Forecasting ICU Acute Kidney Injury with Actionable Lead Time Using Interpretable Machine Learning: Development and Multi-Center Validation
Abstract
1. Background
2. Materials and Methods
2.1. Data Sources and Cohort Assembly
2.2. Rolling-Window Prediction Framework and Outcome Definition
2.3. Feature Selection and Processing
2.4. Model Development and Feature Selection
2.5. Performance Evaluation
2.6. Sensitivity Analyses and Subgroup Assessments
2.7. Data Statement and Ethics
3. Results
3.1. Cohort Characteristics and Descriptive Analyses
3.2. Discriminative Performance
3.3. Calibration, Decision Curve Analysis, and Key Predictors
3.4. Subgroup Performance and Sensitivity Analyses
4. Discussion
4.1. Principal Findings in Context
4.2. Comparison with Prior AKI Prediction Tools
4.3. Model Explainability and Clinical Utility
4.4. Clinical Implementation Pathway
4.5. Ethical and Equity Considerations
4.6. Strengths and Contributions of This Study
4.7. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 0by25 | International Society of Nephrology (ISN) “0by25” initiative (AKI prevention/management focus) |
| ACEi/ARB | angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker |
| AHF | acute heart failure |
| AI | artificial intelligence |
| AKI | acute kidney injury |
| AMI | acute myocardial infarction |
| ASMD | absolute standardized mean difference |
| AUC | area under the curve |
| AUPRC | area under the precision–recall curve |
| BP | blood pressure |
| bpm | beats per minute |
| BUN | blood urea nitrogen |
| CABG | coronary artery bypass graft(ing) |
| CI | confidence interval |
| CITL | calibration-in-the-large |
| CKD | chronic kidney disease |
| cm | centimeter(s) |
| COPD | chronic obstructive pulmonary disease |
| COVID-19 | coronavirus disease 2019 |
| CRD | Collaborative Research Database (as in eICU-CRD) |
| DCA | decision curve analysis |
| ECE | expected calibration error |
| EHR | electronic health record |
| eGFR | estimated glomerular filtration rate |
| eICU-CRD | Electronic Intensive Care Unit Collaborative Research Database |
| EWS | early warning score |
| F1 | F1-score (F-measure with β = 1) |
| F2 | F2-score (F-measure with β = 2; weights recall more) |
| fL | femtolitre(s) |
| g/dL | grams per deciliter |
| h | hour(s) |
| HIPAA | Health Insurance Portability and Accountability Act |
| ICU | intensive care unit |
| ICH | intracerebral hemorrhage (as used in ICH/SAH) |
| IQR | interquartile range |
| IRB | institutional review board |
| ISN | International Society of Nephrology |
| IV | intravenous |
| KDIGO | Kidney Disease: Improving Global Outcomes |
| kg | kilogram(s) |
| MAP | mean arterial pressure |
| MCC | Matthews correlation coefficient |
| MCHC | mean corpuscular hemoglobin concentration |
| MCV | mean corpuscular volume |
| mEq/L | milliequivalents per liter |
| mg/dL | milligrams per deciliter |
| MI | myocardial infarction |
| min | minute(s) |
| mL | milliliter(s) |
| mL/kg/h (or mL/kg/hour) | milliliters per kilogram per hour |
| mL/min/1.73m2 | milliliters per minute per 1.73 square meters (BSA-standardized) |
| MIMIC-IV | Medical Information Mart for Intensive Care IV |
| mmHg | millimeters of mercury |
| ML | machine learning |
| NA | not available |
| NHS | National Health Service |
| NSAIDs | nonsteroidal anti-inflammatory drugs |
| p | p-value |
| PCI | percutaneous coronary intervention |
| PO | per os (by mouth) |
| PROBAST | Prediction model Risk of Bias ASsessment Tool |
| PSC | Piecewise slope change |
| RDW | red cell distribution width |
| SAH | subarachnoid hemorrhage |
| SCr | serum creatinine |
| SD | standard deviation |
| SHAP | SHapley Additive exPlanations |
| SpO2 | peripheral oxygen saturation |
| SVT | supraventricular tachycardia |
| TRIPOD | Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis |
| TRIPOD+AI | TRIPOD extension/guidance for AI/ML prediction models |
| UO | urine output |
| U.S./US | United States |
| VKA | vitamin K antagonist |
| WBC | white blood cell (count) |
| XGBoost | eXtreme Gradient Boosting |
References
- Susantitaphong, P. World Incidence of Acute Kidney Injury: A Meta-analysis. Clin. J. Am. Soc. Nephrol. 2013, 8, 1482–1493. [Google Scholar] [CrossRef]
- Hoste, E.A.; Bagshaw, S.M.; Bellomo, R.; Cely, C.M.; Colman, R.; Cruz, D.N.; Edipidis, K.; Forni, L.G.; Gomersall, C.D.; Govil, D.; et al. Epidemiology of Acute Kidney Injury in Critically Ill Patients: The Multinational AKI-EPI Study. Intensive Care Med. 2015, 41, 1411–1423. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO). KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int. Suppl. 2012, 2, 1.
- Silver, S.A.; Chertow, G.M. The Economic Consequences of Acute Kidney Injury. Clin. J. Am. Soc. Nephrol. 2017, 137, 297–301. [Google Scholar] [CrossRef]
- Odutayo, A. AKI and Long-Term Risk for Cardiovascular Events and Mortality: A Systematic Review and Meta-analysis. J. Am. Soc. Nephrol. 2017, 28, 377–387. [Google Scholar] [CrossRef]
- Coca, S.G.; Singanamala, S.; Parikh, C.R. Chronic Kidney Disease after Acute Kidney Injury: A Systematic Review and Meta-analysis. Kidney Int. 2012, 81, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Esposito, P.; Cappadona, F.; Marengo, M.; Fiorentino, M.; Fabbrini, P.; Quercia, A.D.; Garzotto, F.; Castellano, G.; Cantaluppi, V.; Viazzi, F. Recognition patterns of acute kidney injury in hospitalized patients. Clin. Kidney J. 2024, 17, sfae231. [Google Scholar] [CrossRef]
- Evans, L. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Intensive Care Med. 2021, 49, e1063–e1143. [Google Scholar]
- Chang-Panesso, M. Acute kidney injury and aging. Pediatr. Nephrol. 2021, 36, 2997–3006. [Google Scholar] [CrossRef] [PubMed]
- Neugarten, J.; Golestaneh, L. Sex Differences in Acute Kidney Injury. Semin. Nephrol. 2022, 42, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Hounkpatin, H.O.; Fraser, S.D.S.; Johnson, M.J.; Harris, S.; Uniacke, M.; Roderick, P.J. The association of socioeconomic status with incidence and outcomes of acute kidney injury. Clin. Kidney J. 2019, 13, 245–252. [Google Scholar] [CrossRef]
- Grant, C.H. Health inequalities and outcomes following acute kidney injury: A systematic review & meta-analyses of observational studies. BMC Nephrol. 2025, 26, 494. [Google Scholar] [CrossRef] [PubMed]
- Batte, A.; Shahrin, L.; Claure-Del Granado, R.; Luyckx, V.A.; Conroy, A.L. Infections and Acute Kidney Injury: A Global Perspective. Semin. Nephrol. 2023, 43, 151466. [Google Scholar] [CrossRef] [PubMed]
- Wainstein, M.; Flanagan, E.; Johnson, D.W.; Shrapnel, S. Systematic Review of Externally Validated Machine Learning Models for Predicting Acute Kidney Injury in General Hospital Patients. Front. Nephrol. 2023, 3, 1220214. [Google Scholar] [CrossRef]
- NHS. Acute Kidney Injury (AKI) e-Alert Algorithm Specification (Serum Creatinine-Based); NHS: London, UK, 2014. [Google Scholar]
- Zimmerman, L.P.; Reyfman, P.A.; Smith, A.D.R.; Zeng, Z.; Kho, A.; Sanchez-Pinto, L.N.; Luo, Y. Early Prediction of Acute Kidney Injury Following ICU Admission Using a Multivariate Panel of Physiological Measurements. BMC Med. Inform. Decis. Mak. 2019, 19, 16. [Google Scholar] [CrossRef] [PubMed]
- Dai, A.; Zhou, Z.; Jiang, F.; Guo, Y.; Asante, D.O.; Feng, Y.; Huang, K.; Chen, C.; Shi, H.; Si, Y.; et al. Incorporating intraoperative blood pressure time-series variables to assist in prediction of acute kidney injury after type a acute aortic dissection repair: An interpretable machine learning model. Ann. Med. 2023, 55, 2266458. [Google Scholar] [CrossRef]
- Park, S.; Chung, S.; Kim, Y.; Yang, S.-A.; Kwon, S.; Cho, J.M.; Lee, M.J.; Cho, E.; Ryu, J.; Kim, S.; et al. A deep-learning algorithm using real-time collected intraoperative vital sign signals for predicting acute kidney injury after major non-cardiac surgeries: A modelling study. PLoS Med. 2025, 22, e1004566. [Google Scholar] [CrossRef]
- Gu, Y.; Li, L.; Yang, K.; Zou, C.; Yin, B. Integrating Multi-Modal Imaging Features for Early Prediction of Acute Kidney Injury in Pneumonia Sepsis: A Multicenter Retrospective Study. Acad. Radiol. 2025, 32, 6677–6692. [Google Scholar] [CrossRef]
- Sabaghian, T.; Kharazmi, A.B.; Ansari, A.; Omidi, F.; Kazemi, S.N.; Hajikhani, B.; Vaziri-Harami, R.; Tajbakhsh, A.; Omidi, S.; Haddadi, S.; et al. COVID-19 and Acute Kidney Injury: A Systematic Review. Front. Med. 2022, 9, 705908. [Google Scholar] [CrossRef]
- Del Toro-Cisneros, N.; Berman-Parks, N.; Uribe-Pérez, A.; Caballero-Islas, A.E.; Vega-Vega, O. A modified renal angina index in critically ill patients with COVID-19. Ren. Fail. 2023, 45, 2205958. [Google Scholar] [CrossRef]
- Collins, G.S. TRIPOD + AI: Updated Guidance for Reporting Clinical Prediction Models Developed or Validated Using Artificial Intelligence. BMJ 2024, 385, e078378. [Google Scholar] [CrossRef]
- Moons, K.G.; Wolff, R.F.; Riley, R.D.; Whiting, P.F.; Westwood, M.; Collins, G.S.; Reitsma, J.B.; Kleijnen, J.; Mallett, S. PROBAST: A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies. Ann. Intern. Med. 2019, 170, W1–W33. [Google Scholar] [CrossRef] [PubMed]
- American College of Radiology. ACR Manual on Contrast Media, 2024 ed.; American College of Radiology: Reston, VA, USA, 2024. [Google Scholar]
- Tomašev, N.; Glorot, X.; Rae, J.W.; Zielinski, M.; Askham, H.; Saraiva, A.; Mottram, A.; Meyer, C.; Ravuri, S.; Protsyuk, I.; et al. A Clinically Applicable Approach to Continuous Prediction of Future Acute Kidney Injury. Nature 2019, 572, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.E.; Bulgarelli, L.; Shen, L.; Gayles, A.; Shammout, A.; Horng, S.; Pollard, T.J.; Hao, S.; Moody, B.; Gow, B.; et al. MIMIC-IV, a Freely Accessible Electronic Health Record Dataset. Sci. Data 2023, 10, 1. [Google Scholar] [CrossRef]
- Johnson, A.E.W.; Pollard, T.J.; Mark, R.G. MIMIC-IV (v3.1). 2024. Available online: https://physionet.org/content/mimiciv/3.1/ (accessed on 1 December 2025).
- Pollard, T.J.; Johnson, A.E.W. The eICU Collaborative Research Database, a freely available multi-center ICU database. Sci. Data 2018, 5, 180178. [Google Scholar] [CrossRef]
- Pollard, T.J.; Johnson, A.E.W.; Raffa, J.D. eICU Collaborative Research Database (v2.0). 2019. Available online: https://physionet.org/content/eicu-crd/2.0/ (accessed on 1 December 2025).
- Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.H.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’16), San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA, 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Feretzakis, G.; Sakagianni, A.; Anastasiou, A.; Kapogianni, I.; Bazakidou, E.; Koufopoulos, P.; Koumpouros, Y.; Koufopoulou, C.; Kaldis, V.; Verykios, V.S. Integrating Shapley Values into Machine Learning Techniques for Enhanced Predictions of Hospital Admissions. Appl. Sci. 2024, 14, 5925. [Google Scholar] [CrossRef]
- Leeuwenberg, A.M.; Schuit, E. Prediction models for COVID-19 clinical decision making. Lancet Digit. Health 2020, 2, e496–e497. [Google Scholar] [CrossRef]
- Tamargo, C.; Hanouneh, M.; Cervantes, C.E. Treatment of Acute Kidney Injury: A Review of Current Approaches and Emerging Innovations. J. Clin. Med. 2024, 13, 2455. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, X.; Shahinian, V.; Yin, H.; Steffick, D.; Saran, R.; Crowley, S.; Mathis, M.; Nadkarni, G.N.; Heung, M.; et al. Generalizability of an acute kidney injury prediction model across health systems. Nat. Mach. Intell. 2022, 4, 1121–1129. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, D.; Gao, J.; Wang, R.; Yan, K.; Liang, H.; Xu, J.; Zhao, Y.; Zheng, X.; Xu, L.; et al. Development and validation of a real-time prediction model for acute kidney injury in hospitalized patients. Nat. Commun. 2025, 16, 68. [Google Scholar] [CrossRef] [PubMed]
- Kashani, K.B.; Awdishu, L.; Bagshaw, S.M.; Barreto, E.F.; Claure-Del Granado, R.; Evans, B.J.; Forni, L.G.; Ghosh, E.; Goldstein, S.L.; Kane-Gill, S.L.; et al. Digital health and acute kidney injury: Consensus report of the 27th Acute Disease Quality Initiative workgroup. Nat. Rev. Nephrol. 2023, 19, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Advances in Neural Information Processing Systems 30 (NIPS 2017); Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 4765–4774. [Google Scholar]
- Li, T.; Wu, B.; Li, L.; Bian, A.; Ni, J.; Liu, K.; Qin, Z.; Peng, Y.; Shen, Y.; Lv, M.; et al. Automated Electronic Alert for the Care and Outcomes of Adults with Acute Kidney Injury: A Randomized Clinical Trial. JAMA Netw. Open 2024, 7, e2351710. [Google Scholar] [CrossRef] [PubMed]



| Development | Temporal Validation | External Validation | ||||||
|---|---|---|---|---|---|---|---|---|
| Characteristic | Median (IQR) or Count (%) | NA | Median (IQR) or Count (%) | NA | ASMD | Median (IQR) or Count (%) | NA | ASMD |
| Demographics | ||||||||
| Female sex | 123,354 (45.9%) | 0 | 7323 (47.9%) | 0 | 0.06 | 7137 (45.0%) | 0 | 0.03 |
| Age (years) | 66.0 (54.0, 76.0) | 0 | 65.0 (54.0, 75.0) | 0 | 0.07 | 63.0 (51.0, 74.0) | 0 | 0.14 |
| Length of stay (days) | 3.6 (2.6, 6.0) | 0 | 4.1 (2.8, 7.2) | 0 | 0.19 | 3.8 (2.7, 6.2) | 0 | 0.07 |
| Black | 28,837 (10.7%) | 0 | 1188 (7.8%) | 0 | 0.10 | 659 (4.2%) | 0 | 0.26 |
| Hispanic | 11,398 (4.2%) | 0 | 590 (3.9%) | 0 | 0.02 | 150 (0.9%) | 0 | 0.23 |
| White | 192,320 (71.5%) | 0 | 7771 (50.9%) | 0 | 0.28 | 14,181 (89.3%) | 0 | 0.61 |
| Asian | 7441 (2.8%) | 0 | 861 (5.6%) | 0 | 0.02 | 152 (1.0%) | 0 | 0.18 |
| Other race | 28,926 (10.8%) | 0 | 4866 (31.9%) | 0 | 0.39 | 735 (4.6%) | 0 | 0.39 |
| Cardiothoracic ICU | 50,064 (18.6%) | 0 | 2776 (18.2%) | 0 | 0.09 | 1670 (10.5%) | 0 | 0.45 |
| Medical ICU | 33,188 (12.3%) | 0 | 1443 (9.4%) | 0 | 0.21 | 530 (3.3%) | 0 | 0.48 |
| Surgical/Trauma ICU | 44,240 (16.5%) | 0 | 2465 (16.1%) | 0 | 0.30 | 4136 (26.1%) | 0 | 0.22 |
| Neurology ICU | 37,216 (13.8%) | 0 | 7524 (49.3%) | 0 | 0.68 | 4108 (25.9%) | 0 | 0.38 |
| Mixed ICU | 104,214 (38.8%) | 0 | 1068 (7.0%) | 0 | 0.19 | 5433 (34.2%) | 0 | 0.46 |
| Height (cm) | 170.2 (163.0, 178.0) | 11.7 | 170.2 (163.0, 178.0) | 35.8 | 0.08 | 170.0 (160.0, 177.8) | 0.1 | 0.04 |
| Weight (kg) | 76.8 (64.8, 90.0) | 2.1 | 77.9 (65.5, 92.0) | 6.3 | 0.07 | 79.0 (65.1, 94.0) | 1.3 | 0.12 |
| Comorbidities | ||||||||
| AMI | 26,614 (9.9%) | 0 | 1113 (7.3%) | 0 | 0.03 | 1450 (9.1%) | 0 | 0.05 |
| AHF | 14,095 (5.2%) | 0 | 1124 (7.4%) | 0 | 0.04 | 1064 (6.7%) | 0 | 0.21 |
| Chronic heart failure | 32,447 (12.1%) | 0 | 1383 (9.1%) | 0 | 0.07 | 1568 (9.9%) | 0 | 0.07 |
| Atrial fibrillation | 43,088 (16.0%) | 0 | 2833 (18.5%) | 0 | 0.04 | 2347 (14.8%) | 0 | 0.29 |
| SVT | 7167 (2.7%) | 0 | 652 (4.3%) | 0 | 0.17 | 388 (2.4%) | 0 | 0.05 |
| History of cardiac arrest | 1476 (0.5%) | 0 | 141 (0.9%) | 0 | 0.06 | 108 (0.7%) | 0 | 0.02 |
| Hypertension | 139,446 (51.9%) | 0 | 9189 (60.2%) | 0 | 0.06 | 7408 (46.7%) | 0 | 0.24 |
| COVID-19 | - | - | 1726 (11.3%) | 0 | - | - | - | - |
| COPD | 46,089 (17.1%) | 0 | 1607 (10.5%) | 0 | 0.06 | 2509 (15.8%) | 0 | 0.09 |
| Chronic kidney disease | 27,427 (10.2%) | 0 | 771 (5.0%) | 0 | 0.20 | 1645 (10.4%) | 0 | 0.04 |
| Malignant cancer | 23,989 (8.9%) | 0 | 2228 (14.6%) | 0 | 0.01 | 1457 (9.2%) | 0 | 0.13 |
| Metastatic solid tumor | 11,152 (4.1%) | 0 | 978 (6.4%) | 0 | 0.05 | 466 (2.9%) | 0 | 0.18 |
| Cirrhosis | 8185 (3.0%) | 0 | 360 (2.4%) | 0 | 0.04 | 469 (3.0%) | 0 | 0.04 |
| Hematological cancer | 5477 (2.0%) | 0 | 446 (2.9%) | 0 | 0.03 | 333 (2.1%) | 0 | 0.07 |
| Pulmonary embolism | 8528 (3.2%) | 0 | 701 (4.6%) | 0 | 0.07 | 629 (4.0%) | 0 | 0.01 |
| Shock | 54,466 (20.3%) | 0 | 3778 (24.7%) | 0 | 0.33 | 5790 (36.5%) | 0 | 0.31 |
| Ischemic stroke | 19,752 (7.3%) | 0 | 2061 (13.5%) | 0 | 0.18 | 1370 (8.6%) | 0 | 0.03 |
| Diabetes | 66,932 (24.9%) | 0 | 3250 (21.3%) | 0 | 0.02 | 2842 (17.9%) | 0 | 0.12 |
| Sepsis | 46,700 (17.4%) | 0 | 2110 (13.8%) | 0 | 0.38 | 3053 (19.2%) | 0 | 0.43 |
| Life-threatening arrhythmias | 12,483 (4.6%) | 0 | 538 (3.5%) | 0 | 0.01 | 792 (5.0%) | 0 | 0.02 |
| ICH/SAH | 28,929 (10.8%) | 0 | 3513 (23.0%) | 0 | 0.18 | 2348 (14.8%) | 0 | 0.02 |
| Laboratory values | ||||||||
| Hemoglobin (g/dL) | 10.5 (9.0, 12.1) | 32.7 | 11.0 (9.2, 12.6) | 34.9 | 0.19 | 10.6 (9.0, 12.3) | 36.9 | 0.06 |
| MCHC (g/dL) | 33.2 (32.1, 34.2) | 36.9 | 32.8 (31.8, 33.6) | 35.6 | 0.38 | 33.1 (32.3, 33.9) | 40.5 | 0.13 |
| MCV (fL) | 91.0 (87.0, 94.5) | 36.9 | 91.5 (88.0, 95.5) | 35.6 | 0.16 | 90.2 (86.7, 94.1) | 40.5 | 0.02 |
| Platelets (103/uL) | 186.5 (137.0, 250.0) | 35.3 | 196.5 (142.2, 261.0) | 35.5 | 0.05 | 184.0 (133.0, 246.0) | 40.5 | 0.06 |
| RDW (%) | 14.2 (13.2, 15.6) | 39.3 | 13.8 (13.0, 15.1) | 35.7 | 0.22 | 14.6 (13.6, 16.3) | 40.7 | 0.21 |
| Creatinine (mg/dL) | 0.8 (0.7, 1.1) | 27.6 | 0.8 (0.7, 1.1) | 30.9 | 0.05 | 0.9 (0.7, 1.2) | 32 | 0.12 |
| BUN (mg/dL) | 16.0 (11.0, 24.0) | 27.8 | 15.3 (11.0, 22.0) | 30.9 | 0.09 | 18.0 (12.3, 28.0) | 31.5 | 0.14 |
| Glucose (mg/dL) | 126.0 (105.0, 157.0) | 17.0 | 129.0 (107.0, 158.0) | 34.1 | 0.01 | 126.8 (107.9, 150.0) | 10.2 | 0.13 |
| WBC (103/uL) | 10.9 (8.0, 14.8) | 34.9 | 11.0 (8.2, 14.8) | 35.7 | 0.01 | 10.8 (8.0, 14.5) | 40.7 | 0.01 |
| Anion gap (mEq/L) | 13.0 (11.0, 15.0) | 39.7 | 11.0 (9.0, 13.0) | 31.3 | 0.65 | 9.5 (7.0, 11.5) | 43.9 | 0.78 |
| Bicarbonate (mEq/L) | 23.0 (21.0, 26.0) | 34.1 | 23.0 (21.0, 25.0) | 31.1 | 0.18 | 24.0 (21.5, 27.0) | 32.2 | 0.19 |
| Chloride (mEq/L) | 105.0 (101.0, 108.5) | 26.9 | 104.5 (101.0, 108.0) | 31.0 | 0.12 | 105.0 (101.0, 109.0) | 31.7 | 0.03 |
| Sodium (mEq/L) | 139.0 (136.0, 141.5) | 25.9 | 138.5 (136.0, 141.0) | 30.9 | 0.02 | 138.0 (135.7, 141.0) | 30.0 | 0.02 |
| Potassium (mEq/L) | 4.0 (3.7, 4.4) | 24.5 | 4.1 (3.8, 4.4) | 30.9 | 0.09 | 4.0 (3.7, 4.3) | 31.0 | 0.10 |
| eGFR (mL/min/1.73 m2) | 90.3 (64.9, 103.9) | 27.6 | 91.7 (69.7, 104.0) | 30.9 | 0.09 | 89.0 (59.8, 105.7) | 32.0 | 0.03 |
| Vital signs | ||||||||
| Heart rate (bpm) | 83.3 (73.6, 95.6) | 0.3 | 80.8 (71.6, 91.7) | 0.1 | 0.18 | 85.8 (74.5, 97.9) | 0 | 0.08 |
| Respiratory rate (breaths/min) | 18.5 (16.3, 21.4) | 1.3 | 18.4 (16.3, 21.2) | 1.6 | 0.02 | 18.4 (16.0, 21.3) | 0.1 | 0.04 |
| Temperature (C) | 36.8 (36.6, 37.1) | 4.9 | 36.8 (36.6, 37.1) | 1.3 | 0.01 | 37.0 (36.6, 37.4) | 0.3 | 0.21 |
| SpO2 (%) | 97.2 (95.7, 98.8) | 0.5 | 96.9 (95.2, 98.4) | 0.1 | 0.18 | 96.9 (95.3, 98.5) | 1.1 | 0.16 |
| Urine output (mL) | 990.0 (650.0, 1475.0) | 22.1 | 850.0 (550.0, 1300.0) | 6.7 | 0.24 | 1025.0 (680.0, 1550.0) | 3.1 | 0.03 |
| Systolic BP (mmHg) | 121.2 (109.1, 135.1) | 0.3 | 115.9 (105.15, 128.8) | 0.1 | 0.04 | 123.5 (112.4, 133.5) | 0.1 | 0.07 |
| Diastolic BP (mmHg) | 65.6 (58.0, 74.8) | 0.3 | 62.2 (54.8–71.0) | 0.1 | 0.02 | 61.5 (52.4, 70.3) | 0.1 | 0.02 |
| Mean BP (mmHg) | 78.6 (71.8, 87.4) | 0.4 | 82.3 (74.9, 91.8) | 0.1 | 0.30 | 79.3 (71.4, 88.1) | 0.3 | 0.03 |
| Invasive BP monitoring | 73,384 (27.3%) | 0 | 5998 (39.3%) | 0 | 0.54 | 4054 (25.5%) | 0 | 0.39 |
| Treatment | ||||||||
| Loop diuretics (PO) | 2244 (0.8%) | 0 | 87 (0.6%) | 0 | 0.06 | 147 (0.9%) | 0 | 0.01 |
| Loop diuretics (IV) | 20,799 (7.7%) | 0 | 1477 (9.7%) | 0 | 0.14 | 1234 (7.8%) | 0 | 0.09 |
| Thiazides (PO) | 2134 (0.8%) | 0 | 108 (0.7%) | 0 | 0.03 | 638 (4.0%) | 0 | 0.20 |
| Thrombolytics | 922 (0.3%) | 0 | 84 (0.5%) | 0 | 0.03 | 160 (1.0%) | 0 | 0.06 |
| Insulin | 39,830 (14.8%) | 0 | 2960 (19.4%) | 0 | 0.02 | 4488 (28.3%) | 0 | 0.10 |
| Non-insulin antidiabetics | 2367 (0.9%) | 0 | 35 (0.2%) | 0 | 0.02 | 476 (3.0%) | 0 | 0.24 |
| Dopamine | 3810 (1.4%) | 0 | 14 (0.1%) | 0 | 0.12 | 135 (0.9%) | 0 | 0.01 |
| Dobutamine | 2834 (1.1%) | 0 | 65 (0.4%) | 0 | 0.02 | 39 (0.2%) | 0 | 0.07 |
| Norepinephrine | 22,330 (8.3%) | 0 | 1022 (6.7%) | 0 | 0.19 | 1712 (10.8%) | 0 | 0.09 |
| Phenylephrine | 9915 (3.7%) | 0 | 1065 (7.0%) | 0 | 0.02 | 1114 (7.0%) | 0 | 0.39 |
| Epinephrine | 23,826 (8.9%) | 0 | 1204 (7.9%) | 0 | 0.17 | 1780 (11.2%) | 0 | 0.04 |
| Vasopressin | 3048 (1.1%) | 0 | 270 (1.8%) | 0 | 0.10 | 292 (1.8%) | 0 | 0.02 |
| Milrinone | 2042 (0.8%) | 0 | 54 (0.4%) | 0 | 0.09 | 131 (0.8%) | 0 | 0.01 |
| Statins | 13,514 (5.0%) | 0 | 1291 (8.5%) | 0 | 0.12 | 1810 (11.4%) | 0 | 0.03 |
| ACEi/ARB | 8935 (3.3%) | 0 | 475 (3.1%) | 0 | 0.08 | 1437 (9.1%) | 0 | 0.27 |
| Warfarin | 3397 (1.3%) | 0 | 56 (0.4%) | 0 | 0.12 | 644 (4.1%) | 0 | 0.19 |
| Non-VKA anticoagulants | 838 (0.3%) | 0 | 77 (0.5%) | 0 | 0.01 | 55 (0.3%) | 0 | 0.06 |
| CABG | 4352 (1.6%) | 0 | 538 (3.5%) | 0 | 0.01 | 104 (0.7%) | 0 | 0.31 |
| Valve surgery | 2990 (1.1%) | 0 | 328 (2.1%) | 0 | 0.09 | 113 (0.7%) | 0 | 0.26 |
| PCI | 1257 (0.5%) | 0 | 55 (0.4%) | 0 | 0.09 | 63 (0.4%) | 0 | 0.08 |
| Contrast given | 3476 (1.3%) | 0 | 42 (0.3%) | 0 | 0.21 | 43 (0.3%) | 0 | 0.20 |
| Outcome | ||||||||
| Acute kidney injury | 32,049 (11.9%) | 0 | 2617 (17.1%) | 0 | 0.06 | 2250 (14.2%) | 0 | 0.16 |
| Metric | Cohort | ||
|---|---|---|---|
| Dataset/Metric | Development | Validation (Temporal) | Validation (External) |
| AUC | 0.88 (0.84–0.90) | 0.84 (0.80–0.87) | 0.82 (0.81–0.84) |
| AUPRC | 0.60 (0.57–0.62) | 0.60 (0.56–0.64) | 0.53 (0.50–0.57) |
| F1 | 0.57 (0.53–0.61) | 0.58 (0.56–0.64) | 0.58 (0.55–0.62) |
| F2 | 0.68 (0.60–0.70) | 0.68 (0.62–0.73) | 0.66 (0.61–0.68) |
| Recall | 0.79 (0.75–0.86) | 0.76 (0.73–0.80) | 0.73 (0.67–0.78) |
| Precision | 0.44 (0.41–0.52) | 0.47 (0.43–0.54) | 0.48 (0.42–0.54) |
| Specificity | 0.84 (0.80–0.89) | 0.79 (0.76–0.83) | 0.86 (0.83–0.89) |
| Balanced accuracy | 0.82 (0.78–0.86) | 0.78 (0.76–0.83) | 0.80 (0.78–0.84) |
| MCC | 0.50 (0.46–0.55) | 0.47 (0.43–0.49) | 0.50 (0.44–0.54) |
| Brier score | 0.07 (0.04–0.10) | 0.10 (0.07–0.13) | 0.09 (0.07–0.14) |
| Temporal Validation | External Validation | |||||
|---|---|---|---|---|---|---|
| Category | AUC | AUC Reference | p | AUC | AUC Reference | p |
| Age (50–74) | 0.83 (0.82–0.85) | 0.81 (0.78–0.84) | 0.084 | 0.82 (0.80–0.83) | 0.81 (0.79–0.84) | 0.800 |
| Age (≥75) | 0.84 (0.82–0.86) | 0.81 (0.78–0.84) | 0.061 | 0.82 (0.80–0.84) | 0.81 (0.79–0.84) | 0.726 |
| Race (Asian) | 0.80 (0.78–0.84) | 0.84 (0.83–0.86) | 0.076 | 0.80 (0.67–0.93) | 0.82 (0.81–0.83) | 0.710 |
| Race (Black) | 0.81 (0.77–0.85) | 0.84 (0.83–0.86) | 0.142 | 0.82 (0.75–0.88) | 0.82 (0.81–0.83) | 0.902 |
| Race (Hispanic) | 0.80 (0.71–0.83) | 0.84 (0.83–0.86) | 0.097 | 0.66 (0.45–0.87) | 0.82 (0.81–0.83) | 0.140 |
| Sex (Female) | 0.84 (0.83–0.85) | 0.83 (0.81–0.85) | 0.372 | 0.82 (0.80–0.83) | 0.82 (0.81–0.84) | 0.560 |
| Sepsis | 0.79 (0.75–0.82) | 0.83 (0.81–0.84) | 0.004 | 0.79 (0.76–0.81) | 0.82 (0.81–0.83) | 0.030 |
| Chronic kidney disease | 0.86 (0.83–0.89) | 0.84 (0.83–0.85) | 0.145 | 0.80 (0.77–0.83) | 0.82 (0.81–0.83) | 0.181 |
| Acute myocardial infarct | 0.88 (0.85–0.90) | 0.85 (0.82–0.88) | 0.024 | 0.82 (0.79–0.85) | 0.82 (0.81–0.83) | 0.823 |
| Acute heart failure | 0.85 (0.83–0.88) | 0.83 (0.82–0.84) | 0.096 | 0.78 (0.74–0.82) | 0.82 (0.81–0.83) | 0.066 |
| Diabetes (type 1 or 2) | 0.84 (0.82–0.85) | 0.84 (0.83–0.85) | 0.973 | 0.81 (0.79–0.84) | 0.82 (0.81–0.83) | 0.614 |
| Cirrhosis | 0.86 (0.82–0.90) | 0.84 (0.83–0.85) | 0.321 | 0.79 (0.75–0.82) | 0.82 (0.81–0.83) | 0.046 |
| Hypertension | 0.84 (0.83–0.85) | 0.83 (0.81–0.85) | 0.256 | 0.83 (0.81–0.84) | 0.81 (0.80–0.83) | 0.324 |
| Contrast | 0.84 (0.71–0.97) | 0.84 (0.83–0.85) | 0.433 | 0.85 (0.81–0.88) | 0.82 (0.81–0.83) | 0.646 |
| COVID-19 | 0.82 (0.79–0.84) | 0.84 (0.83–0.85) | 0.143 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Hourani, A.Z.; Jakubowska, Z.; Małyszko, J. Forecasting ICU Acute Kidney Injury with Actionable Lead Time Using Interpretable Machine Learning: Development and Multi-Center Validation. J. Clin. Med. 2026, 15, 1191. https://doi.org/10.3390/jcm15031191
Hourani AZ, Jakubowska Z, Małyszko J. Forecasting ICU Acute Kidney Injury with Actionable Lead Time Using Interpretable Machine Learning: Development and Multi-Center Validation. Journal of Clinical Medicine. 2026; 15(3):1191. https://doi.org/10.3390/jcm15031191
Chicago/Turabian StyleHourani, Abdulla Zahi, Zuzanna Jakubowska, and Jolanta Małyszko. 2026. "Forecasting ICU Acute Kidney Injury with Actionable Lead Time Using Interpretable Machine Learning: Development and Multi-Center Validation" Journal of Clinical Medicine 15, no. 3: 1191. https://doi.org/10.3390/jcm15031191
APA StyleHourani, A. Z., Jakubowska, Z., & Małyszko, J. (2026). Forecasting ICU Acute Kidney Injury with Actionable Lead Time Using Interpretable Machine Learning: Development and Multi-Center Validation. Journal of Clinical Medicine, 15(3), 1191. https://doi.org/10.3390/jcm15031191

