Prospective Evaluation of Ocular Anterior Segment Morphology Changes in the Steep Trendelenburg Position During Robotic-Assisted Laparoscopic Prostatectomy
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Robot-Assisted Laparoscopic Prostatectomy
2.3. Smart Eye Camera
2.4. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. ICA Values, VHp Score, and PD:CD Ratio at Various Time Points
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ACD | Anterior Chamber Depth |
| CI | Confidence Interval |
| CD | Corneal Diameter |
| CO2 | Carbon Dioxide |
| CVP | Central Venous Pressure |
| ETCO2 | End-Tidal Carbon Dioxide |
| HDT | Head-Down Tilt |
| ICA | Iridocorneal Angle |
| ICCs | Intraclass Correlation Coefficients |
| IOP | Intraocular Pressure |
| MAP | Mean Arterial Pressure |
| PaCO2 | Partial Pressure of Carbon Dioxide |
| PAC | Peripheral Anterior Chamber |
| PCa | Prostate Cancer |
| PCT | Peripheral Corneal Thickness |
| PD | Pupil Diameter |
| PIP | Peak Inspiratory Pressure |
| RALP | Robot-Assisted Laparoscopic Prostatectomy |
| SD | Standard Deviation |
| SEC | Smart Eye Camera |
| STP | Steep Trendelenburg Position |
| VHp | Van Herick Plus |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Droz, J.P.; Albrand, G.; Gillessen, S.; Hughes, S.; Mottet, N.; Oudard, S.; Payne, H.; Puts, M.; Zulian, G.; Balducci, L.; et al. Management of Prostate Cancer in Elderly Patients: Recommendations of a Task Force of the International Society of Geriatric Oncology. Eur. Urol. 2017, 72, 521–531. [Google Scholar] [CrossRef]
- Schafer, F.J.; Laversanne, M.; Sung, H.; Soerjomataram, I.; Briganti, A.; Dahut, W.; Bray, F.; Jemal, A. Recent Patterns and Trends in Global Prostate Cancer Incidence and Mortality: An Update. Eur. Urol. 2025, 87, 302–313. [Google Scholar] [CrossRef]
- Gray, P.J.; Lin, C.C.; Cooperberg, M.R.; Jemal, A.; Efstathiou, J.A. Temporal Trends and the Impact of Race, Insurance, and Socioeconomic Status in the Management of Localized Prostate Cancer. Eur. Urol. 2017, 71, 729–737. [Google Scholar] [CrossRef]
- Okhawere, K.E.; Shih, I.F.; Lee, S.H.; Li, Y.; Wong, J.A.; Badani, K.K. Comparison of 1-Year Health Care Costs and Use Associated with Open vs Robotic-Assisted Radical Prostatectomy. JAMA Netw. Open 2021, 4, e212265. [Google Scholar] [CrossRef]
- Mendel, E.; Stoicea, N.; Rao, R. Revisiting Postoperative Vision Loss following Non-Ocular Surgery: A Short Review of Etiology and Legal Considerations. Front. Surg. 2017, 4, 34. [Google Scholar] [CrossRef]
- Taketani, Y.; Mayama, C.; Suzuki, N. Transient but significant visual field defects after robot-assisted laparoscopic radical prostatectomy in deep tRendelenburg position. PLoS ONE 2015, 10, e0123361. [Google Scholar] [CrossRef]
- Blecha, S.; Harth, M.; Schlachetzki, F.; Zeman, F.; Blecha, C.; Flora, P.; Burger, M.; Denzinger, S.; Graf, B.M.; Helbig, H.; et al. Changes in intraocular pressure and optic nerve sheath diameter in patients undergoing robotic-assisted laparoscopic prostatectomy in steep 45° Trendelenburg position. BMC Anesthesiol. 2017, 17, 40. [Google Scholar] [CrossRef]
- Rosendal, C.; Markin, S.; Hien, M.D.; Motsch, J.; Roggenbach, J. Cardiac and hemodynamic consequences during capnoperitoneum and steep Trendelenburg positioning: Lessons learned from robot-assisted laparoscopic prostatectomy. J. Clin. Anesth. 2014, 26, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Awad, H.; Santilli, S.; Ohr, M.; Roth, A.; Yan, W.; Fernandez, S.; Roth, S.; Patel, V. The effects of steep trendelenburg positioning on intraocular pressure during robotic radical prostatectomy. Anesth. Analg. 2009, 109, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Hoshikawa, Y.; Tsutsumi, N.; Ohkoshi, K.; Serizawa, S.; Hamada, M.; Inagaki, K.; Tsuzuki, K.; Koshimizu, J.; Echizen, N.; Fujitani, S.; et al. The effect of steep Trendelenburg positioning on intraocular pressure and visual function during robotic-assisted radical prostatectomy. Br. J. Ophthalmol. 2014, 98, 305–308. [Google Scholar] [CrossRef]
- Raz, O.; Boesel, T.W.; Arianayagam, M.; Lau, H.; Vass, J.; Huynh, C.C.; Graham, S.L.; Varol, C. The effect of the modified Z trendelenburg position on intraocular pressure during robotic assisted laparoscopic radical prostatectomy: A randomized, controlled study. J. Urol. 2015, 193, 1213–1219. [Google Scholar] [CrossRef]
- Mondzelewski, T.J.; Schmitz, J.W.; Christman, M.S.; Davis, K.D.; Lujan, E.; L’Esperance, J.O.; Auge, B.K. Intraocular Pressure During Robotic-assisted Laparoscopic Procedures Utilizing Steep Trendelenburg Positioning. J. Glaucoma 2015, 24, 399–404. [Google Scholar] [CrossRef]
- Kakutani, S.; Asamoto, M.; Araki, F.; Chen, Y.N.; Shinokawa, M.; Okagami, Y.; Ohata, T.; Taguchi, S.; Yamada, Y.; Takeshima, Y.; et al. Prospective evaluation of visual function in patients with ocular diseases after robot-assisted laparoscopic prostatectomy. Int. J. Urol. 2020, 27, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Hirooka, K.; Ukegawa, K.; Nitta, E.; Ueda, N.; Hayashida, Y.; Hirama, H.; Taoka, R.; Sakura, Y.; Yamasaki, M.; Tsunemori, H.; et al. The Effect of Steep Trendelenburg Positioning on Retinal Structure and Function during Robotic-Assisted Laparoscopic Procedures. J. Ophthalmol. 2018, 2018, 1027397. [Google Scholar] [CrossRef] [PubMed]
- Awad, H.; Bai, M.; Ramadan, M.E.; Shabsigh, A.; Backes, F.; Craven, M.A.; Abdel-Rasoul, M.; Bergese, S.D.; Slabaugh, M. The Effect of Increased Intraocular Pressure During Steep Trendelenburg Positioning in Robotic Prostatectomy and Hysterectomy on Structural and Functional Ocular Parameters. Anesth. Analg. 2020, 130, 975–982. [Google Scholar] [CrossRef] [PubMed]
- Shirono, Y.; Takizawa, I.; Kasahara, T.; Maruyama, R.; Yamana, K.; Tanikawa, T.; Hara, N.; Sakaue, Y.; Togano, T.; Nishiyama, T.; et al. Intraoperative intraocular pressure changes during robot-assisted radical prostatectomy: Associations with perioperative and clinicopathological factors. BMC Urol. 2020, 20, 26. [Google Scholar] [CrossRef]
- Yoo, Y.C.; Kim, N.Y.; Shin, S.; Choi, Y.D.; Hong, J.H.; Kim, C.Y.; Park, H.; Bai, S.J. The Intraocular Pressure under Deep versus Moderate Neuromuscular Blockade during Low-Pressure Robot Assisted Laparoscopic Radical Prostatectomy in a Randomized Trial. PLoS ONE 2015, 10, e0135412. [Google Scholar] [CrossRef]
- Yoo, Y.C.; Shin, S.; Choi, E.K.; Kim, C.Y.; Choi, Y.D.; Bai, S.J. Increase in intraocular pressure is less with propofol than with sevoflurane during laparoscopic surgery in the steep Trendelenburg position. Can. J. Anaesth. 2014, 61, 322–329. [Google Scholar] [CrossRef]
- Kim, N.Y.; Yoo, Y.C.; Park, H.; Choi, Y.D.; Kim, C.Y.; Bai, S.J. The effect of dexmedetomidine on intraocular pressure increase in patients during robot-assisted laparoscopic radical prostatectomy in the steep Trendelenburg position. J. Endourol. 2015, 29, 310–316. [Google Scholar] [CrossRef]
- Ozcan, M.F.; Akbulut, Z.; Gurdal, C.; Tan, S.; Yildiz, Y.; Bayraktar, S.; Ozcan, A.N.; Ener, K.; Altinova, S.; Arslan, M.E.; et al. Does steep Trendelenburg positioning effect the ocular hemodynamics and intraocular pressure in patients undergoing robotic cystectomy and robotic prostatectomy? Int. Urol. Nephrol. 2017, 49, 55–60. [Google Scholar] [CrossRef]
- Weber, E.D.; Colyer, M.H.; Lesser, R.L.; Subramanian, P.S. Posterior ischemic optic neuropathy after minimally invasive prostatectomy. J. Neuro-Ophthalmol. 2007, 27, 285–287. [Google Scholar] [CrossRef] [PubMed]
- Bonomi, L.; Marchini, G.; Marraffa, M.; Bernardi, P.; De Franco, I.; Perfetti, S.; Varotto, A. Epidemiology of angle-closure glaucoma: Prevalence, clinical types, and association with peripheral anterior chamber depth in the Egna-Neumarket Glaucoma Study. Ophthalmology 2000, 107, 998–1003. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.C.; Lee, Y.S.; Wu, W.C.; Chang, S.H. Chamber depth and angle-closure glaucoma after central retinal vein occlusion. BMC Ophthalmol. 2016, 16, 68. [Google Scholar] [CrossRef]
- Roor, T.L.; Kooijman, J.A.; van der Ploeg, J.M.; de Boer, H.D. Postoperative Acute Angle-Closure Glaucoma: A Rare but Serious Complication: A Case Report. A A Pract. 2019, 12, 385–387. [Google Scholar] [CrossRef]
- Shimizu, E.; Yazu, H.; Aketa, N.; Yokoiwa, R.; Sato, S.; Katayama, T.; Hanyuda, A.; Sato, Y.; Ogawa, Y.; Tsubota, K. Smart Eye Camera: A Validation Study for Evaluating the Tear Film Breakup Time in Human Subjects. Transl. Vis. Sci. Technol. 2021, 10, 28. [Google Scholar] [CrossRef]
- Shimizu, E.; Yazu, H.; Aketa, N.; Yokoiwa, R.; Sato, S.; Yajima, J.; Katayama, T.; Sato, R.; Tanji, M.; Sato, Y.; et al. A Study Validating the Estimation of Anterior Chamber Depth and Iridocorneal Angle with Portable and Non-Portable Slit-Lamp Microscopy. Sensors 2021, 21, 1436. [Google Scholar] [CrossRef]
- Mizukami, T.; Shimizu, E.; Tanaka, K.; Nishimura, H.; Nakayama, S.; Yokoiwa, R.; Ueno, S.; Mishima, S.; Shimomura, Y. Validation of an Artificial Intelligence-Based Anterior Chamber Depth Estimation Using a Smartphone-Compatible Slit Lamp Device. Ophthalmol. Sci. 2025, 6, 100906. [Google Scholar] [CrossRef]
- Li, W.; Chen, Q.; Jiang, C.; Shi, G.; Deng, G.; Sun, X. Automatic Anterior Chamber Angle Classification Using Deep Learning System and Anterior Segment Optical Coherence Tomography Images. Transl. Vis. Sci. Technol. 2021, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Kang, J.H.; Park, K.H.; Hong, C. Hong’s grading for evaluating anterior chamber angle width. Jpn. J. Ophthalmol. 2012, 56, 551–558. [Google Scholar] [CrossRef]
- Călugăru, D.; Călugăru, M. Intraocular pressure modifications in patients with acute central/hemicentral retinal vein occlusions. Int. J. Ophthalmol. 2021, 14, 931–935. [Google Scholar] [CrossRef]
- Sihota, R.; Kamble, N.; Sharma, A.K.; Bhari, A.; Gupta, A.; Midha, N.; Selvan, H.; Dada, T.; Gupta, V.; Pandey, R.M. ‘Van Herick Plus’: A modified grading scheme for the assessment of peripheral anterior chamber depth and angle. Br. J. Ophthalmol. 2019, 103, 960–965. [Google Scholar] [CrossRef]
- Rabinowitz, J.; Kinnear, N.; O’Callaghan, M.; Hennessey, D.; Shafi, F.; Fuller, A.; Ibrahim, M.; Lane, T.; Adshead, J.; Vasdev, N. Systematic review of the ophthalmic complications of robotic-assisted laparoscopic prostatectomy. J. Robot. Surg. 2024, 18, 46. [Google Scholar] [CrossRef]
- Kelly, D.J.; Farrell, S.M. Physiology and Role of Intraocular Pressure in Contemporary Anesthesia. Anesth. Analg. 2018, 126, 1551–1562. [Google Scholar] [CrossRef]
- Bansal, A.S.; Hsu, J.; Garg, S.J.; Sivalingam, A.; Vander, J.F.; Moster, M.; Maguire, J.I.; Regillo, C.D. Optic neuropathy after vitrectomy for retinal detachment: Clinical features and analysis of risk factors. Ophthalmology 2012, 119, 2364–2370. [Google Scholar] [CrossRef]
- Hayreh, S.S. Blood flow in the optic nerve head and factors that may influence it. Prog. Retin. Eye Res. 2001, 20, 595–624. [Google Scholar] [CrossRef] [PubMed]
- Lawley, J.S.; Petersen, L.G.; Howden, E.J.; Sarma, S.; Cornwell, W.K.; Zhang, R.; Whitworth, L.A.; Williams, M.A.; Levine, B.D. Effect of gravity and microgravity on intracranial pressure. J. Physiol. 2017, 595, 2115–2127. [Google Scholar] [CrossRef] [PubMed]
- Nelson, E.S.; Mulugeta, L.; Feola, A.; Raykin, J.; Myers, J.G.; Samuels, B.C.; Ethier, C.R. The impact of ocular hemodynamics and intracranial pressure on intraocular pressure during acute gravitational changes. J. Appl. Physiol. 2017, 123, 352–363. [Google Scholar] [CrossRef]
- Nelson, E.S.; Myers, J.G., Jr.; Lewandowski, B.E.; Ethier, C.R.; Samuels, B.C. Acute effects of posture on intraocular pressure. PLoS ONE 2020, 15, e0226915. [Google Scholar] [CrossRef] [PubMed]
- Marshall-Goebel, K.; Mulder, E.; Bershad, E.; Laing, C.; Eklund, A.; Malm, J.; Stern, C.; Rittweger, J. Intracranial and Intraocular Pressure During Various Degrees of Head-Down Tilt. Aerosp. Med. Hum. Perform. 2017, 88, 10–16. [Google Scholar] [CrossRef]
- Sator-Katzenschlager, S.; Deusch, E.; Dolezal, S.; Michalek-Sauberer, A.; Grubmüller, R.; Heinze, G.; Wedrich, A. Sevoflurane and propofol decrease intraocular pressure equally during non-ophthalmic surgery and recovery. Br. J. Anaesth. 2002, 89, 764–766. [Google Scholar] [CrossRef] [PubMed]
- Rakova, N.; Jüttner, K.; Dahlmann, A.; Schröder, A.; Linz, P.; Kopp, C.; Rauh, M.; Goller, U.; Beck, L.; Agureev, A.; et al. Long-term space flight simulation reveals infradian rhythmicity in human Na(+) balance. Cell Metab. 2013, 17, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Gonzalez, E.; Peng, P.H.; Lee, R.; Leeungurasatien, T.; He, M.; Porco, T.; Lin, S.C. Anterior chamber depth, iridocorneal angle width, and intraocular pressure changes after phacoemulsification: Narrow vs open iridocorneal angles. Arch. Ophthalmol. 2011, 129, 1283–1290. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, R.S.; Cohen, J.B.; Getting, R.E.G.; Patel, S.Y. Are you seeing this: The impact of steep Trendelenburg position during robot-assisted laparoscopic radical prostatectomy on intraocular pressure: A brief review of the literature. J. Robot. Surg. 2019, 13, 35–40. [Google Scholar] [CrossRef]
- Schuster, A.K.; Pfeiffer, N.; Nickels, S. Distribution of Anterior Chamber Angle Width and Correlation with Age, Refraction, and Anterior Chamber Depth-The Gutenberg Health Study. Investig. Ophthalmol. Vis. Sci. 2016, 57, 3740–3746. [Google Scholar] [CrossRef]



| Characteristics | Total (N = 29) |
|---|---|
| Age (years) | 69.6 ± 6.1 (57–79) |
| Height (m) | 1.68 ± 0.06 (1.59–1.81) |
| Weight (kg) | 66.6 ± 10.2 (46.0–89.0) |
| BMI (kg/m2) | 23.5 ± 2.8 (17.6–28.9) |
| Ocular disease | |
| None | 26 (89.7%) |
| Normal tension open-angle glaucoma (bilateral) | 3 (10.3%) |
| Anesthesia duration (min) | 341.0 ± 86.7 (172–494) |
| Operation duration (min) | 262.0 ± 81.8 (114–369) |
| Pneumoperitoneum duration (min) | 224.4 ± 75.2 (98–337) |
| STP duration (min) | 215.3 ± 72.9 (88–316) |
| Console duration (min) | 199.8 ± 70.7 (79–294) |
| Infusion volume (mL) | 2881.0 ± 871.5 (1450–5500) |
| Blood loss (mL) | 336.4 ± 293.7 (10–1200) |
| Time Point | Mean ICA (±SD) | Mean VHp Score (±SD) | Mean PD:CD Ratio (±SD) |
|---|---|---|---|
| Tpre | 33.1 ± 4.0 | 3.70 ± 0.46 | 0.27 ± 0.04 |
| Tanesth | 34.1 ± 4.3 | 3.81 ± 0.40 | 0.16 ± 0.02 |
| T0 | 28.4 ± 5.1 | 3.22 ± 0.51 | 0.16 ± 0.02 |
| T1 | 27.7 ± 5.5 | 3.11 ± 0.64 | 0.17 ± 0.03 |
| T2 | 27.4 ± 5.3 | 3.14 ± 0.69 | 0.17 ± 0.02 |
| T3 | 26.8 ± 5.4 | 3.16 ± 0.60 | 0.18 ± 0.02 |
| Tsupine | 34.3 ± 4.5 | 3.98 ± 0.16 | 0.17 ± 0.02 |
| Tpostop | 35.0 ± 4.2 | 3.92 ± 0.27 | 0.18 ± 0.03 |
| Tpost | 32.8 ± 3.9 | 3.68 ± 0.47 | 0.26 ± 0.04 |
| ICA | |||||
|---|---|---|---|---|---|
| Time Point | N | >30° | 20–30° | 15–20° | <15° |
| Tpre | 57 | 45 (79%) | 12 (21%) | 0 (0%) | 0 (0%) |
| Tanesth | 47 | 38 (81%) | 9 (19%) | 0 (0%) | 0 (0%) |
| T0 | 49 | 13 (27%) | 35 (71%) | 1 (2%) | 0 (0%) |
| T1 | 53 | 16 (30%) | 32 (60%) | 4 (8%) | 1 (2%) |
| T2 | 35 | 11 (31%) | 21 (60%) | 2 (6%) | 1 (3%) |
| T3 | 19 | 6 (32%) | 11 (58%) | 1 (5%) | 1 (5%) |
| Tsupine | 40 | 31 (78%) | 9 (23%) | 0 (0%) | 0 (0%) |
| Tpostop | 53 | 45 (85%) | 8 (15%) | 0 (0%) | 0 (0%) |
| Tpost | 57 | 42 (74%) | 15 (26%) | 0 (0%) | 0 (0%) |
| Awake, supine | 114 | 87 (76%) | 27 (24%) | 0 (0%) | 0 (0%) |
| Under anesthesia, supine | 140 | 114 (81%) | 26 (19%) | 0 (0%) | 0 (0%) |
| Under anesthesia, STP | 156 | 46 (29%) | 99 (63%) | 8 (5%) | 3 (2%) |
| ICA | ||||||
|---|---|---|---|---|---|---|
| OR | 95% CI | p Value | OR | 95% CI | p Value | |
| Awake, supine (Tpre, Tpost) | 1.000 | Ref | ||||
| Under anesthesia, supine (Tanesth, Tsupine, Tpostop) | 1.534 | 0.749, 3.141 | 0.241 | 1.000 | ref | |
| Under anesthesia, STP (T0–T3) | 0.050 | 0.025, 0.101 | <0.001 | 0.033 | 0.016, 0.067 | <0.001 |
| VHp Score | |||||
|---|---|---|---|---|---|
| Time Point | N | 4 | 3 | 2 | 1 |
| Tpre | 57 | 40 (70%) | 17 (30%) | 0 (0%) | 0 (0%) |
| Tanesth | 47 | 38 (81%) | 9 (19%) | 0 (0%) | 0 (0%) |
| T0 | 49 | 13 (27%) | 34 (69%) | 2 (4%) | 0 (0%) |
| T1 | 53 | 14 (26%) | 31 (58%) | 8 (15%) | 0 (0%) |
| T2 | 35 | 11 (31%) | 18 (51%) | 6 (17%) | 0 (0%) |
| T3 | 19 | 5 (26%) | 12 (63%) | 2 (11%) | 0 (0%) |
| Tsupine | 40 | 39 (98%) | 1 (3%) | 0 (0%) | 0 (0%) |
| Tpostop | 53 | 49 (92%) | 4 (8%) | 0 (0%) | 0 (0%) |
| Tpost | 57 | 39 (68%) | 18 (32%) | 0 (0%) | 0 (0%) |
| Awake, supine | 114 | 79 (69%) | 35 (31%) | 0 (0%) | 0 (0%) |
| Under anesthesia, supine | 140 | 126 (90%) | 14 (10%) | 0 (0%) | 0 (0%) |
| Under anesthesia, STP | 156 | 43 (28%) | 95 (61%) | 18 (12%) | 0 (0%) |
| ICA | ||||||
|---|---|---|---|---|---|---|
| OR | 95% CI | p Value | OR | 95% CI | p Value | |
| Awake, supine (Tpre, Tpost) | 1.000 | ref | ||||
| Under anesthesia, supine (Tanesth, Tsupine, Tpostop) | 5.716 | 2.496, 13.092 | <0.001 | 1.000 | ref | |
| Under anesthesia, STP (T0–T3) | 0.048 | 0.023, 0.100 | <0.001 | 0.008 | 0.003, 0.020 | <0.001 |
| ICA (Tpre) | Minimum ICA Value in STP | N (%) | VHp Score (Tpre) | Minimum VHp Score in STP | N (%) |
|---|---|---|---|---|---|
| >30° (45 eyes) | >30° | 11 (19%) | 4 (40 eyes) | 4 | 8 (14%) |
| 20–30° | 30 (53%) | 3 | 28 (49%) | ||
| 15–20° | 3 (5%) | 2 | 4 (7%) | ||
| <15° | 1 (2%) | ||||
| 20–30° (12 eyes) | >30° | 0 (0%) | 3 (17 eyes) | 3 | 12 (21%) |
| 20–30° | 10 (18%) | 2 | 5 (9%) | ||
| 15–20° | 1 (2%) | ||||
| <15° | 1 (2%) | ||||
| Total (57 eyes) | No change | 21 (37%) | Total (57 eyes) | No change | 20 (35%) |
| Shallow change | 36 (63%) | Shallow change | 37 (65%) |
| ICA < 20 at T2: N = 3 | Univariate | |||||
|---|---|---|---|---|---|---|
| OR | 95% CI | p Value | ||||
| Age | per 1 | 0.916 | 0.757 | 1.110 | 0.361 | |
| ICA | T1 | per 1 | 0.809 | 0.643 | 1.019 | 0.070 |
| MAP (mmHg) | T1 | per 1 | 1.014 | 0.893 | 1.152 | 0.823 |
| T2 | per 1 | 1.000 | 0.892 | 1.122 | 0.999 | |
| ETCO2 (mmHg) | T1 | per 1 | 1.556 | 1.000 | 2.421 | 0.050 |
| T2 | per 1 | 1.697 | 1.026 | 2.807 | 0.040 | |
| PIP (cmH2O) | T1 | per 1 | 0.955 | 0.618 | 1.477 | 0.832 |
| T2 | per 1 | 0.929 | 0.642 | 1.346 | 0.690 | |
| Infusion volume (mL) | T1 | per 1 | 1.000 | 0.998 | 1.002 | 0.728 |
| T2 | per 1 | 1.000 | 0.998 | 1.002 | 0.862 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sato, M.; Shimizu, E.; Matsukawa, A.; Mizuno, R.; Kamido, S.; Mizukami, T.; Ueda, N.; Fujimoto, Y.; Tei, N.; Miyake, O. Prospective Evaluation of Ocular Anterior Segment Morphology Changes in the Steep Trendelenburg Position During Robotic-Assisted Laparoscopic Prostatectomy. J. Clin. Med. 2026, 15, 731. https://doi.org/10.3390/jcm15020731
Sato M, Shimizu E, Matsukawa A, Mizuno R, Kamido S, Mizukami T, Ueda N, Fujimoto Y, Tei N, Miyake O. Prospective Evaluation of Ocular Anterior Segment Morphology Changes in the Steep Trendelenburg Position During Robotic-Assisted Laparoscopic Prostatectomy. Journal of Clinical Medicine. 2026; 15(2):731. https://doi.org/10.3390/jcm15020731
Chicago/Turabian StyleSato, Mototaka, Eisuke Shimizu, Atsuki Matsukawa, Ryoya Mizuno, Satoshi Kamido, Takahiro Mizukami, Norichika Ueda, Yoko Fujimoto, Norihide Tei, and Osamu Miyake. 2026. "Prospective Evaluation of Ocular Anterior Segment Morphology Changes in the Steep Trendelenburg Position During Robotic-Assisted Laparoscopic Prostatectomy" Journal of Clinical Medicine 15, no. 2: 731. https://doi.org/10.3390/jcm15020731
APA StyleSato, M., Shimizu, E., Matsukawa, A., Mizuno, R., Kamido, S., Mizukami, T., Ueda, N., Fujimoto, Y., Tei, N., & Miyake, O. (2026). Prospective Evaluation of Ocular Anterior Segment Morphology Changes in the Steep Trendelenburg Position During Robotic-Assisted Laparoscopic Prostatectomy. Journal of Clinical Medicine, 15(2), 731. https://doi.org/10.3390/jcm15020731

