F.; Groothof, D.; Khatami, F.; Ahanchi, N.S.; Wehrli, F.; Bakker, S.J.L.; Eisenga, M.F.; Muka, T. Changes in Iron Status Biomarkers with Advancing Age According to Sex and Menopause: A Population-Based Study. J. Clin. Med. 2023, 12, 5338. [Google Scholar] [CrossRef]
- Kastrati, L.; Groothof, D.; Quezada-Pinedo, H.G.; Raeisi-Dehkordi, H.; Bally, L.; De Borst, M.H.; Bakker, S.J.; Vidal, P.-M.; Eisenga, M.F.; Muka, T. Utility of iron biomarkers in differentiating menopausal status: Findings from CoLaus and PREVEND. Maturitas 2024, 179, 107872. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Chang, Y.; Cho, Y.; Kwon, M.J.; Joh, H.K.; Lim, G.Y.; Kwon, R.; Ahn, J.; Park, J.; Kim, K.-H.; et al. Accelerated increase in ferritin levels during menopausal transition as a marker of metabolic health. Sci. Rep. 2025, 15, 29311. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Li, K.; Lv, Y.; Peng, Y.; Van Halm-Lutterodt, N.; Song, W.; Peng, X.; Ni, X. Comparison of reference distributions acquired by direct and indirect sampling techniques: Exemplified with the Pediatric Reference Interval in China (PRINCE) study. BMC Med. Res. Methodol. 2022, 22, 106. [Google Scholar] [CrossRef]
- Peng, X.; Peng, Y.; Zhang, C.; Zhao, M.; Yang, H.; Cao, S.; Li, G.; Jiang, Y.; Guo, Z.; Chen, D.; et al. Reference intervals of 14 biochemical markers for children and adolescence in China: The PRINCE study. Clin. Chem. Lab. Med. 2022, 60, 1627–1639. [Google Scholar] [CrossRef]
- Song, W.; Yan, R.; Peng, M.; Jiang, H.; Li, G.; Cao, S.; Jiang, Y.; Guo, Z.; Chen, D.; Yang, H.; et al. Age and sex specific reference intervals of 13 hematological analytes in Chinese children and adolescents aged from 28 days up to 20 years: The PRINCE study. Clin. Chem. Lab. Med. 2022, 60, 1250–1260. [Google Scholar] [CrossRef]
- Snozek, C.L.H.; Spears, G.M.; Porco, A.B.; Erb, S.; Kaleta, E.J.; Bryant, S.C.; Baumann, N.A. Updated ferritin reference intervals for the Roche Elecsys(R) immunoassay. Clin. Biochem. 2021, 87, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, X.; Fan, J.; Huang, M.; Fu, Y.; Zhang, H.; Kong, R.; Man, Q. Serum Ferritin in Geriatric Individuals in the Shanghai Region: Distribution, Correlations, and Reference Intervals. Clin. Lab. 2023, 69, 1664–1670. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, S.; Woolley, T.; Smith, J.; Prinsloo, P.; Fernando, N. Updated adult ferritin reference intervals based on a large, healthy UK sample, measured on Roche Cobas series analysers. Ann. Clin. Biochem. 2024, 61, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Kurstjens, S.; van Dam, A.D.; Oortwijn, E.; den Elzen, W.P.J.; Candido, F.; Kusters, R.; Schipper, A.; Kortmann, Y.F.; Herings, R.M.; Kok, M.; et al. Inconsistency in ferritin reference intervals across laboratories: A major concern for clinical decision making. Clin. Chem. Lab. Med. 2025, 63, 600–610. [Google Scholar] [CrossRef] [PubMed]


| N | Before Transformation | After Transformation | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Mean | SD | Skewness (95% CI) | Kurtosis (95% CI) | Mean | SD | Skewness (95% CI) | Kurtosis (95% CI) | ||
| Outliers undeleted | |||||||||
| Male | 17,846 | 413.55 | 258.92 | 1.681 (1.596, 1.766) | 4.512 (3.942, 5.056) | 15.27 | 3.27 | 0.190 (0.148, 0.235) | 0.350 (0.263, 0.438) |
| Female | 11,877 | 136.50 | 116.50 | 1.952 (1.774, 2.147) | 6.478 (4.651, 8.590) | 9.73 | 3.30 | 0.163 (0.124, 0.197) | −0.254 (−0.337, −0.166) |
| Outliers deleted | |||||||||
| Male | 17,568 | 403.72 | 230.03 | 1.130 (1.095, 1.166) | 1.190 (1.068, 1.323) | 15.22 | 3.06 | 0.138 (0.112, 0.165) | −0.273 (−0.315, −0.233) |
| Female | 11,831 | 133.93 | 108.89 | 1.482 (1.425, 1.539) | 2.556 (2.278, 2.820) | 9.69 | 3.24 | 0.085 (0.054, 0.115) | −0.447 (−0.492, −0.399) |
| Gender/Age | N | Mean + SD | Z | Z* | SD Ratio † | Partitioning Recommended |
|---|---|---|---|---|---|---|
| Male | 17,568 | 403.72 ± 230.03 | 134.66 | 33.20 | 2.11 | Yes |
| Female | 11,831 | 133.93 ± 108.89 | ||||
| Male | ||||||
| ≤61 | 15,872 | 411.31 ± 230.85 | 14.55 | 25.67 | 1.10 | No |
| >61 | 1696 | 332.70 ± 209.25 | ||||
| Female | ||||||
| ≤50 | 7469 | 92.60 ± 76.86 | 55.86 | 21.06 | 1.55 | Yes |
| >50 | 4362 | 204.69 ± 118.81 |
| Gender | Best Split Point (Years) | R2 * | |
|---|---|---|---|
| Ferritin (µg/L) | Male | 61 | 0.0102 |
| Female | 50 | 0.2467 |
| Gender | Age (Years) | N | Study-Derived RI (µg/L) | 90% CI for LL | 90% CI for UL | Manufacturer’s RI (µg/L) |
|---|---|---|---|---|---|---|
| Female | 14–50 | 7469 | 10.30–299.55 | 9.99–10.70 | 287.03–307.00 | 13.00–150.00 * |
| 51–91 | 4362 | 36.61–507.00 | 32.92–39.31 | 497.52–521.00 | ||
| Male | 16–91 | 17,568 | 98.02–997.78 | 96.42–99.92 | 983.78–1011.00 | 30.00–400.00 |
| Subgroup | N | Study-Derived RI Verification Pass Rate (n) | Manufacturer’s RI Verification Pass Rate (n) | p |
|---|---|---|---|---|
| Female (≤50 years) | 511 | 94.72% (484) | 73.97% (378) | <0.001 |
| Female (>50 years) | 493 | 94.52% (466) | 37.12% (183) | <0.001 |
| Male (all ages) | 1490 | 93.83% (1398) | 56.71% (845) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xu, Y.; Wu, X.; Zhang, J.; Niu, Q.; Cai, B.; Miao, Q. Establishment and Validation of Serum Ferritin Reference Intervals Based on Real-World Big Data and Multi-Strategy Partitioning Algorithms. J. Clin. Med. 2026, 15, 976. https://doi.org/10.3390/jcm15030976
Xu Y, Wu X, Zhang J, Niu Q, Cai B, Miao Q. Establishment and Validation of Serum Ferritin Reference Intervals Based on Real-World Big Data and Multi-Strategy Partitioning Algorithms. Journal of Clinical Medicine. 2026; 15(3):976. https://doi.org/10.3390/jcm15030976
Chicago/Turabian StyleXu, Yixin, Xiaojuan Wu, Junlong Zhang, Qian Niu, Bei Cai, and Qiang Miao. 2026. "Establishment and Validation of Serum Ferritin Reference Intervals Based on Real-World Big Data and Multi-Strategy Partitioning Algorithms" Journal of Clinical Medicine 15, no. 3: 976. https://doi.org/10.3390/jcm15030976
APA StyleXu, Y., Wu, X., Zhang, J., Niu, Q., Cai, B., & Miao, Q. (2026). Establishment and Validation of Serum Ferritin Reference Intervals Based on Real-World Big Data and Multi-Strategy Partitioning Algorithms. Journal of Clinical Medicine, 15(3), 976. https://doi.org/10.3390/jcm15030976

