Association of Prognostic Nutritional Index and New-Onset Atrial Fibrillation in Patients Undergoing Surgical Aortic Valve Replacement: A Silent Predictor in Perioperative Outcomes?
Abstract
1. Introduction
2. Methods
2.1. Study Design and Patients
2.2. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, R.; Wang, Z.; Cao, F.; Song, J.; Fan, S.; Qiu, J.; Fan, X.; Yu, C. New-Onset postoperative atrial fibrillation after total arch repair is associated with increased in-hospital mortality. J. Am. Heart Assoc. 2021, 10, e021980. [Google Scholar] [CrossRef]
- Akintoye, E.; Sellke, F.; Marchioli, R.; Tavazzi, L.; Mozaffarian, D. Factors associated with postoperative atrial fibrillation and other adverse events after cardiac surgery. J. Thorac. Cardiovasc. Surg. 2018, 155, 242–251.e10. [Google Scholar] [CrossRef]
- Greenberg, J.W.; Lancaster, T.S.; Schuessler, R.B.; Melby, S.J. Postoperative atrial fibrillation following cardiac surgery: A persistent complication. Eur. J. Cardiothorac. Surg. 2017, 52, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Lowres, N.; Mulcahy, G.; Jin, K.; Gallagher, R.; Neubeck, L.; Freedman, B. Incidence of postoperative atrial fibrillation recurrence in patients discharged in sinus rhythm after cardiac surgery: A systematic review and meta-analysisy. Interact Cardiovasc. Thorac. Surg. 2018, 26, 504–511. [Google Scholar] [CrossRef]
- Eikelboom, R.; Sanjanwala, R.; Le, M.L.; Yamashita, M.H.; Arora, R.C. Postoperative Atrial Fibrillation After Cardiac Surgery: A Systematic Review and Meta-Analysis. Ann. Thorac. Surg. 2021, 111, 544–554. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.H.; Kamel, H.; Singer, D.E.; Wu, Y.L.; Lee, M.; Ovbiagele, B. Perioperative/Postoperative Atrial Fibrillation and Risk of Subsequent Stroke and/or Mortality. Stroke 2019, 50, 1364–1371. [Google Scholar] [CrossRef] [PubMed]
- Dobrev, D.; Aguilar, M.; Heijman, J.; Guichard, J.B.; Nattel, S. Postoperative atrial fibrillation: Mechanisms, manifestations and management. Nat. Rev. Cardiol. 2019, 16, 417–436. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, T.H.; Thygesen, J.B.; Thyregod, H.G.; Svendsen, J.H.; Søndergaard, L. New-Onset atrial fibrillation after surgical aortic valve replacement and transcatheter aortic valve implantation: A concise review. J. Invasive Cardiol. 2015, 27, 41–47. [Google Scholar]
- Axtell, A.L.; Moonsamy, P.; Melnitchouk, S.; Tolis, G.; Jassar, A.S.; D’Alessandro, D.A.; Villavicencio, M.A.; Cameron, D.E.; Sundt, T.M., 3rd. Preoperative predictors of new-onset prolonged atrial fibrillation after surgical aortic valve replacement. J. Thorac. Cardiovasc. Surg. 2020, 159, 1407–1414. [Google Scholar] [CrossRef]
- Beaulieu-Jones, B.R.; Lin, B.; Phillips, A.M.; Haime, M.; Quin, J.A. Postoperative Atrial Fibrillation After Surgical Aortic Valve Replacement: Amiodarone and Warfarin Use. J. Surg. Res. 2023, 291, 195–203. [Google Scholar] [CrossRef]
- Gaudino, M.; Di Franco, A.; Rong, L.Q.; Piccini, J.; Mack, M. Postoperative atrial fibrillation: From mechanisms to treatment. Eur. Heart J. 2023, 44, 1020–1039. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, Y.; Peighambari, M.M.; Naghshbandi, S.; Samiei, N.; Ghavidel, A.A.; Dehghani, M.R.; Haghjoo, M.; Hosseini, S. Postoperative Atrial Fibrillation Following Cardiac Surgery: From Pathogenesis to Potential Therapies. Am. J. Cardiovasc. Drugs 2020, 20, 19–49. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Lall, S.; Zheng, V.; Buckley, P.; Damiano, R.J., Jr.; Schuessler, R.B. The persistent problem of new-onset postoperative atrial fibrillation: A single-institution experience over two decades. J. Thorac. Cardiovasc. Surg. 2011, 141, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Aranki, S.F.; Shaw, D.P.; Adams, D.H.; Rizzo, R.J.; Couper, G.S.; VanderVliet, M.; Collins, J.J., Jr.; Cohn, L.H.; Burstin, H.R. Predictors of atrial fibrillation after coronary artery surgery. Current trends and impact on hospital resources. Circulation 1996, 94, 390–397. [Google Scholar] [CrossRef]
- Zaman, A.G.; Archbold, R.A.; Helft, G.; Paul, E.A.; Curzen, N.P.; Mills, P.G. Atrial fibrillation after coronary artery bypass surgery: A model for preoperative risk stratification. Circulation 2000, 101, 1403–1408. [Google Scholar] [CrossRef]
- Mathew, J.P.; Fontes, M.L.; Tudor, I.C.; Ramsay, J.; Duke, P.; Mazer, C.D.; Barash, P.G.; Hsu, P.H.; Mangano, D.T. Investigators of the Ischemia Research and Education Foundation; Multicenter Study of Perioperative Ischemia Research Group. A multicenter risk index for atrial fibrillation after cardiac surgery. JAMA 2004, 291, 1720–1729. [Google Scholar] [CrossRef]
- Jannati, M. Atrial fibrillation post coronary artery graft surgery: A review of literature. Int. J. Gen. Med. 2019, 12, 415–420. [Google Scholar] [CrossRef]
- Tran, D.T.; Perry, J.J.; Dupuis, J.Y.; Elmestekawy, E.; Wells, G.A. Predicting new-onset postoperative atrial fibrillation in cardiac surgery patients. J. Cardiothorac. Vasc. Anesth. 2015, 29, 1117–1126. [Google Scholar] [CrossRef]
- Yamashita, K.; Hu, N.; Ranjan, R.; Selzman, C.H.; Dosdall, D.J. Clinical risk factors for postoperative atrial fibrillation among patients after cardiac surgery. Thorac. Cardiovasc. Surg. 2019, 67, 107–116. [Google Scholar] [CrossRef]
- Aviles, R.J.; Martin, D.O.; Apperson-Hansen, C.; Houghtaling, P.L.; Rautaharju, P.; Kronmal, R.A.; Tracy, R.P.; Van Wagoner, D.R.; Psaty, B.M.; Lauer, M.S.; et al. Inflammation as a risk factor for atrial fibrillation. Circulation 2003, 108, 3006–3010. [Google Scholar] [CrossRef]
- Ruiz, A.J.; Buitrago, G.; Rodríguez, N.; Gómez, G.; Sulo, S.; Gómez, C.; Partridge, J.; Misas, J.; Dennis, R.; Alba, M.J.; et al. Clinical and economic outcomes associated with malnutrition in hospitalized patients. Clin. Nutr. 2019, 38, 1310–1316. [Google Scholar] [CrossRef] [PubMed]
- Soler-Espejo, E.; Zazo-Luengo, B.Á.; Rivera-Caravaca, J.M.; López-Gávez, R.; Esteve-Pastor, M.A.; Lip, G.Y.H.; Marín, F.; Roldán, V. Poor clinical outcomes associated to multimorbidity, frailty and malnutrition in patients with atrial fibrillation. J. Nutr. Health Aging 2025, 29, 100430. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Agarwala, R.; Martin, C.; Nagpal, D.; Teitelbaum, M.; Heyland, D.K. Nutrition Therapy in Critically Ill Patients Following Cardiac Surgery: Defining and Improving Practice. JPEN J. Parenter. Enter. Nutr. 2017, 41, 1188–1194. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Zhang, S.; Xu, C.; Li, B.; Lai, Y.; Zhan, R.; Guo, Y.; Ma, Y.; Liao, X.; Wu, X.; et al. Malnutrition increases the risk of atrial fibrillation. BMC Cardiovasc. Disord. 2025, 25, 678. [Google Scholar] [CrossRef]
- Göçer, K.; Öztürk, B. Role of Malnutrition in Atrial Fibrillation: A Prospective Study including Individuals ≥ 75 Years of Age. Nutrients 2023, 15, 4195. [Google Scholar] [CrossRef]
- Kurmus Ferik, O.; Akbuga, K.; Tolunay, H.; Aslan, T.; Eren, M.; Erkan, A.F.; Ekici, B.; Akgul Ercan, E.; Kervancıoglu, C. Poor nutritional status is associated with arrhythmic events on 24-hour Holter recording. Med. Princ. Pract. 2022, 31, 368–375. [Google Scholar] [CrossRef]
- Naganuma, M.; Kudo, Y.; Suzuki, N.; Masuda, S.; Nagaya, K. Effect of malnutrition and frailty status on surgical aortic valve replacement. Gen. Thorac. Cardiovasc. Surg. 2022, 70, 24–32. [Google Scholar] [CrossRef]
- Hernandez, A.V.; Kaw, R.; Pasupuleti, V.; Bina, P.; Ioannidis, J.P.; Bueno, H.; Boersma, E.; Gillinov, M.; Cardiovascular Meta-Analyses Research Group. Cardiovascular Meta-Analyses Research Group. Association between obesity and postoperative atrial fibrillation in patients undergoing cardiac operations: A systematic review and meta-analysis. Ann. Thorac. Surg. 2013, 96, 1104–1116. [Google Scholar] [CrossRef]
- Gomes, F.; Schuetz, P.; Bounoure, L.; Austin, P.; Ballesteros-Pomar, M.; Cederholm, T.; Fletcher, J.; Laviano, A.; Norman, K.; Poulia, K.A.; et al. ESPEN guidelines on nutritional support for polymorbid internal medicine patients. Clin. Nutr. 2018, 37, 336–353. [Google Scholar] [CrossRef]
- Felder, S.; Braun, N.; Stanga, Z.; Kulkarni, P.; Faessler, L.; Kutz, A.; Steiner, D.; Laukemann, S.; Haubitz, S.; Huber, A.; et al. Unraveling the link between malnutrition and adverse clinical outcomes: Association of acute and chronic malnutrition measures with blood biomarkers from different pathophysiological states. Ann. Nutr. Metab. 2016, 68, 164–172. [Google Scholar] [CrossRef]
- Schuetz, P.; Seres, D.; Lobo, D.N.; Gomes, F.; Kaegi-Braun, N.; Stanga, Z. Management of disease-related malnutrition for patients being treated in hospital. Lancet 2021, 398, 1927–1938. [Google Scholar] [CrossRef] [PubMed]
- Lomivorotov, V.V.; Efremov, S.M.; Boboshko, V.A.; Nikolaev, D.A.; Vedernikov, P.E.; Lomivorotov, V.N.; Karaskov, A.M. Evaluation of nutritional screening tools for patients scheduled for cardiac surgery. Nutrition 2013, 29, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Gucu, A.; Ozluk, O.A.; Sunbul, S.A.; Engin, M.; Seker, I.B.; Sunbul, A. Prognostic nutritional index as a marker of mortality: An observational cohort study of patients undergoing cardiac surgery. Rev. Cardiovasc. Med. 2021, 22, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wang, W.; Gui, Y.; Yan, Q.; Peng, G.; Zhang, X.; Ye, L.; Wang, L. Nutritional Status as a Risk Factor for New-Onset Atrial Fibrillation in Acute Myocardial Infarction. Clin. Interv. Aging 2023, 18, 29–40. [Google Scholar] [CrossRef]
- Al-Mubarak, A.A.; Grote Beverborg, N.; Zwartkruis, V.; van Deutekom, C.; de Borst, M.H.; Gansevoort, R.T.; Bakker, S.J.L.; Touw, D.J.; de Boer, R.A.; van der Meer, P.; et al. Micronutrient deficiencies and new-onset atrial fibrillation in a community-based cohort: Data from PREVEND. Clin. Res. Cardiol. 2025, 114, 41–52. [Google Scholar] [CrossRef]
- Chan, A.W.; Chan, S.L.; Wong, G.L.; Wong, V.W.; Chong, C.C.; Lai, P.B.; Chan, H.L.; To, K.F. Prognostic Nutritional Index (PNI) Predicts Tumor Recurrence of Very Early/Early Stage Hepatocellular Carcinoma After Surgical Resection. Ann. Surg. Oncol. 2015, 22, 4138–4148. [Google Scholar] [CrossRef]
- Jeon, H.G.; Choi, D.K.; Sung, H.H.; Jeong, B.C.; Seo, S.I.; Jeon, S.S.; Choi, H.Y.; Lee, H.M. Preoperative Prognostic Nutritional Index is a Significant Predictor of Survival in Renal Cell Carcinoma Patients Undergoing Nephrectomy. Ann. Surg. Oncol. 2016, 23, 321–327. [Google Scholar] [CrossRef]
- Keskin, M.; İpek, G.; Aldağ, M.; Altay, S.; Hayıroğlu, M.İ.; Börklü, E.B.; İnan, D.; Kozan, Ö. Effect of nutritional status on mortality in patients undergoing coronary artery bypass grafting. Nutrition 2018, 48, 82–86. [Google Scholar] [CrossRef]
- Chen, Q.J.; Qu, H.J.; Li, D.Z.; Li, X.M.; Zhu, J.J.; Xiang, Y.; Li, L.; Ma, Y.T.; Yang, Y.N. Prognostic nutritional index predicts clinical outcome in patients with acute ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Sci. Rep. 2017, 7, 3285. [Google Scholar] [CrossRef]
- Xie, X.; Chen, Y.; Gan, W.; Liang, C.; Zuo, Q.; Zhou, Y.; Cheng, Y.; Wang, X.; Luo, Z.; Tang, S.; et al. Relationship Between Prognostic Nutritional Index and New-Onset Atrial Fibrillation in Patients with Acute ST-Elevation Myocardial Infarction Following Percutaneous Coronary Intervention. Int. Heart J. 2023, 64, 543–550. [Google Scholar] [CrossRef]
- Hua, X.; Duan, F.; Zhai, W.; Song, C.; Jiang, C.; Wang, L.; Huang, J.; Lin, H.; Yuan, Z. A Novel Inflammatory-Nutritional Prognostic Scoring System for Patients with Early-Stage Breast Cancer. J. Inflamm. Res. 2022, 15, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Shi, H.; Wang, X.; Duan, Q.; Ge, P.; Shao, Y. Elevated blood urea nitrogen to serum albumin ratio is an adverse prognostic predictor for patients undergoing cardiac surgery. Front. Cardiovasc. Med. 2022, 9, 888736. [Google Scholar] [CrossRef] [PubMed]
- Badem, S.; Pekcolaklar, A. Inflammatory prognostic index predicts new-onset atrial fibrillation and mortality after on-pump coronary artery bypass grafting. Rev. Assoc. Med. Bras. 2023, 69, e20230226. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.F.; Hou, C.; Jia, F.; Zhong, C.H.; Xue, C.; Li, J.J. Aging-Associated atrial fibrillation: A comprehensive review focusing on the potential mechanisms. Aging Cell 2024, 23, e14309. [Google Scholar] [CrossRef]
- Correia, M.I.; Waitzberg, D.L. The impact of malnutrition on morbidity, mortality, length of hospital stay and costs evaluated through a multivariate model analysis. Clin. Nutr. 2003, 22, 235–239. [Google Scholar] [CrossRef]
- Vaid, S.; Bell, T.; Grim, R.; Ahuja, V. Predicting risk of death in general surgery patients on the basis of preoperative variables using American College of Surgeons National Surgical Quality Improvement Program data. Perm. J. 2012, 16, 10–17. [Google Scholar] [CrossRef]
- Emami, S.; Rudasill, S.; Bellamkonda, N.; Sanaiha, Y.; Cale, M.; Madrigal, J.; Christian-Miller, N.; Benharash, P. Impact of Malnutrition on Outcomes Following Transcatheter Aortic Valve Implantation (from a National Cohort). Am. J. Cardiol. 2020, 125, 1096–1101. [Google Scholar] [CrossRef]
- Li, B.; Zhang, S.; Xu, C.; Huang, M.; Xiong, Z.; Hui, Z.; Liao, X.; Li, J.; Chen, J.; Zhuang, X. Association Between the Malnutrition Status and All-Cause Mortality in Patients with Moderate and Severe Aortic Stenosis: A Prospective Cohort Study. J. Am. Heart Assoc. 2025, 14, e037086. [Google Scholar] [CrossRef]
- Williams, J.D.; Wischmeyer, P.E. Assessment of perioperative nutrition practices and attitudes-A national survey of colorectal and GI surgical oncology programs. Am. J. Surg. 2017, 213, 1010–1018. [Google Scholar] [CrossRef]
- Chaudhary, A.; Reddy, B.R.; Rao, G.V.; Raveendran, S.; Mandal, S.; Radhakrishna, P.; Dhar, P.; Krishnamurthy, A.; Doctor, N.; Shaikh, I.; et al. Consensus-Based recommendations for optimizing perioperative nutritional support and muscle health in major surgery in India. Front. Nutr. 2025, 12, 1538161. [Google Scholar] [CrossRef]
- Candeloro, M.; Di Nisio, M.; Balducci, M.; Genova, S.; Valeriani, E.; Pierdomenico, S.D.; Porreca, E. Prognostic nutritional index in elderly patients hospitalized for acute heart failure. ESC Heart Fail. 2020, 7, 2479–2484. [Google Scholar] [CrossRef]
- Tasbulak, O.; Guler, A.; Duran, M.; Sahin, A.; Bulut, U.; Avci, Y.; Demir, A.R.; Kahraman, S.; Aydin, U.; Ertürk, M. Association between nutritional indices and long-term outcomes in patients undergoing isolated coronary artery bypass grafting. Cureus 2021, 13, e16567. [Google Scholar] [CrossRef] [PubMed]
- Özmen, R.; İpekten, F.; Sarı, G.; Tunçay, A.; Özocak, O.; Topçu, F.S.; Öztürk, A.; Gündoğan, K. The Effect of Prognostic Nutritional Index in Predicting Clinical Outcomes in Valve Replacement Patients. Braz. J. Cardiovasc. Surg. 2025, 40, e20230503. [Google Scholar] [CrossRef] [PubMed]
- Gürbak, İ.; Güner, A.; Güler, A.; Şahin, A.A.; Çelik, Ö.; Uzun, F.; Onan, B.; Ertürk, M. Prognostic influence of objective nutritional indexes on mortality after surgical aortic valve replacement in elderly patients with severe aortic stenosis (from the nutrition-SAVR trial). J. Card. Surg. 2021, 36, 1872–1881. [Google Scholar] [CrossRef] [PubMed]
- Okuno, T.; Koseki, K.; Nakanishi, T.; Sato, K.; Ninomiya, K.; Tomii, D.; Tanaka, T.; Sato, Y.; Horiuchi, Y.; Koike, H.; et al. Evaluation of objective nutritional indexes as predictors of one-year outcomes after transcatheter aortic valve implantation. J. Cardiol. 2019, 74, 34–39. [Google Scholar] [CrossRef]
- Lee, K.; Ahn, J.M.; Kang, D.Y.; Ko, E.; Kwon, O.; Lee, P.H.; Lee, S.W.; Kim, D.H.; Kim, H.J.; Kim, J.B.; et al. Nutritional status and risk of all-cause mortality in patients undergoing transcatheter aortic valve replacement assessment using the geriatric nutritional risk index and the controlling nutritional status score. Clin. Res. Cardiol. 2020, 109, 161–171. [Google Scholar] [CrossRef]
- Merker, M.; Felder, M.; Gueissaz, L.; Bolliger, R.; Tribolet, P.; Kägi-Braun, N.; Gomes, F.; Hoess, C.; Pavlicek, V.; Bilz, S.; et al. Association of Baseline Inflammation with Effectiveness of Nutritional Support Among Patients With Disease-Related Malnutrition: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e200663. [Google Scholar] [CrossRef]
- Arques, S. Human serum albumin in cardiovascular diseases. Eur. J. Intern. Med. 2018, 52, 8–12. [Google Scholar] [CrossRef]
- Roche, M.; Rondeau, P.; Singh, N.R.; Tarnus, E.; Bourdon, E. The antioxidant properties of serum albumin. FEBS Lett. 2008, 582, 1783–1787. [Google Scholar] [CrossRef]
- Ziolo, M.T.; Mohler, P.J. Defining the role of oxidative stress in atrial fibrillation and diabetes. J. Cardiovasc. Electrophysiol. 2015, 26, 223. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, X.; Tan, H. Causal association of peripheral immune cell counts and atrial fibrillation: A Mendelian randomization study. Front. Cardiovasc. Med. 2023, 9, 1042938. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, S.; Zengin, S.; Dulger, A.C. Effects of Preoperative Nutritional Status and Lymphocyte Count on the Development of Early-term Atrial Fibrillation After Coronary Artery Bypass Grafting: A Retrospective Study. Braz. J. Cardiovasc. Surg. 2024, 39, e20230366. [Google Scholar] [CrossRef] [PubMed]
- Kalra, R.; Patel, N.; Doshi, R.; Arora, G.; Arora, P. Evaluation of the Incidence of New-Onset Atrial Fibrillation After Aortic Valve Replacement. JAMA Intern. Med. 2019, 179, 1122–1130. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Shi, W.Y.; Bappayya, S.; Dinh, D.T.; Smith, J.A.; Reid, C.M.; Shardey, G.C.; Newcomb, A.E. Postoperative atrial fibrillation after isolated aortic valve replacement: A cause for concern? Ann. Thorac. Surg. 2013, 95, 133–140. [Google Scholar] [CrossRef]
- Steinberg, B.A.; Zhao, Y.; He, X.; Hernandez, A.F.; Fullerton, D.A.; Thomas, K.L.; Mills, R.; Klaskala, W.; Peterson, E.D.; Piccini, J.P. Management of postoperative atrial fibrillation and subsequent outcomes in contemporary patients undergoing cardiac surgery: Insights from the Society of Thoracic Surgeons CAPS-Care Atrial Fibrillation Registry. Clin. Cardiol. 2014, 37, 7–13. [Google Scholar] [CrossRef]
- Butt, J.H.; Olesen, J.B.; Gundlund, A.; Kümler, T.; Olsen, P.S.; Havers-Borgersen, E.; Aagaard, D.T.; Gislason, G.H.; Torp-Pedersen, C.; Køber, L.; et al. Long-Term Thromboembolic Risk in Patients with Postoperative Atrial Fibrillation After Left-Sided Heart Valve Surgery. JAMA Cardiol. 2019, 4, 1139–1147. [Google Scholar] [CrossRef]
- Sergi, G.; Coin, A.; Enzi, G.; Volpato, S.; Inelmen, E.M.; Buttarello, M.; Peloso, M.; Mulone, S.; Marin, S.; Bonometto, P. Role of visceral proteins in detecting malnutrition in the elderly. Eur. J. Clin. Nutr. 2006, 60, 203–209. [Google Scholar] [CrossRef]
| Characteristics | Cohort (n = 241) |
|---|---|
| Age [years] mean ± SD | 66.2 ± 11.5 |
| Male (%) | 63.9 |
| BMI (kg/m2) ± SD | 27.1 ± 4.5 |
| Smoking (%) | 14.5 |
| Hypertension (%) | 65.1 |
| Dyslipidemia (%) | 47.7 |
| Diabetes mellitus (%) | 17 |
| Hospital stay, day, mean ± SD | 10.1 ± 4.3 |
| Valve disease | |
| Aortic stenosis (%) | 65.1 |
| Aortic regurgitation (%) | 34.9 |
| Bicuspid valve (%) | 42.3 |
| Therapy | |
| Anti-hyperlipidemic (%) | 43.6 |
| Anti-hypertensive (%) | 72.2 |
| Antiplatelet (%) | 34.9 |
| Anticoagulant (%) | 8.7 |
| Anxiolytic/Antidepressant | 12 |
| Antidiabetic drugs | 17 |
| Type of surgery | |
| AVR (%) | 57.3 |
| AVR and CABG (%) | 7.1 |
| AVR and Aorta surgery (%) | 21.2 |
| Aortic, mitral valve surgery (%) | 5 |
| Aortic, mitral valve and aorta surgery (%) | 2.1 |
| AVR and LAAC (%) | 1.2 |
| AVR, Aorta, LAAC | 2.5 |
| AVR, Aorta, CABG | 0.4 |
| Aortic, mitral valve and LAAC | 1.7 |
| Aortic, mitral valve and CABG | 1.2 |
| Surgical incision | |
| Full sternotomy (%) | 28.6 |
| Mini-sternotomy (%) | 51.5 |
| Mini-thoracotomies (%) | 19.9 |
| Characteristics | NOAF Group (n = 84) | No NOAF Group (n = 157) | p Value |
|---|---|---|---|
| Age [years] mean ± SD | 68.9 ± 8.4 | 64.8 ± 12.6 | 0.007 |
| Male (%) | 64.3 | 63.7 | ns |
| BMI (kg/m2) ± SD | 27.3 ± 4.2 | 27.1 ± 4.6 | ns |
| Smoking (%) | 14.6 | 14.3 | ns |
| Hypertension (%) | 72.6 | 61.1 | ns |
| Dyslipidemia(%) | 48.8 | 47.1 | ns |
| Diabetes mellitus (%) | 20.2 | 15.3 | ns |
| Hospital stay (day), mean ± SD | 11.1 ± 4.7 | 9.5 ± 4.1 | 0.005 |
| Valve disease | |||
| Aortic stenosis (%) | 66.7 | 64.3 | ns |
| Aortic regurgitation (%) | 33.3 | 35.7 | ns |
| Type of valve | |||
| Bicuspid valve (%) | 40.5 | 42.7 | ns |
| Tricuspid valve (%) | 59.5 | 57.3 | ns |
| Therapy | |||
| Anti-hyperlipidemic (%) | 45.2 | 43.5 | ns |
| Anti-hypertensive (%) | 75 | 72.1 | ns |
| Antiplatelet (%) | 38.8 | 40.2 | ns |
| Anticoagulant (%) | 7.1 | 9.5 | ns |
| Antidiabetic drugs(%) | 20 | 16 | ns |
| Type of surgery | |||
| AVR (%) | 56 | 58 | ns |
| AVR and CABG (%) | 6 | 7.6 | ns |
| AVR and Aorta surgery (%) | 22.6 | 20.4 | ns |
| Aortic, mitral valve surgery (%) | 7.1 | 3.8 | ns |
| Aortic, mitral valve and aorta surgery (%) | 2.4 | 1.9 | ns |
| AVR and LAAC (%) | 0 | 1.9 | ns |
| AVR, Aorta, LAAC | 1.2 | 3.2 | ns |
| AVR, Aorta, CABG | 0 | 0.6 | ns |
| Aortic, mitral valve and LAAC | 1.2 | 1.9 | ns |
| Aortic, mitral valve and CABG | 3.6 | 0 | ns |
| Surgical incision | |||
| Full sternotomy (%) | 29.8 | 28 | ns |
| Mini-sternotomy (%) | 50 | 52.2 | ns |
| Mini-thoracotomies (%) | 20.2 | 19.8 | ns |
| Echocardiographic parameters | |||
| Aorta | 39.5 ± 9.3 | 38.2 ± 7.8 | ns |
| Root | 35.4 ± 5.9 | 35.9 ± 6.8 | ns |
| Left Atrium Volume mean ± SD | 40.2 ± 15.9 | 38.4 ± 17.8 | ns |
| Left atrial volume indexed (LAVi) | 20.2 ± 9.6 | 18.3 ± 12.3 | ns |
| Left Atrium Area | 22.6 ± 6.2 | 23 ± 6.2 | ns |
| Left ventricular end-systolic dimension (LVESD) | 52.2 ± 8.1 | 52.8 ± 11.7 | ns |
| Left ventricular end-systolic volume (LVESV) | 139.8 ± 56.4 | 131.1 ± 53.9 | ns |
| Ejection fraction | 60.5 ± 8 | 60.6 ± 8.3 | ns |
| Peak velocity | 3.7 ± 1.2 | 3.5 ± 1.2 | ns |
| Mean gradient | 41.3 ± 21 | 41 ± 21 | ns |
| Posterior wall thickness | 10.7 ± 1.8 | 10.7 ± 8.1 | ns |
| Interventricular septum thickness | 12.6 ± 2.3 | 12.1 ± 2.1 | ns |
| Laboratory clinical-chemistry data | |||
| Haemoglobin (Hb), g/dL | 13.9 ± 1.6 | 13.8 ± 1.4 | ns |
| Erythrocytes ×106/μL | 4.7 ± 0.5 | 4.7 ± 0.5 | ns |
| Neutrophils, ×103/μL | 4.0 ± 1.4 | 4.1 ± 1.6 | ns |
| Lymphocytes, ×103/μL | 1.8 ± 0.5 | 1.8 ± 0.6 | ns |
| Monocytes, ×103/μL | 0.65 ± 0.85 | 0.56 ± 0.16 | ns |
| Platelets, ×103/μL | 219 ± 66 | 223 ± 60 | ns |
| C-reactive protein (CRP), mg/dL | 0.2 ± 0.2 | 0.3 ± 0.4 | ns |
| Fibrinogen, mg/dL | 353 ± 90 | 352 ± 97 | ns |
| Total cholesterol, mg/dL | 168 ± 37 | 174 ± 39 | ns |
| Low Density Lipoprotein Cholesterol (LDL), mg/dL | 96.4 ± 33 | 100 ± 35 | ns |
| High-Density Lipoprotein cholesterol (HDL), mg/dL | 54.4 ± 15 | 54 ± 15 | ns |
| Triglycerides, mg/dL | 93 ± 40 | 100 ± 49 | ns |
| Lipoprotein(a), nmol//L | 57.4 ± 72 | 61.4 ± 73 | ns |
| Creatinine, mg/dL | 1 ± 0.7 | 0.9 ± 0.2 | ns |
| Creatine phosphokinase (CPK), IU/L | 97 ± 61 | 113 ± 81 | ns |
| Alanine aminotransferase (ALT), IU/L | 19.8 ± 11 | 21 ± 16 | ns |
| Gamma-Glutamyl Transferase (GGT), IU/L | 37 ± 56.5 | 38 ± 75 | ns |
| Thyroid-Stimulating Hormone (TSH), mU/L | 3.5 ± 10.5 | 7.8 ± 62 | ns |
| Albumin, g/dL | 4.2 ± 0.2 | 4.4 ± 0.3 | 0.01 |
| Urea, mg/dL | 40.4 ± 14.2 | 41 ± 13.2 | ns |
| Glucose, mg/dL | 100.7 ± 19.2 | 100.8 ± 17.9 | ns |
| Neutrophil-to-lymphocyte ratio (NLR) | 1.9 ± 1.06 | 2.5 ± 1.3 | ns |
| Systemic immune inflammation index (SII) | 495 ± 367 | 573 ± 340 | ns |
| Systemic Inflammatory Response index (SIRI) | 0.34 ± 0.16 | 0.37 ± 0.34 | ns |
| Inflammatory prognosis index (IPI) | 0.09 ± 0.1 | 0.2 ± 0.3 | ns |
| Prognostic nutritional index (PNI) | 40.7 ± 8.6 | 43.0 ± 2.4 | 0.01 |
| Blood urea nitrogen to albumin ratio (BAR) | 9.1 ± 4.6 | 9.8 ± 3.4 | ns |
| Variables | OR | 95% CI | p-Value |
|---|---|---|---|
| Age | 1.02 | 1.01–1.06 | 0.05 |
| PNI | 0.9 | 0.8–0.9 | 0.03 |
| Indexed left atrial volume | 1.0 | 0.9–1.03 | 0.63 |
| EF % | 0.9 | 0.9–1.03 | 0.76 |
| AVR vs. AVR + other surgeries | 1.05 | 0.56–1.95 | 0.87 |
| CABG concomitance | 1.07 | 0.38–2.98 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Vecoli, C.; Esposito, A.; Simonini, L.; Zanetti, V.; Parri, M.S.; Bastiani, L.; Farneti, P.A.; Foffa, I. Association of Prognostic Nutritional Index and New-Onset Atrial Fibrillation in Patients Undergoing Surgical Aortic Valve Replacement: A Silent Predictor in Perioperative Outcomes? J. Clin. Med. 2026, 15, 555. https://doi.org/10.3390/jcm15020555
Vecoli C, Esposito A, Simonini L, Zanetti V, Parri MS, Bastiani L, Farneti PA, Foffa I. Association of Prognostic Nutritional Index and New-Onset Atrial Fibrillation in Patients Undergoing Surgical Aortic Valve Replacement: A Silent Predictor in Perioperative Outcomes? Journal of Clinical Medicine. 2026; 15(2):555. https://doi.org/10.3390/jcm15020555
Chicago/Turabian StyleVecoli, Cecilia, Augusto Esposito, Ludovica Simonini, Valentina Zanetti, Maria Serena Parri, Luca Bastiani, Pier Andrea Farneti, and Ilenia Foffa. 2026. "Association of Prognostic Nutritional Index and New-Onset Atrial Fibrillation in Patients Undergoing Surgical Aortic Valve Replacement: A Silent Predictor in Perioperative Outcomes?" Journal of Clinical Medicine 15, no. 2: 555. https://doi.org/10.3390/jcm15020555
APA StyleVecoli, C., Esposito, A., Simonini, L., Zanetti, V., Parri, M. S., Bastiani, L., Farneti, P. A., & Foffa, I. (2026). Association of Prognostic Nutritional Index and New-Onset Atrial Fibrillation in Patients Undergoing Surgical Aortic Valve Replacement: A Silent Predictor in Perioperative Outcomes? Journal of Clinical Medicine, 15(2), 555. https://doi.org/10.3390/jcm15020555

