Temporal Parameters of Spontaneous Speech as Early Indicators of Alcohol-Related Cognitive Impairment
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Neuropsychological Assessment
2.3. Speech Analysis
2.4. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Group Comparison of Psychometric Test Results
3.3. Group Comparison of Temporal Speech Parameters
3.4. Receiver Operating Characteristic Analysis of Temporal Speech Parameters
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AD | Alzheimer’s disease |
| ARCI | Alcohol-related cognitive impairment |
| ASR | Automatic speech recognition |
| AUD | Alcohol use disorder |
| AUDIT | Alcohol Use Disorders Identification Test |
| AUDIT-C | Alcohol Use Disorders Identification Test Consumption subscale |
| AUDIT-D | Alcohol Use Disorders Identification Test Dependence subscale |
| AUDIT-HE | Alcohol Use Disorders Identification Test Harmful Effects subscale |
| CIWA-Ar | Clinical Institute Withdrawal Assessment Alcohol Scale Revised |
| DNN | Deep Neural Network |
| GBD | Global Burden of Disease |
| HTK | Hidden Markov Model Tool Kit |
| ICD-10 | International Classification of Diseases, Tenth Revision |
| M | Mean |
| MMSE | Mini-Mental State Examination |
| ROC | Receiver operating characteristic |
| SD | Standard deviation |
| S-GAP | Speech-GAP Test |
| TSP | Temporal speech parameter |
| WHO | World Health Organization |
References
- Pribék, I.K.; Kovács, I.; Kádár, B.K.; Kovács, C.S.; Richman, M.J.; Janka, Z.; Andó, B.; Lázár, B.A. Evaluation of the Course and Treatment of Alcohol Withdrawal Syndrome with the Clinical Institute Withdrawal Assessment for Alcohol—Revised: A Systematic Review-Based Meta-Analysis. Drug Alcohol Depend. 2021, 220, 108536. [Google Scholar] [CrossRef] [PubMed]
- Kádár, B.K.; Gajdics, J.; Pribék, I.K.; Andó, B.; Lázár, B.A. Characterization of Alcohol-Related Seizures in Withdrawal Syndrome. Epilepsia Open 2024, 9, 679–688. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, O.; Ahlner, F.; Tsevis, T.; Pereira, J.B.; Westman, E.; Skoog, I.; Wahlund, L.-O. Effects of Current Alcohol Use on Brain Volume among Older Adults in the Gothenburg H70 Birth Cohort Study 2014–16. Eur. Arch. Psychiatry Clin. Neurosci. 2024, 274, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Palm, A.; Talaslahti, T.; Vataja, R.; Ginters, M.; Kautiainen, H.; Elonheimo, H.; Suvisaari, J.; Lindberg, N.; Koponen, H. Criminal Behavior in Alcohol-Related Dementia and Wernicke–Korsakoff Syndrome: A Nationwide Register Study. Eur. Arch. Psychiatry Clin. Neurosci. 2025, 275, 463–471. [Google Scholar] [CrossRef]
- Zeigler-Hill, V.; Dahlen, E.R.; Madson, M.B. Self-Esteem and Alcohol Use: Implications for Aggressive Behavior. Int. J. Ment. Health Addict. 2017, 15, 1103–1117. [Google Scholar] [CrossRef]
- Endreddy, A.R.; Rajesh, C.L.; Seshamma, V.V. A Prospective Study of Amelioration of Cognitive Functions Following Alcohol Abstinence in Patients with Alcohol Dependence Syndrome. Arch. Ment. Health 2023, 24, 109. [Google Scholar] [CrossRef]
- Diehl, A.; Croissant, B.; Batra, A.; Mundle, G.; Nakovics, H.; Mann, K. Alcoholism in Women: Is It Different in Onset and Outcome Compared to Men? Eur. Arch. Psychiatry Clin. Neurosci. 2007, 257, 344–351. [Google Scholar] [CrossRef]
- Fujiwara, E.; Brand, M.; Borsutzky, S.; Steingass, H.-P.; Markowitsch, H.J. Cognitive Performance of Detoxified Alcoholic Korsakoff Syndrome Patients Remains Stable over Two Years. J. Clin. Exp. Neuropsychol. 2008, 30, 576–587. [Google Scholar] [CrossRef]
- Megherbi-Moulay, O.; Igier, V.; Julian, B.; Franchitto, N.; Sordes, F. Alcohol Use in Older Adults: A Systematic Review of Biopsychosocial Factors, Screening Tools, and Treatment Options. Int. J. Ment. Health Addict. 2024, 22, 2073–2115. [Google Scholar] [CrossRef]
- Salazar-Guerra, Y.I.; Broche-Pérez, Y.; Muñoz, A.C.; Caballero-Moreno, A.J.; Hernández, J.P.; Mendoza-Quiñones, R. Neurocognitive Impairment and Personality Traits in Alcohol Addiction: Effect of Dual Pathology. Int. J. Ment. Health Addict. 2020, 18, 432–442. [Google Scholar] [CrossRef]
- Gerridzen, I.J.; Moerman-van Den Brink, W.G.; Depla, M.F.; Verschuur, E.M.L.; Veenhuizen, R.B.; Van Der Wouden, J.C.; Hertogh, C.M.P.M.; Joling, K.J. Prevalence and Severity of Behavioural Symptoms in Patients with Korsakoff Syndrome and Other Alcohol-related Cognitive Disorders: A Systematic Review. Int. J. Geriatr. Psychiatry 2017, 32, 256–273. [Google Scholar] [CrossRef]
- Nikolakaros, G.; Kurki, T.; Myllymäki, A.; Ilonen, T. A Patient with Korsakoff Syndrome of Psychiatric and Alcoholic Etiology Presenting as DSM-5 Mild Neurocognitive Disorder. Neuropsychiatr. Dis. Treat. 2019, 15, 1311–1320. [Google Scholar] [CrossRef] [PubMed]
- Maillard, A.; Laniepce, A.; Cabé, N.; Boudehent, C.; Chételat, G.; Urso, L.; Eustache, F.; Vabret, F.; Segobin, S.; Pitel, A.-L. Temporal Cognitive and Brain Changes in Korsakoff Syndrome. Neurology 2021, 96, e1987–e1998. [Google Scholar] [CrossRef] [PubMed]
- Maharjan, S.; Amjad, Z.; Abaza, A.; Vasavada, A.M.; Sadhu, A.; Valencia, C.; Fatima, H.; Nwankwo, I.; Anam, M.; Mohammed, L. Executive Dysfunction in Patients with Alcohol Use Disorder: A Systematic Review. Cureus 2022, 14, e29207. [Google Scholar] [CrossRef] [PubMed]
- Kandasamy, V.; Abdul Rahuman, M.; Ramanujam, G. A Study of Cognitive Impairment and Its Neuroimaging Correlates in Patients with Alcohol Dependence a Cross-Sectional Study. Asian J. Med. Sci. 2023, 14, 156–160. [Google Scholar] [CrossRef]
- Cansino, S.; Torres-Trejo, F.; Estrada-Manilla, C.; Ruiz-Velasco, S. Does Habitual Moderate Alcohol Consumption Enhance Working Memory Performance? Curr. Psychol. 2024, 43, 13785–13801. [Google Scholar] [CrossRef]
- Todor, I. Memory Distortions and Anxiety in Alcoholism: A Directed-Forgetting Investigation. J. Psychol. 2007, 141, 229–240. [Google Scholar] [CrossRef]
- Seifert, J.; Seeland, I.; Borsutzky, M.; Passie, T.; Rollnik, J.; Wiese, B.; Emrich, H.; Schneider, U. Effects of Acute Alcohol Withdrawal on Memory Performance in Alcohol-Dependent Patients: A Pilot Study. Addict. Biol. 2003, 8, 75–80. [Google Scholar] [CrossRef]
- Loeber, S.; Vollstädt-Klein, S.; Von Der Goltz, C.; Flor, H.; Mann, K.; Kiefer, F. CLINICAL STUDY: Attentional Bias in Alcohol-dependent Patients: The Role of Chronicity and Executive Functioning. Addict. Biol. 2009, 14, 194–203. [Google Scholar] [CrossRef]
- Stephan, R.A.; Alhassoon, O.M.; Allen, K.E.; Wollman, S.C.; Hall, M.; Thomas, W.J.; Gamboa, J.M.; Kimmel, C.; Stern, M.; Sari, C.; et al. Meta-Analyses of Clinical Neuropsychological Tests of Executive Dysfunction and Impulsivity in Alcohol Use Disorder. Am. J. Drug Alcohol Abuse 2017, 43, 24–43. [Google Scholar] [CrossRef]
- Moggi, F.; Ossola, N.; Graser, Y.; Soravia, L.M. Trail Making Test: Normative Data for Patients with Severe Alcohol Use Disorder. Subst. Use Misuse 2020, 55, 1790–1799. [Google Scholar] [CrossRef]
- Nowakowska-Domagała, K.; Jabłkowska-Górecka, K.; Mokros, Ł.; Koprowicz, J.; Pietras, T. Differences in the Verbal Fluency, Working Memory and Executive Functions in Alcoholics: Short-Term vs. Long-Term Abstainers. Psychiatry Res. 2017, 249, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Duan, F.; Xia, L.; Li, J.; Li, X.; Zhou, Y.; Luo, H.; Wang, Z.; Song, X.; Wang, J.; Chen, J.; et al. Sex, Executive Function, and Prospective Memory Regulate the Chain-Mediation Pathway of Alcohol Use and Impulsivity. Front. Public Health 2023, 11, 1292422. [Google Scholar] [CrossRef] [PubMed]
- Stavro, K. Cognitive Deficits in Alcoholism. Master’s Thesis, Université de Montréal, Montréal, QC, Canada, 2012. [Google Scholar]
- Gorzelańczyk, E.; Sęk, A.; Wicher, A.; Ziółkowski, M.; Walecki, P. Speech Understanding and Logatom Intelligibility in Alcohol Addicts during Detoxification in Hospital. Eur. Psychiatry 2013, 28, 1. [Google Scholar] [CrossRef]
- Ciszewska-Psujek, U. Zaburzenia Językowe w Przebiegu Choroby Alkoholowej: Obraz i Dynamika. Logop. Silesiana 2018, 7, 56–80. [Google Scholar] [CrossRef]
- Kung, J.; Sarkissians, S.; Hauson, A.O.; Pollard, A.A.; Walker, A.D.; Allen, K.E.; Flora-Tostado, C.; Meis, B. 6 Semantic and Phonemic Fluency in Alcohol Dependent Individuals. J. Int. Neuropsychol. Soc. 2023, 29, 799–800. [Google Scholar] [CrossRef]
- Hoffmann, I.; Nemeth, D.; Dye, C.D.; Pákáski, M.; Irinyi, T.; Kálmán, J. Temporal Parameters of Spontaneous Speech in Alzheimer’s Disease. Int. J. Speech Lang. Pathol. 2010, 12, 29–34. [Google Scholar] [CrossRef]
- Toth, L.; Hoffmann, I.; Gosztolya, G.; Vincze, V.; Szatloczki, G.; Banreti, Z.; Pakaski, M.; Kalman, J. A Speech Recognition-Based Solution for the Automatic Detection of Mild Cognitive Impairment from Spontaneous Speech. Curr. Alzheimer Res. 2018, 15, 130–138. [Google Scholar] [CrossRef]
- Gosztolya, G.; Vincze, V.; Tóth, L.; Pákáski, M.; Kálmán, J.; Hoffmann, I. Identifying Mild Cognitive Impairment and Mild Alzheimer’s Disease Based on Spontaneous Speech Using ASR and Linguistic Features. Comput. Speech Lang. 2019, 53, 181–197. [Google Scholar] [CrossRef]
- Kálmán, J.; Devanand, D.P.; Gosztolya, G.; Balogh, R.; Imre, N.; Tóth, L.; Hoffmann, I.; Kovács, I.; Vincze, V.; Pákáski, M. Temporal Speech Parameters Detect Mild Cognitive Impairment in Different Languages: Validation and Comparison of the Speech-GAP Test® in English and Hungarian. Curr. Alzheimer Res. 2022, 19, 373–386. [Google Scholar] [CrossRef]
- Lázár, B.A.; Pribék, I.K.; Kovács, C.; Demeter, I.; Kálmán, J.; Szemelyácz, J.; Kelemen, G.; Janka, Z.; Demetrovics, Z.; Andó, B. Első Lépés Egy Egységes Szemlélet Felé: Az Alkohol Megvonási Skála Bevezetése a Hazai Betegellátási Gyakorlatba. Orvosi Hetil. 2019, 160, 1184–1192. [Google Scholar] [CrossRef]
- Sullivan, T.N.; Farrell, A.D.; Sutherland, K.S.; Behrhorst, K.L.; Garthe, R.C.; Greene, A. Evaluation of the Olweus Bullying Prevention Program in US Urban Middle Schools Using a Multiple Baseline Experimental Design. Prev. Sci. 2021, 22, 1134–1146. [Google Scholar] [CrossRef]
- Folstein, M.F.; Robins, L.N.; Helzer, J.E. The Mini-Mental State Examination. Arch. Gen. Psychiatry 1983, 40, 812. [Google Scholar] [CrossRef] [PubMed]
- Janka, Z.; Somogyi, A.; Maglóczky, E.; Pákáski, M.; Kálmán, J. Dementia screening by a short cognitive test. Orvosi Hetil. 1988, 129, 2797–2800. [Google Scholar] [PubMed]
- Saunders, J.B.; Aasland, O.G.; Babor, T.F.; De La Fuente, J.R.; Grant, M. Development of the Alcohol Use Disorders Identification Test (AUDIT): WHO Collaborative Project on Early Detection of Persons with Harmful Alcohol Consumption-II. Addiction 1993, 88, 791–804. [Google Scholar] [CrossRef] [PubMed]
- József, G.; Erika, V. A Kockázatos Alkoholfogyasztás Spektruma. Psychiatr. Hung. 2006, 21, 4–17. [Google Scholar]
- Young, S.J. The HTK Hidden Markov Model Toolkit: Design and Philosophy; University of Cambridge, Department of Engineering: Cambridge, UK, 1993. [Google Scholar]
- Hinton, G.; Deng, L.; Yu, D.; Dahl, G.; Mohamed, A.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.; et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Process. Mag. 2012, 29, 82–97. [Google Scholar] [CrossRef]
- Glorot, X.; Bordes, A.; Bengio, Y. Deep Sparse Rectifier Neural Networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011; JMLR Workshop and Conference Proceedings; JMLR: Cambridge, MA, USA, 2011; pp. 315–323. [Google Scholar]
- Neuberger, T.; Gyarmathy, D.; Gráczi, T.E.; Horváth, V.; Gósy, M.; Beke, A. Development of a Large Spontaneous Speech Database of Agglutinative Hungarian Language. In Text, Speech and Dialogue; Sojka, P., Horák, A., Kopeček, I., Pala, K., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2014; Volume 8655, pp. 424–431. [Google Scholar] [CrossRef]
- Karabanowicz, E.; Tyburski, E.; Karasiewicz, K.; Bober, A.; Sagan, L.; Mak, M.; Radziwiłłowicz, W. Higher-Order Language Dysfunctions in Individuals with Alcohol Use Disorder. J. Clin. Med. 2021, 10, 4199. [Google Scholar] [CrossRef]
- Imre, N.; Balogh, R.; Gosztolya, G.; Tóth, L.; Hoffmann, I.; Várkonyi, T.; Lengyel, C.; Pákáski, M.; Kálmán, J. Temporal Speech Parameters Indicate Early Cognitive Decline in Elderly Patients with Type 2 Diabetes Mellitus. Alzheimer Dis. Assoc. Disord. 2022, 36, 148. [Google Scholar] [CrossRef]
- Alvar, A.M.; Lee, J.; Huber, J.E. Filled Pauses as a Special Case of Automatic Speech Behaviors and the Effect of Parkinson’s Disease. Am. J. Speech Lang. Pathol. 2019, 28, 835–843. [Google Scholar] [CrossRef]
- Hlavnička, J.; Čmejla, R.; Tykalová, T.; Šonka, K.; Růžička, E.; Rusz, J. Automated Analysis of Connected Speech Reveals Early Biomarkers of Parkinson’s Disease in Patients with Rapid Eye Movement Sleep Behaviour Disorder. Sci. Rep. 2017, 7, 12. [Google Scholar] [CrossRef]
- Martínez-Sánchez, F.; Meilán, J.J.G.; García-Sevilla, J.; Carro, J.; Arana, J.M. Oral Reading Fluency Analysis in Patients with Alzheimer Disease and Asymptomatic Control Subjects. Neurol. Engl. Ed. 2013, 28, 325–331. [Google Scholar] [CrossRef]
- Balogh, R. Early Recognition of Neurocognitive Disorders: Dementia Screening in Primary Care and the Detection of Mild Cognitive Impairment via Verbal Fluency Tests. Ph.D. Thesis, Szegedi Tudományegyetem, Szeged, Hungary, 2023; p. 11568. [Google Scholar] [CrossRef]
- Bernardin, F.; Maheut-Bosser, A.; Paille, F. Cognitive Impairments in Alcohol-Dependent Subjects. Front. Psychiatry 2014, 5, 78. [Google Scholar] [CrossRef] [PubMed]
- Pitel, A.L.; Rivier, J.; Beaunieux, H.; Vabret, F.; Desgranges, B.; Eustache, F. Changes in the Episodic Memory and Executive Functions of Abstinent and Relapsed Alcoholics Over a 6-Month Period. Alcohol. Clin. Exp. Res. 2009, 33, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Morein-Zamir, S.; Robbins, T.W. Fronto-Striatal Circuits in Response-Inhibition: Relevance to Addiction. Brain Res. 2015, 1628, 117–129. [Google Scholar] [CrossRef]
- Baler, R.D.; Volkow, N.D. Drug Addiction: The Neurobiology of Disrupted Self-Control. Trends Mol. Med. 2006, 12, 559–566. [Google Scholar] [CrossRef]
- Koob, G.F.; Volkow, N.D. Neurobiology of Addiction: A Neurocircuitry Analysis. Lancet Psychiatry 2016, 3, 760–773. [Google Scholar] [CrossRef]
- Szalisznyó, K.; Silverstein, D.; Teichmann, M.; Duffau, H.; Smits, A. Cortico-Striatal Language Pathways Dynamically Adjust for Syntactic Complexity: A Computational Study. Brain Lang. 2017, 164, 53–62. [Google Scholar] [CrossRef]
- Erdozain, A.M.; Morentin, B.; Bedford, L.; King, E.; Tooth, D.; Brewer, C.; Wayne, D.; Johnson, L.; Gerdes, H.K.; Wigmore, P.; et al. Alcohol-Related Brain Damage in Humans. PLoS ONE 2014, 9, e93586. [Google Scholar] [CrossRef]
- Fowler, A.-K.; Thompson, J.; Chen, L.; Dagda, M.; Dertien, J.; Dossou, K.S.S.; Moaddel, R.; Bergeson, S.E.; Kruman, I.I. Differential Sensitivity of Prefrontal Cortex and Hippocampus to Alcohol-Induced Toxicity. PLoS ONE 2014, 9, e106945. [Google Scholar] [CrossRef]
- Shi, Y.; Toga, A.W. Connectome Imaging for Mapping Human Brain Pathways. Mol. Psychiatry 2017, 22, 1230–1240. [Google Scholar] [CrossRef]


| Temporal Speech Parameter | Description |
|---|---|
| Utterance length (s) | Total duration of the utterance |
| Articulation tempo (phone/s) | The number of phones in one second in the total length of the utterance without (silent and filled) pauses |
| Speech tempo (phone/s) | The number of phones in one second in the total length of the utterance including (silent and filled) pauses |
| Silent pause occurrence rate (%) | Total number of silent pauses (count) × 100/total number of phones (count) |
| Filled pause occurrence rate (%) | Total number of filled pauses (count) × 100/total number of phones (count) |
| Total pause occurrence rate (%) | Total number of silent and filled pauses (count) × 100/total number of phones (count) |
| Silent pause duration rate (%) | Total length of silent pauses (s) × 100/total length of the utterance (s) |
| Filled pause duration rate (%) | Total length of filled pauses (s) × 100/total length of the utterance (s) |
| Total pause duration rate (%) | Total length of silent and filled pauses (s) × 100/total length of the utterance (s) |
| Silent pause frequency (1/s) | Total number of silent pauses (count)/total length of the utterance (s) |
| Filled pause frequency (1/s) | Total number of filled pauses (count)/total length of the utterance (s) |
| Total pause frequency (1/s) | Total number of silent and filled pauses (count)/total length of the utterance (s) |
| Silent pause average duration (s) | Total length of silent pauses (s)/total number of silent pauses (count) |
| Filled pause average duration (s) | Total length of filled pauses (s)/total number of filled pauses (count) |
| Total pause average duration (s) | Total length of silent and filled pauses (s)/total number of silent and filled pauses (count) |
| Control Group (n = 31) | AUD Group (n = 34) | ||||
|---|---|---|---|---|---|
| M | SD | M | SD | t-Test, Significance | |
| Mean age | 9.795 | 50.71 | 9.39 | 48.35 | |
| AUDIT | 2 | 1.746 | 26 | 8.582 | z = (−7.011), p < 0.001 |
| AUDIT-C | 2 | 1.675 | 11 | 2.375 | z = (−6.773), p < 0.001 |
| AUDIT-D | 0 | 0 | 7.50 | 3.798 | z = (−6.771), p < 0.001 |
| AUDIT-HE | 0 | 0.359 | 5.50 | 3.713 | z = (−7.124), p < 0.001 |
| Control Group (n = 31) | AUD Group (n = 34) | t-Test, Significance | Cohen’s d | |||
|---|---|---|---|---|---|---|
| M | SD | M | SD | |||
| Articulation tempo | 14.743 | 1.544 | 14.551 | 1.186 | t(63) = 0.567, p = 0.573 | −0.141 |
| Speech tempo | 9.647 | 1.551 | 7.877 | 2.038 | t(63) = 3.912, p < 0.001 | −0.971 |
| Utterance length | 84.052 | 34.760 | 77.569 | 44.481 | t(63) = 0.650, p = 0.518 | −0.161 |
| Silent pause occurrence rate | 4.850 | 1.628 | 5.243 | 1.907 | t(63) = −0.889, p = 0.378 | 0.221 |
| Filled pause occurrence rate | 1.512 | 0.897 | 2.831 | 1.695 | t(51.083) = −3.970, p < 0.001 | 0.960 |
| Total pause occurrence rate | 6.362 | 1.935 | 8.074 | 2.491 | t(63) = −3.073, p = 0.003 | 0.763 |
| Silent pause duration rate | 30.538 | 9.739 | 39.112 | 15.862 | t(55.494) = −2.651, p = 0.010 | 0.644 |
| Filled pause duration rate | 3.798 | 2.618 | 6.914 | 5.704 | t(47.235) = −2.871, p = 0.006 | 0.692 |
| Total pause duration rate | 34.336 | 9.568 | 46.025 | 12.984 | t(63) = −4.098, p < 0.001 | 1.018 |
| Silent pause frequency | 0.480 | 0.115 | 0.419 | 0.113 | t(63) = 2.177, p = 0.033 | −0.541 |
| Filled pause frequency | 0.154 | 0.087 | 0.245 | 0.155 | t(52.661) = −2.943, p = 0.005 | 0.713 |
| Total pause frequency | 0.634 | 0.131 | 0.663 | 0.196 | t(58.040) = −0.709, p = 0.481 | 0.173 |
| Silent pause average duration | 0.641 | 0.155 | 0.983 | 0.488 | t(40.161) = −3.877, p < 0.001 | 0.927 |
| Filled pause average duration | 0.243 | 0.078 | 0.246 | 0.090 | t(63) = −0.163, p = 0.871 | 0.041 |
| Total pause average duration | 0.550 | 0.142 | 0.775 | 0.406 | t(41.610) = −3.033, p = 0.004 | 0.726 |
| Area Under the Curve | |||
|---|---|---|---|
| Temporal Speech Parameter | Area | SD | Asymptotic Significance |
| Filled pause occurrence rate | 0.795 | 0.057 | 0.000 |
| Total pause occurrence rate | 0.714 | 0.067 | 0.003 |
| Filled pause duration rate | 0.720 | 0.071 | 0.002 |
| Total pause duration rate | 0.732 | 0.066 | 0.001 |
| Filled pause frequency | 0.723 | 0.066 | 0.002 |
| Silent pause average duration | 0.673 | 0.070 | 0.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Farkas, F.F.; Hoffmann, I.; Bagi, O.; Gajdics, J.; Andó, B.; Gosztolya, G.; Kovács, I.; Lázár, B.A.; Kálmán, J. Temporal Parameters of Spontaneous Speech as Early Indicators of Alcohol-Related Cognitive Impairment. J. Clin. Med. 2026, 15, 1092. https://doi.org/10.3390/jcm15031092
Farkas FF, Hoffmann I, Bagi O, Gajdics J, Andó B, Gosztolya G, Kovács I, Lázár BA, Kálmán J. Temporal Parameters of Spontaneous Speech as Early Indicators of Alcohol-Related Cognitive Impairment. Journal of Clinical Medicine. 2026; 15(3):1092. https://doi.org/10.3390/jcm15031092
Chicago/Turabian StyleFarkas, Fanni Fruzsina, Ildikó Hoffmann, Otília Bagi, Janka Gajdics, Bálint Andó, Gábor Gosztolya, Ildikó Kovács, Bence András Lázár, and János Kálmán. 2026. "Temporal Parameters of Spontaneous Speech as Early Indicators of Alcohol-Related Cognitive Impairment" Journal of Clinical Medicine 15, no. 3: 1092. https://doi.org/10.3390/jcm15031092
APA StyleFarkas, F. F., Hoffmann, I., Bagi, O., Gajdics, J., Andó, B., Gosztolya, G., Kovács, I., Lázár, B. A., & Kálmán, J. (2026). Temporal Parameters of Spontaneous Speech as Early Indicators of Alcohol-Related Cognitive Impairment. Journal of Clinical Medicine, 15(3), 1092. https://doi.org/10.3390/jcm15031092

