From Open to Robot-Assisted Pancreatoduodenectomy: What RCTs Really Show
Abstract
1. Introduction
2. Literature Search and Selection Methodology
3. The Safety Paradigm: Mortality and Morbidity in MIPD
4. The Efficacy Question: What Tangible Benefits Does MIPD Offer?
5. The Inherent Trade-Offs: Conversion Rates and Financial Costs
6. Oncological Integrity: Resection Margins and Lymphadenectomy in MIPD
7. Generalizability: Experts in a Controlled Setting or a New Universal Standard?
8. Unresolved Questions for Future RCTs
- -
- Applicability to complex disease: the role of MI in borderline resectable tumors and in cases requiring planned vascular resection remains insufficiently addressed by RCTs.
- -
- Patient selection beyond ideal candidates: outcomes in high-risk populations, including severe obesity, frailty, and significant comorbidity, are underrepresented in randomized evidence.
- -
- Long-term oncologic outcomes: robust data on disease-free and overall survival beyond short- and mid-term follow-up are still limited, particularly for RPD.
- -
- Learning curve and implementation: the optimal thresholds for safe dissemination outside expert centers, and how learning-curve effects interact with trial outcomes, remain unclear.
- -
- Cost-effectiveness across health systems: whether higher upfront costs of robotic platforms are offset by downstream benefits across different healthcare settings requires dedicated economic analyses.
- -
- Standardization of reporting: greater consistency in endpoint definitions, outcome reporting, and cost domains would facilitate cross-trial comparison and meta-analysis.
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DGE | Delayed Gastric Emptying |
| IBL | Intraoperative Blood Loss |
| ISGPS | International Study Group of Pancreatic Surgery |
| LPD | Laparoscopic Pancreatoduodenectomy |
| LOS | Length of (Hospital) Stay |
| MI | Minimally Invasive |
| MIPD | Minimally Invasive Pancreatoduodenectomy |
| OPD | Open Pancreatoduodenectomy |
| OT | Operative Time |
| PD | Pancreatoduodenectomy |
| PDAC | Pancreatic Ductal Adenocarcinoma |
| PJ | Pancreaticojejunostomy |
| POPF | Postoperative Pancreatic Fistula |
| PPH | Postpancreatectomy Hemorrhage |
| R0 | Microscopically margin-negative resection |
| RCT | Randomized Controlled Trial |
| RPD | Robotic Pancreatoduodenectomy |
| TFR | Time to Functional Recovery |
| CD | Clavien–Dindo (classification) |
References
- Whipple, A.O.; Parsons, W.B.; Mullins, C.R. Treatment of Carcinoma of the Ampulla of Vater. Ann. Surg. 1935, 102, 763–779. (In English) [Google Scholar] [CrossRef]
- Malleo, G.; Vollmer, C.M. Postpancreatectomy Complications and Management. Surg. Clin. N. Am. 2016, 96, 1313–1336. (In English) [Google Scholar] [CrossRef] [PubMed]
- Bassi, C.; Marchegiani, G.; Dervenis, C.; Sarr, M.; Abu Hilal, M.; Adham, M.; Allen, P.; Andersson, R.; Asbun, H.J.; Besselink, M.G.; et al. The 2016 update of the International Study Group (ISGPS) definition and grading of postoperative pancreatic fistula: 11 Years After. Surgery 2017, 161, 584–591. (In English) [Google Scholar] [CrossRef] [PubMed]
- Wente, M.N.; Bassi, C.; Dervenis, C.; Fingerhut, A.; Gouma, D.J.; Izbicki, J.R.; Neoptolemos, J.P.; Padbury, R.T.; Sarr, M.G.; Traverso, L.W.; et al. Delayed gastric emptying (DGE) after pancreatic surgery: A suggested definition by the International Study Group of Pancreatic Surgery (ISGPS). Surgery 2007, 142, 761–768. (In English) [Google Scholar] [CrossRef] [PubMed]
- Wente, M.N.; Veit, J.A.; Bassi, C.; Dervenis, C.; Fingerhut, A.; Gouma, D.J.; Izbicki, J.R.; Neoptolemos, J.P.; Padbury, R.T.; Sarr, M.G.; et al. Postpancreatectomy hemorrhage (PPH): An International Study Group of Pancreatic Surgery (ISGPS) definition. Surgery 2007, 142, 20–25. (In English) [Google Scholar] [CrossRef]
- Zureikat, A.H.; Beane, J.D.; Zenati, M.S.; Al Abbas, A.I.; Boone, B.A.; Moser, A.J.; Bartlett, D.L.; Hogg, M.E.; Zeh, H.J. 500 Minimally Invasive Robotic Pancreatoduodenectomies: One Decade of Optimizing Performance. Ann. Surg. 2021, 273, 966–972. (In English) [Google Scholar] [CrossRef]
- Napoli, N.; Kauffmann, E.F.; Menonna, F.; Perrone, V.G.; Brozzetti, S.; Boggi, U. Indications, technique, and results of robotic pancreatoduodenectomy. Updates Surg. 2016, 68, 295–305. (In English) [Google Scholar] [CrossRef]
- Begos, D.G.; Modlin, I.M. Laparoscopic cholecystectomy: From gimmick to gold standard. J. Clin. Gastroenterol. 1994, 19, 325–330. (In English) [Google Scholar] [CrossRef]
- Schildberg, C.; Weber, U.; König, V.; Linnartz, M.; Heisler, S.; Hafkesbrink, J.; Fricke, M.; Mantke, R. Laparoscopic appendectomy as the gold standard: What role remains for open surgery, conversion, and disease severity? An analysis of 32,000 cases with appendicitis in Germany. World J. Emerg. Surg. 2025, 20, 53. (In English) [Google Scholar] [CrossRef]
- Romano, G.; Gagliardi, G.; Bianco, F.; Parker, M.C.; Corcione, F. Laparoscopic colorectal surgery: Why it is still not the gold standard and why it should be. Tech. Coloproctol. 2008, 12, 185–188. (In English) [Google Scholar] [CrossRef]
- Gagner, M.; Pomp, A. Laparoscopic pylorus-preserving pancreatoduodenectomy. Surg. Endosc. 1994, 8, 408–410. (In English) [Google Scholar] [CrossRef]
- Zwart, M.J.W.; van den Broek, B.; de Graaf, N.; Suurmeijer, J.A.; Augustinus, S.; Te Riele, W.W.; van Santvoort, H.C.; Hagendoorn, J.; Borel Rinkes, I.H.M.; van Dam, J.L.; et al. The Feasibility, Proficiency, and Mastery Learning Curves in 635 Robotic Pancreatoduodenectomies Following a Multicenter Training Program: “Standing on the Shoulders of Giants”. Ann. Surg. 2023, 278, e1232–e1241. (In English) [Google Scholar] [CrossRef] [PubMed]
- Freschi, C.; Ferrari, V.; Melfi, F.; Ferrari, M.; Mosca, F.; Cuschieri, A. Technical review of the da Vinci surgical telemanipulator. Int. J. Med. Robot. 2013, 9, 396–406. (In English) [Google Scholar] [CrossRef]
- Chen, L.; Yuan, S.; Xu, Q.; Cui, M.; Li, P.; Liu, W.; Lin, C.; Chen, W.; Chen, H.; Hu, Y.; et al. Outcomes evaluation of robotic versus laparoscopic pancreaticoduodenectomy: A propensity score matching and learning curve analysis. Surg. Endosc. 2025, 39, 3681–3690. (In English) [Google Scholar] [CrossRef]
- Giulianotti, P.C.; Coratti, A.; Angelini, M.; Sbrana, F.; Cecconi, S.; Balestracci, T.; Caravaglios, G. Robotics in general surgery: Personal experience in a large community hospital. Arch. Surg. 2003, 138, 777–784. (In English) [Google Scholar] [CrossRef]
- Chapman, B.C.; Gleisner, A.; Ibrahim-Zada, I.; Overbey, D.M.; Paniccia, A.; Meguid, C.; Brauer, B.; Gajdos, C.; McCarter, M.D.; Schulick, R.D.; et al. Laparoscopic pancreaticoduodenectomy: Changing the management of ampullary neoplasms. Surg. Endosc. 2018, 32, 915–922. (In English) [Google Scholar] [CrossRef]
- Nassour, I.; Wang, S.C.; Porembka, M.R.; Yopp, A.C.; Choti, M.A.; Augustine, M.M.; Polanco, P.M.; Mansour, J.C.; Minter, R.M. Robotic Versus Laparoscopic Pancreaticoduodenectomy: A NSQIP Analysis. J. Gastrointest. Surg. 2017, 21, 1784–1792. (In English) [Google Scholar] [CrossRef]
- Wang, S.E.; Shyr, B.U.; Chen, S.C.; Shyr, Y.M. Comparison between robotic and open pancreaticoduodenectomy with modified Blumgart pancreaticojejunostomy: A propensity score-matched study. Surgery 2018, 164, 1162–1167. (In English) [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Jin, J.; Qiu, W.; Weng, Y.; Wang, J.; Zhao, S.; Huo, Z.; Qin, K.; Wang, Y.; Chen, H.; et al. Short-term Outcomes After Robot-Assisted vs Open Pancreaticoduodenectomy After the Learning Curve. JAMA Surg. 2020, 155, 389–394. (In English) [Google Scholar] [CrossRef]
- Baimas-George, M.; Watson, M.; Murphy, K.J.; Iannitti, D.; Baker, E.; Ocuin, L.; Vrochides, D.; Martinie, J.B. Robotic pancreaticoduodenectomy may offer improved oncologic outcomes over open surgery: A propensity-matched single-institution study. Surg. Endosc. 2020, 34, 3644–3649. (In English) [Google Scholar] [CrossRef] [PubMed]
- van Hilst, J.; de Rooij, T.; Bosscha, K.; Brinkman, D.J.; van Dieren, S.; Dijkgraaf, M.G.; Gerhards, M.F.; de Hingh, I.H.; Karsten, T.M.; Lips, D.J.; et al. Laparoscopic versus open pancreatoduodenectomy for pancreatic or periampullary tumours (LEOPARD-2): A multicentre, patient-blinded, randomised controlled phase 2/3 trial. Lancet Gastroenterol. Hepatol. 2019, 4, 199–207. (In English) [Google Scholar] [CrossRef]
- Wang, M.; Li, D.; Chen, R.; Huang, X.; Li, J.; Liu, Y.; Liu, J.; Cheng, W.; Chen, X.; Zhao, W.; et al. Laparoscopic versus open pancreatoduodenectomy for pancreatic or periampullary tumours: A multicentre, open-label, randomised controlled trial. Lancet Gastroenterol. Hepatol. 2021, 6, 438–447. (In English) [Google Scholar] [CrossRef]
- Palanivelu, C.; Senthilnathan, P.; Sabnis, S.C.; Babu, N.S.; Srivatsan Gurumurthy, S.; Anand Vijai, N.; Nalankilli, V.P.; Praveen Raj, P.; Parthasarathy, R.; Rajapandian, S. Randomized clinical trial of laparoscopic versus open pancreatoduodenectomy for periampullary tumours. Br. J. Surg. 2017, 104, 1443–1450. (In English) [Google Scholar] [CrossRef] [PubMed]
- Poves, I.; Burdío, F.; Morató, O.; Iglesias, M.; Radosevic, A.; Ilzarbe, L.; Visa, L.; Grande, L. Comparison of Perioperative Outcomes Between Laparoscopic and Open Approach for Pancreatoduodenectomy: The PADULAP Randomized Controlled Trial. Ann. Surg. 2018, 268, 731–739. (In English) [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Pan, S.; Qin, T.; Xu, X.; Huang, X.; Liu, J.; Chen, X.; Zhao, W.; Li, J.; Liu, C.; et al. Short-Term Outcomes Following Laparoscopic vs Open Pancreaticoduodenectomy in Patients With Pancreatic Ductal Adenocarcinoma: A Randomized Clinical Trial. JAMA Surg. 2023, 158, 1245–1253. (In English) [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.S.; Lee, W.; Kang, C.M.; Hong, T.; Shin, S.H.; Lee, J.W.; Hwang, D.W.; Song, K.B.; Kwon, J.W.; Sung, M.K.; et al. Laparoscopic versus open pancreatoduodenectomy for periampullary tumors: A randomized clinical trial. Int. J. Surg. 2024, 110, 7011–7019. (In English) [Google Scholar] [CrossRef]
- Qin, T.; Zhang, H.; Pan, S.; Liu, J.; Li, D.; Chen, R.; Huang, X.; Liu, Y.; Cheng, W.; Chen, X.; et al. Effect of Laparoscopic and Open Pancreaticoduodenectomy for Pancreatic or Periampullary Tumors: Three-year Follow-up of a Randomized Clinical Trial. Ann. Surg. 2024, 279, 605–612. (In English) [Google Scholar] [CrossRef]
- Klotz, R.; Mihaljevic, A.L.; Kulu, Y.; Sander, A.; Klose, C.; Behnisch, R.; Joos, M.C.; Kalkum, E.; Nickel, F.; Knebel, P.; et al. Robotic versus open partial pancreatoduodenectomy (EUROPA): A randomised controlled stage 2b trial. Lancet Reg. Health Eur. 2024, 39, 100864. (In English) [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, Z.; Zhang, X.; Wang, W.; Han, B.; Chen, X.; Tan, X.; Xu, S.; Zhao, G.; Gao, Y.; et al. Perioperative and Oncological Outcomes of Robotic Versus Open Pancreaticoduodenectomy in Low-Risk Surgical Candidates: A Multicenter Propensity Score-Matched Study. Ann. Surg. 2023, 277, e864–e871. (In English) [Google Scholar] [CrossRef]
- Liu, Q.; Li, M.; Gao, Y.; Jiang, T.; Han, B.; Zhao, G.; Lin, C.; Lau, W.Y.; Zhao, Z.; Liu, R. Effect of robotic versus open pancreaticoduodenectomy on postoperative length of hospital stay and complications for pancreatic head or periampullary tumours: A multicentre, open-label randomised controlled trial. Lancet Gastroenterol. Hepatol. 2024, 9, 428–437. (In English) [Google Scholar] [CrossRef]
- Valle, V.; Pakataridis, P.; Marchese, T.; Ferrari, C.; Chelmis, F.; Sorotou, I.N.; Gianniou, M.A.; Dimova, A.; Tcholakov, O.; Ielpo, B. Comparative Analysis of Open, Laparoscopic, and Robotic Pancreaticoduodenectomy: A Systematic Review of Randomized Controlled Trials. Medicina 2025, 61, 1121. (In English) [Google Scholar] [CrossRef]
- Bassi, C.; Dervenis, C.; Butturini, G.; Fingerhut, A.; Yeo, C.; Izbicki, J.; Neoptolemos, J.; Sarr, M.; Traverso, W.; Buchler, M.; et al. Postoperative pancreatic fistula: An international study group (ISGPF) definition. Surgery 2005, 138, 8–13. (In English) [Google Scholar] [CrossRef] [PubMed]
- Hays, S.B.; Corvino, G.; Lorié, B.D.; McMichael, W.V.; Mehdi, S.A.; Rieser, C.; Rojas, A.E.; Hogg, M.E. Prince and princesses: The current status of robotic surgery in surgical oncology. J. Surg. Oncol. 2024, 129, 164–182. (In English) [Google Scholar] [CrossRef] [PubMed]
- van Hilst, J.; de Rooij, T.; van den Boezem, P.B.; Bosscha, K.; Busch, O.R.; van Duijvendijk, P.; Festen, S.; Gerhards, M.F.; de Hingh, I.H.; Karsten, T.M.; et al. Laparoscopic pancreatoduodenectomy with open or laparoscopic reconstruction during the learning curve: A multicenter propensity score matched study. HPB 2019, 21, 857–864. (In English) [Google Scholar] [CrossRef] [PubMed]
- Jones, L.R.; Zwart, M.J.W.; de Graaf, N.; Wei, K.; Qu, L.; Jiabin, J.; Ningzhen, F.; Wang, S.E.; Kim, H.; Kauffmann, E.F.; et al. Learning curve stratified outcomes after robotic pancreatoduodenectomy: International multicenter experience. Surgery 2024, 176, 1721–1729. (In English) [Google Scholar] [CrossRef]
| Study | Country | Comparison | Sample Size | Primary Endpoint | Main Findings |
|---|---|---|---|---|---|
| Palanivelu et al., 2017 [23] | India | LPD vs. OPD | 66 | Morbidity | No significant difference in overall complications |
| PADULAP–Poves et al., 2018 [24] | Spain | LPD vs. OPD | 64 | Postoperative complications | Similar morbidity; LPD associated with shorter LOS but high conversion rate (23.5%) |
| LEOPARD-2–van Hilst et al., 2019 [21] | Europe | LPD vs. OPD | 99 | Severe complications | Higher 90-day mortality in LPD (10% vs. 2%); trial stopped early |
| Wang et al., 2021 [22] | China | LPD vs. OPD | 656 | Severe complications | LPD non-inferior to OPD; similar mortality and morbidity |
| Wang et al., 2023 [25] | China | LPD vs. OPD | 261 | R0 resection & lymph nodes | No significant differences between groups |
| Yoon et al., 2024 [26] | Korea | LPD vs. OPD | 160 | Time to functional recovery (TFR) | TFR significantly shorter after LPD |
| Qin et al., 2024 [27] | China | LPD vs. OPD | 656 | 3-year survival | No differences in long-term survival |
| EUROPA–Klotz et al., 2024 [28] | Europe | RPD vs. OPD | 80 | Severe complications | Higher POPF and DGE in RPD; markedly higher costs |
| Liu et al., 2023 [29] | China | RPD vs. OPD | 378 | Length of stay | RPD associated with ~2.5-day reduction in LOS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Cattelani, A.; Montorsi, R.M.; Marchetti, A.; Landi, L.; Gronchi, F.; De Pastena, M.; Landoni, L.; Esposito, A.; Paiella, S.; Malleo, G.; et al. From Open to Robot-Assisted Pancreatoduodenectomy: What RCTs Really Show. J. Clin. Med. 2026, 15, 1225. https://doi.org/10.3390/jcm15031225
Cattelani A, Montorsi RM, Marchetti A, Landi L, Gronchi F, De Pastena M, Landoni L, Esposito A, Paiella S, Malleo G, et al. From Open to Robot-Assisted Pancreatoduodenectomy: What RCTs Really Show. Journal of Clinical Medicine. 2026; 15(3):1225. https://doi.org/10.3390/jcm15031225
Chicago/Turabian StyleCattelani, Alice, Roberto M. Montorsi, Alessio Marchetti, Lucia Landi, Federico Gronchi, Matteo De Pastena, Luca Landoni, Alessandro Esposito, Salvatore Paiella, Giuseppe Malleo, and et al. 2026. "From Open to Robot-Assisted Pancreatoduodenectomy: What RCTs Really Show" Journal of Clinical Medicine 15, no. 3: 1225. https://doi.org/10.3390/jcm15031225
APA StyleCattelani, A., Montorsi, R. M., Marchetti, A., Landi, L., Gronchi, F., De Pastena, M., Landoni, L., Esposito, A., Paiella, S., Malleo, G., & Salvia, R. (2026). From Open to Robot-Assisted Pancreatoduodenectomy: What RCTs Really Show. Journal of Clinical Medicine, 15(3), 1225. https://doi.org/10.3390/jcm15031225

