From Digital Planning to Surgical Precision: Assessing the Accuracy of NemoFAB in Orthognathic Surgery
Abstract
1. Introduction
2. Materials and Methods
- Were at least 18 years of age at the time of the initial evaluation;
- Presented with a dento-maxillofacial deformity requiring surgical correction, including but not limited to skeletal Class II or Class III malocclusion, vertical maxillary excess or deficiency, or transverse discrepancies not manageable with orthodontic treatment alone;
- Had completed or were in the process of completing presurgical orthodontic decompensation;
- Were in good general health (ASA I or II) and had no systemic disease contraindicating general anesthesia;
- Possessed complete diagnostic documentation, including CBCT scans, cephalometric radiographs, intraoral scans, and standardized clinical photographs;
- Provided written informed consent for treatment, data analysis, and follow-up assessments.
- Patients under 18 years of age;
- Presence of craniofacial syndromes or congenital anomalies (e.g., cleft lip and palate, hemifacial microsomia);
- Temporomandibular joint disorders requiring separate or adjunctive surgical intervention;
- Poor oral hygiene status or active periodontal disease at the time of surgical planning;
- severe psychiatric or behavioral disorders compromising treatment adherence or Postoperative follow-up;
- Incomplete diagnostic records or refusal to undergo orthodontic treatment;
- and lack of written informed consent.
2.1. Procedure Methodology
- Intraoral and extraoral (cervicofacial) photographs. Standardized extraoral and intraoral photographs were acquired using a full-frame mirrorless digital camera (Nikon Z6 II, Nikon Corporation, Tokyo, Japan) equipped with a 105 mm macro lens (Nikkor Z MC 105 mm f/2.8 VR; Nikon Corporation, Tokyo, Japan). All images were obtained under controlled lighting, using the same photographic protocol to ensure reproducibility.
- Digital impressions of both arches (upper, lower, and in occlusion)
- Specific radiographs depending on the case: panoramic radiograph (OPG), lateral and frontal cephalograms, and CBCT scans (large field of view).
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alkhayer, A.; Piffkó, J.; Lippold, C.; Segatto, E.; Segatto, A. Accuracy of virtual planning in orthognathic surgery: A systematic review. Head Face Med. 2020, 16, 34. [Google Scholar] [CrossRef]
- Seres, L.; Varga, E.J.; Kocsis, A.; Rasko, Z.; Bago, B.; Varga, E.; Piffko, J. Correction of a severe facial asymmetry with computerized planning and with the use of a rapid prototyped surgical template: A case report–technique article. Head Face Med. 2014, 10, 27. [Google Scholar] [CrossRef]
- Haas, O.L., Jr.; Becker, O.E.; de Oliveira, R.B. Computer-aided planning in orthognathic surgery—Systematic review. Int. J. Oral Maxillofac. Surg. 2015, 44, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Adolphs, N.; Haberl, E.J.; Liu, W.; Keeve, E.; Menneking, H.; Hoffmeister, B. Virtual planning for craniomaxillofacial surgery—Seven years of experience. J. Craniomaxillofac. Surg. 2014, 42, e289–e295. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Luebbers, H.T.; Agbaje, J.O.; Schepers, S.; Vrielinck, L.; Lambrichts, I.; Politis, C.M. Accuracy of upper jaw positioning with intermediate splint fabrication after virtual planning in bimaxillary orthognathic surgery. J. Craniofacial Surg. 2013, 24, 1871–1876. [Google Scholar] [CrossRef]
- Hsu, S.S.; Gateno, J.; Bell, R.B.; Hirsch, D.L.; Markiewicz, M.R.; Teichgraeber, J.F.; Zhou, X.; Xia, J.J. Accuracy of a computer-aided surgical simulation protocol for orthognathic surgery: A prospective multicenter study. J. Oral Maxillofac. Surg. 2013, 71, 128–142. [Google Scholar] [CrossRef]
- Zinser, M.J.; Mischkowski, R.A.; Dreiseidler, T.; Thamm, O.C.; Rothamel, D.; Zöller, J.E. Computer-assisted orthognathic surgery: Waferless maxillary positioning, versatility, and accuracy of an image-guided visualization display. Br. J. Oral Maxillofac. Surg. 2013, 51, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Swennen, G.R.; Mollemans, W.; De Clercq, C.; Abeloos, J.; Lamoral, P.; Lippens, F.; Neyt, N.; Casselman, J.; Schutyser, F. A cone-beam computed tomography triple scan procedure to obtain a three-dimensional augmented virtual skull model appropriate for orthognathic surgery planning. J. Craniofacial Surg. 2009, 20, 297–307. [Google Scholar] [CrossRef]
- Farrell, B.B.; Franco, P.B.; Tucker, M.R. Virtual surgical planning in orthognathic surgery. Oral Maxillofac. Surg. Clin. N. Am. 2014, 26, 459–473. [Google Scholar] [CrossRef]
- Wu, T.Y.; Lin, H.H.; Lo, L.J.; Ho, C.T. Postoperative outcomes of two- and three-dimensional planning in orthognathic surgery: A comparative study. J. Plast. Reconstr. Aesthetic Surg. 2017, 70, 1101–1111. [Google Scholar] [CrossRef]
- Ho, C.T.; Lin, H.H.; Liou, E.J.; Lo, L.J. Three-dimensional surgical simulation improves the planning for correction of facial prognathism and asymmetry: A qualitative and quantitative study. Sci. Rep. 2017, 7, 40423. [Google Scholar] [CrossRef]
- Lin, H.H.; Lo, L.J. Three-dimensional computer-assisted surgical simulation and intraoperative navigation in orthognathic surgery: A literature review. J. Formos. Med. Assoc. 2015, 114, 300–307. [Google Scholar] [CrossRef]
- Trevisiol, L.; Bersani, M.; Garza, A.M.; Alvarado, E.; Arnett, G.W.; D’Agostino, A. Accuracy of virtual surgical planning in bimaxillary orthognathic surgery with mandible-first sequence: A retrospective study. J. Craniomaxillofac. Surg. 2023, 51, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Alkaabi, S.; Maningky, M.; Helder, M.N.; Alsabri, G. Virtual and traditional surgical planning in orthognathic surgery—Systematic review and meta-analysis. Br. J. Oral Maxillofac. Surg. 2022, 60, 1184–1191. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Fan, S.; Zhang, H.Q.; Wang, C.; Wang, J.; Chen, X.; Shen, S.G.F. Virtual surgical planning in precise maxillary reconstruction with vascularized fibular graft after tumor ablation. J. Oral Maxillofac. Surg. 2016, 74, 1255–1264. [Google Scholar] [CrossRef]
- Chen, Z.; Mo, S.; Fan, X.; Liu, Y.; Li, J.; Xu, B.; Shen, S.G.F. A meta-analysis and systematic review comparing the effectiveness of traditional and virtual surgical planning for orthognathic surgery: Based on randomized clinical trials. J. Oral Maxillofac. Surg. 2021, 79, 471.e1–471.e13. [Google Scholar] [CrossRef]
- Shalabi, M.M.; Darwich, K.M.; Kheshfeh, M.N.; Hajeer, M.Y.; Darwich, K.; Hajeer, M.Y. Accuracy of 3D virtual surgical planning compared to the traditional two-dimensional method in orthognathic surgery: A literature review. Cureus 2024, 16, e73477. [Google Scholar] [CrossRef] [PubMed]
- Stokbro, K.; Aagaard, E.; Torkov, P.; Bell, R.B.; Thygesen, T. Virtual planning in orthognathic surgery. Int. J. Oral Maxillofac. Surg. 2014, 43, 957–965. [Google Scholar] [CrossRef]
- Gaber, R.M.; Shaheen, E.; Falter, B.; Araya, S.; Politis, C.; Swennen, G.R.; Jacobs, R. A systematic review to uncover a universal protocol for accuracy assessment of three-dimensional virtually planned orthognathic surgery. J. Oral Maxillofac. Surg. 2017, 75, 2430–2440. [Google Scholar] [CrossRef]
- Song, K.G.; Baek, S.H. Comparison of the accuracy of the three-dimensional virtual method and the conventional manual method for model surgery and intermediate wafer fabrication. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2009, 107, 13–21. [Google Scholar] [CrossRef]
- Gateno, J.; Xia, J.; Teichgraeber, J.F.; Rosen, A.; Hultgren, B.; Vadnais, T. The precision of computer-generated surgical splints. J. Oral Maxillofac. Surg. 2003, 61, 814–817. [Google Scholar] [CrossRef]
- Nilsson, J.; Hindocha, N.; Thor, A. Time matters—Differences between computer-assisted surgery and conventional planning in cranio-maxillofacial surgery: A systematic review and meta-analysis. J. Craniomaxillofac. Surg. 2020, 48, 132–140. [Google Scholar] [CrossRef]
- Nemotec, S.L. NemoFAB—Digital Orthodontic and Orthognathic Planning Software; Nemotec: Madrid, Spain, 2024; Available online: https://www.nemotec.com (accessed on 28 October 2025).
- Ricketts, R.M. The biologic significance of the divine proportion and Fibonacci series. Am. J. Orthod. 1982, 81, 351–370. [Google Scholar] [CrossRef]
- Merrifield, L.L. The profile line as an aid in critically evaluating facial esthetics. Am. J. Orthod. 1966, 52, 804–822. [Google Scholar] [CrossRef]
- Ricketts, R.M. Esthetics, environment, and the law of lip relation. Am. J. Orthod. 1968, 54, 272–289. [Google Scholar] [CrossRef] [PubMed]
- Holdaway, R.A. A soft-tissue cephalometric analysis and its use in orthodontic treatment planning. Part I. Am. J. Orthod. 1983, 84, 1–28. [Google Scholar] [CrossRef]
- Gonzales-Ulloa, M.; Stevens, E. The role of chin correction in profile plasty. Plast. Reconstr. Surg. 1961, 36, 364–373. [Google Scholar]
- Arora, A.; Peter, E.; Suja Ani, G. Ready to Use Norms for Arnett–Bergman Soft-Tissue Cephalometric Analysis for South Indian Population. Contemp. Clin. Dent. 2018, 9, S45–S51. [Google Scholar] [CrossRef] [PubMed]
- Arnett, G.W.; Jelic, J.S.; Kim, J.; Cummings, D.R.; Beress, A.; Worley, C.M., Jr.; Chung, B.; Bergman, R. Soft Tissue Cephalometric Analysis: Diagnosis and Treatment Planning of Dentofacial Deformity. Am. J. Orthod. Dentofac. Orthop. 1999, 116, 239–253. [Google Scholar] [CrossRef]
- Arnett, G.W.; Gunson, M.J. Facial planning for orthodontists and oral surgeons. Am. J. Orthod. Dentofac. Orthop. 2004, 126, 290–295. [Google Scholar] [CrossRef]
- Espinar-Escalona, E.; Ruiz-Navarro, M.B.; Barrera-Mora, J.M.; Llamas-Carreras, J.M.; Puigdollers-Pérez, A.; Ayala-Puente, J. True vertical validation in facial orthognathic surgery planning. J. Clin. Exp. Dent. 2013, 5, e231–e238. [Google Scholar] [CrossRef] [PubMed]
- Cevidanes, L.H.S.; Styner, M.; Proffit, W.R. Image analysis and superimposition of 3-dimensional cone-beam computed tomography models. Am. J. Orthod. Dentofac. Orthop. 2006, 129, 611–618. [Google Scholar] [CrossRef]
- Hajeer, M.Y.; Ayoub, A.F.; Millett, D.T. Applications of 3D imaging in orthodontics: Part I. J. Orthod. 2004, 31, 62–70. [Google Scholar] [CrossRef]
- Meiyappan, N.; Tamizharasi, S.; Senthilkumar, K.P.; Janardhanan, K. Natural head position: An overview. J. Pharm. Bioallied Sci. 2015, 7, S424–S427. [Google Scholar] [CrossRef]
- Cao, R.K.; Li, L.S.; Cao, Y.J. Application of three-dimensional technology in orthognathic surgery: A narrative review. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 7601–7610. [Google Scholar]
- Lin, H.H.; Chang, H.W.; Lo, L.J. Development of customized positioning guides using computer-aided design and manufacturing technology for orthognathic surgery. Int. J. Comput. Assist. Radiol. Surg. 2015, 10, 2021–2033. [Google Scholar] [CrossRef]
- Novac, A.C.; Pop, D.M.; Tănase, A.; Zaharia, C.; Crăciunescu, E.L.; Romînu, M.; Negruțiu, M.L.; Duma, V.-F.; Sinescu, C. The advantages of the implementation of digital flow in the working time management of dental prostheses restorations. Rom. J. Oral Rehabil. 2023, 15, 75–82. [Google Scholar]
- Hategan, S.I.; Belea, A.L.; Tănase, A.D.; Gavrilovici, A.M.; Petrescu, E.L.; Marsavina, L.; Sinescu, C.; Negru-tiu, M.L.; Manole, M.C. The evaluation of the prosthetic preparations finish lines for provisional crowns with the impact on periodontal health. Rom. J. Oral Rehabil. 2024, 16, 453–460. [Google Scholar] [CrossRef]
- Petrescu, E.L.; Mârțu, I.; Sinescu, C.; Romînu, M.; Stoia, A.E.; Onisei, D.; Negruțiu, M.L.; Tănase, A.D.; Pop, D.M. Factors involved in the chromatic failures of non-metallic fixed dental prostheses. Rom. J. Oral Rehabil. 2024, 16, 549–556. [Google Scholar] [CrossRef]
- Tănase, A.; Manea, A.; Scurtu, A.D.; Bratu, L.M.; Chioran, D.; Dolghi, A.; Alexoi, I.; Abed, H.A.; Lazureanu, V.; Dehelean, C.A. The “Invisible Enemy” SARS-CoV-2: Viral spread and drug treatment. Medicina 2022, 58, 261. [Google Scholar] [CrossRef] [PubMed]
- Hajaj, T.; Lile, I.E.; Veja, I.; Țițihazan, F.; Romînu, M.; Negruțiu, M.L.; Sinescu, C.; Novac, A.C.; Țalpoș Niculescu, S.; Zaharia, C. Influence of Pontic Length on the Structural Integrity of Zirconia Fixed Partial Dentures (FPDs). J. Funct. Biomater. 2025, 16, 116. [Google Scholar] [CrossRef] [PubMed]
- Nesiu, A.; Novăcescu, D.; Lăţcu, S.; Bardan, R.; Cumpănaş, A.; Zara, F.; Buciu, V.; Caprariu, R.; Cut, T.G.; Stana, A.H. Diagnostic Performance and Interobserver Agreement of the Vesical Imaging–Reporting and Data System (VI-RADS) in Bladder Cancer Staging: A Systematic Review. Diagnostics 2023, 13, 2829. [Google Scholar] [CrossRef]
- Lile, I.E.; Hajaj, T.; Veja, I.; Hosszu, T.; Vaida, L.L.; Todor, L.; Marian, D. Comparative Evaluation of Natural Mouthrinses and Chlorhexidine in Dental Plaque Management: A Pilot Randomized Clinical Trial. Healthcare 2025, 13, 1181. [Google Scholar] [CrossRef]
- Stăncioiu, A.-A.; Motofelea, A.C.; Popa, A.; Nagib, R.; Lung, R.-B.; Szuhanek, C. Advanced 3D Facial Scanning in Orthodontics: A Correlative Analysis of Craniofacial Anthropometric Parameters. J. Clin. Med. 2025, 14, 7578. [Google Scholar] [CrossRef]
- Stăncioiu, A.-A.; Motofelea, A.C.; Hușanu, A.A.; Vasica, L.; Popa, A.; Nagib, R.; Szuhanek, C. Innovative Aesthetic and Functional Orthodontic Planning with Hard and Soft Tissue Analyses. J. Clin. Med. 2025, 14, 4458. [Google Scholar] [CrossRef]
- Tomášik, J.; Zsoldos, M.; Oravcová, Ľ.; Lifková, M.; Pavleová, G.; Strunga, M.; Thurzo, A. AI and face-driven orthodontics: A scoping review of digital advances in diagnosis and treatment planning. AI 2024, 5, 158–176. [Google Scholar] [CrossRef]
- Schendel, S.A.; Jacobson, R.; Khalessi, S. 3-Dimensional Facial Simulation in Orthognathic Surgery: Is It Accurate? J. Oral Maxillofac. Surg. 2013, 71, 1406–1414. [Google Scholar] [CrossRef] [PubMed]
- Gateno, J.; Xia, J.J.; Teichgraeber, J.F. New 3-Dimensional Cephalometric Analysis for Orthognathic Surgery. J. Oral Maxillofac. Surg. 2011, 69, 606–622. [Google Scholar] [CrossRef]
- Ohayon, C.; Bilder, A.; Capucha, T.; Naki, M.; Ginini, J.G.; Shilo, D.; Gross, N.; Rachmiel, A.; Emodi, O. Accuracy of three-dimensional soft-tissue prediction in orthognathic cases using a 3D soft-tissue scan implemented in 3D surgical planning software. J. Craniomaxillofac. Surg. 2025, 53, 1298–1304. [Google Scholar] [CrossRef] [PubMed]
- Trifan, V. Aspecte epidemiologice și medico–sociale a anomaliilor dento-maxilare. Med. Stomatol. 2014, 30, 46–48. [Google Scholar]
- Trifan, V.; Spinei, L.; Stepco, E.; Solomon, O.; Trifan, D. Profilul impactului medico-social la copii cu anomalii dento-maxilare asupra calității vieții. Rev. Științe Sănătate Mold. 2019, 21, 19–28. [Google Scholar]
- Trifan, V.; Lăcustă, V.; Lupan, I.; Trifan, D.; Bordeniuc, G. Optimization of orthodontic treatment for children with Angle Class III malocclusion by determining the influence of blink-reflex indices. Curierul Med. 2015, 58, 10–15. [Google Scholar]








| Variable | Pre Mean (SD) | Post Mean (SD) | Nemo Mean (SD) | F-Statistic | p-Value |
|---|---|---|---|---|---|
| Overjet | 5.28 (2.65) | 3.30 (1.59) | 3.50 (1.00) | 13.66 | 0.00000820 |
| Overbite | 3.06 (2.17) | 1.86 (1.29) | 2.44 (1.15) | 6.942 | 0.00168 |
| Mx1 to Mx plane | 57.15 (4.16) | 60.71 (5.75) | 61.11 (7.41) | 16.474 | 0.00000108 |
| Md1 to Md plane | 73.84 (11.92) | 72.96 (7.71) | 72.45 (7.87) | 0.699 | 0.500217 |
| Mx1 exposure | 3.93 (2.58) | 2.34 (2.14) | 2.93 (1.36) | 12.066 | 0.0000272 |
| Maxillary height | 24.50 (4.39) | 25.12 (4.32) | 24.80 (7.78) | 0.205 | 0.815322 |
| Mx1 to TVL projection | −13.84 (2.81) | −12.54 (3.77) | −10.96 (6.10) | 5.701 | 0.004886 |
| Md1 to TVL projection | −8.16 (8.28) | −15.84 (4.21) | −15.31 (4.01) | 31.419 | 0.000000000981 |
| B-point to TVL projection | −5.62 (7.81) | −6.38 (5.37) | −7.56 (5.65) | 2.527 | 0.086393 |
| Pogonion to TVL projection | −3.06 (8.73) | −3.27 (5.94) | −3.54 (5.36) | 0.147 | 0.863289 |
| Mx occlusal plane to TVL | 98.71 (5.29) | 95.92 (4.29) | 94.44 (4.88) | 16.08 | 0.00000142 |
| Variable | Mean Pre (SD) | Mean Post (SD) | Mean Difference | t-Statistic | Cohen’s d | p-Value |
|---|---|---|---|---|---|---|
| Overjet | 5.28 (2.65) | 3.30 (1.59) | 1.981 | 3.816 | 0.603 | 0.000472 |
| Overbite | 3.06 (2.17) | 1.86 (1.29) | 1.202 | 3.149 | 0.498 | 0.003138 |
| Mx1 to Mx occlusal plane | 57.15 (4.16) | 60.71 (5.75) | −3.56 | −4.543 | −0.718 | 0.0000523 |
| Md1 to Md occlusal plane | 73.84 (11.92) | 72.96 (7.71) | 0.883 | 0.637 | 0.101 | 0.527709 |
| Mx1 exposure | 3.93 (2.58) | 2.34 (2.14) | 1.586 | 3.955 | 0.625 | 0.000313 |
| Maxillary height | 24.50 (4.39) | 25.12 (4.32) | −0.621 | −1.229 | −0.194 | 0.226619 |
| Mx1 to TVL projection | −13.84 (2.81) | −12.54 (3.77) | −1.307 | −1.911 | −0.302 | 0.063440 |
| Md1 to TVL projection | −8.16 (8.28) | −15.84 (4.21) | 7.673 | 5.932 | 0.938 | 0.000000644 |
| B-point to TVL projection | −5.62 (7.81) | −6.38 (5.37) | 0.761 | 0.886 | 0.140 | 0.380879 |
| Pogonion to TVL projection | −3.06 (8.73) | −3.27 (5.94) | 0.217 | 0.222 | 0.035 | 0.825843 |
| Mx occlusal plane to TVL | 98.71 (5.29) | 95.92 (4.29) | 2.788 | 3.442 | 0.544 | 0.00139 |
| Variable | Mean Pre (SD) | Mean Nemo (SD) | Mean Difference | t-Statistic | Cohen’s d | p-Value |
|---|---|---|---|---|---|---|
| Overjet | 5.28 (2.65) | 3.50 (1.00) | 1.776 | 3.692 | 0.584 | 0.000680 |
| Overbite | 3.06 (2.17) | 2.44 (1.15) | 0.621 | 1.613 | 0.255 | 0.114796 |
| Mx1 to Mx occlusal plane | 57.15 (4.16) | 61.11 (7.41) | −3.951 | −4.082 | −0.645 | 0.000214 |
| Md1 to Md occlusal plane | 73.84 (11.92) | 72.45 (7.87) | 1.392 | 0.919 | 0.145 | 0.363725 |
| Mx1 exposure | 3.93 (2.58) | 2.93 (1.36) | 1.000 | 2.795 | 0.442 | 0.008016 |
| Maxillary height | 24.50 (4.39) | 24.80 (7.78) | −0.293 | −0.246 | −0.039 | 0.807233 |
| Mx1 to TVL projection | −13.84 (2.81) | −10.96 (6.10) | −2.886 | −3.062 | −0.484 | 0.003969 |
| Md1 to TVL projection | −8.16 (8.28) | −15.31 (4.01) | 7.149 | 5.447 | 0.861 | 0.000003032 |
| B-point to TVL projection | −5.62 (7.81) | −7.56 (5.65) | 1.938 | 1.742 | 0.275 | 0.089475 |
| Pogonion to TVL projection | −3.06 (8.73) | −3.54 (5.36) | 0.482 | 0.418 | 0.066 | 0.677893 |
| Mx occlusal plane to TVL | 98.71 (5.29) | 94.44 (4.88) | 4.269 | 4.824 | 0.763 | 0.0000218 |
| Comparison | Variable | Bias | SD (Diff) | LoA Low | LoA High |
|---|---|---|---|---|---|
| Pre vs. Nemo | Overjet | 1.776 | 3.042 | −4.186 | 7.737 |
| Pre vs. Nemo | Overbite | 0.621 | 2.434 | −4.150 | 5.391 |
| Pre vs. Nemo | Mx1 to Mx plane | −3.951 | 6.122 | −15.951 | 8.048 |
| Pre vs. Nemo | Md1 to Md plane | 1.392 | 9.579 | −17.383 | 20.167 |
| Pre vs. Nemo | Mx1 exposure | 1.000 | 2.263 | −3.436 | 5.436 |
| Pre vs. Nemo | Maxillary height | −0.293 | 7.550 | −15.091 | 14.504 |
| Pre vs. Nemo | Mx1 to TVL | −2.886 | 5.960 | −14.566 | 8.795 |
| Pre vs. Nemo | Md1 to TVL | 7.149 | 8.301 | −9.121 | 23.419 |
| Pre vs. Nemo | B-point to TVL | 1.938 | 7.038 | −11.857 | 15.733 |
| Pre vs. Nemo | Pogonion to TVL | 0.482 | 7.288 | −13.803 | 14.767 |
| Pre vs. Nemo | Mx plane to TVL | 4.269 | 5.598 | −6.702 | 15.241 |
| Pre vs. Post | Overjet | 1.981 | 3.284 | −4.455 | 8.418 |
| Pre vs. Post | Overbite | 1.202 | 2.413 | −3.528 | 5.931 |
| Pre vs. Post | Mx1 to Mx plane | −3.560 | 4.955 | −13.271 | 6.152 |
| Pre vs. Post | Md1 to Md plane | 0.883 | 8.764 | −16.295 | 18.061 |
| Pre vs. Post | Mx1 exposure | 1.586 | 2.536 | −3.385 | 6.557 |
| Pre vs. Post | Maxillary height | −0.621 | 3.196 | −6.884 | 5.643 |
| Pre vs. Post | Mx1 to TVL | −1.307 | 4.327 | −9.788 | 7.174 |
| Pre vs. Post | Md1 to TVL | 7.673 | 8.181 | −8.362 | 23.708 |
| Pre vs. Post | B-point to TVL | 0.761 | 5.429 | −9.879 | 11.401 |
| Pre vs. Post | Pogonion to TVL | 0.217 | 6.188 | −11.912 | 12.346 |
| Pre vs. Post | Mx plane to TVL | 2.788 | 5.122 | −7.251 | 12.826 |
| Nemo vs. Post | Overjet | 0.206 | 0.904 | −1.566 | 1.978 |
| Nemo vs. Post | Overbite | 0.581 | 0.857 | −1.099 | 2.261 |
| Nemo vs. Post | Mx1 to Mx plane | 0.392 | 2.649 | −4.800 | 5.584 |
| Nemo vs. Post | Md1 to Md plane | −0.509 | 1.333 | −3.121 | 2.103 |
| Nemo vs. Post | Mx1 exposure | 0.586 | 1.112 | −1.594 | 2.766 |
| Nemo vs. Post | Maxillary height | −0.327 | 6.771 | −13.598 | 12.943 |
| Nemo vs. Post | Mx1 to TVL | 1.578 | 5.800 | −9.789 | 12.946 |
| Nemo vs. Post | Md1 to TVL | 0.524 | 2.129 | −3.650 | 4.697 |
| Nemo vs. Post | B-point to TVL | −1.177 | 3.396 | −7.834 | 5.479 |
| Nemo vs. Post | Pogonion to TVL | −0.265 | 1.910 | −4.010 | 3.479 |
| Nemo vs. Post | Mx plane to TVL | −1.482 | 3.545 | −8.431 | 5.467 |
| Variable | ICC(2,k) Global | Classification | ICC Pre–Nemo | Class | ICC Pre–Post | Class | ICC Nemo–Post | Class |
|---|---|---|---|---|---|---|---|---|
| Overjet | 0.025 | Poor | −0.112 | Poor | -0.094 | Poor | 0.763 | Good |
| Overbite | 0.381 | Poor | 0.021 | Poor | 0.073 | Poor | 0.681 | Moderate |
| Mx1 to Mx plane | 0.816 | Good | 0.400 | Poor | 0.414 | Poor | 0.921 | Excellent |
| Md1 to Md plane | 0.864 | Good | 0.551 | Moderate | 0.622 | Moderate | 0.984 | Excellent |
| Mx1 exposure | 0.710 | Moderate | 0.359 | Poor | 0.352 | Poor | 0.770 | Good |
| Maxillary height | 0.694 | Moderate | 0.291 | Poor | 0.728 | Moderate | 0.427 | Poor |
| Mx1 to TVL | 0.483 | Poor | 0.182 | Poor | 0.144 | Poor | 0.334 | Poor |
| Md1 to TVL | 0.439 | Poor | 0.117 | Poor | 0.135 | Poor | 0.862 | Excellent |
| B-point to TVL | 0.830 | Good | 0.455 | Poor | 0.673 | Moderate | 0.795 | Good |
| Pogonion to TVL | 0.857 | Good | 0.499 | Poor | 0.662 | Moderate | 0.943 | Excellent |
| Mx plane to TVL | 0.686 | Moderate | 0.296 | Poor | 0.377 | Poor | 0.672 | Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Avrămuț, R.-P.; Talpos, S.; Stăncioiu, A.-A.; Motofelea, A.C.; Popa, M.; Szuhanek, C.-A. From Digital Planning to Surgical Precision: Assessing the Accuracy of NemoFAB in Orthognathic Surgery. J. Clin. Med. 2026, 15, 532. https://doi.org/10.3390/jcm15020532
Avrămuț R-P, Talpos S, Stăncioiu A-A, Motofelea AC, Popa M, Szuhanek C-A. From Digital Planning to Surgical Precision: Assessing the Accuracy of NemoFAB in Orthognathic Surgery. Journal of Clinical Medicine. 2026; 15(2):532. https://doi.org/10.3390/jcm15020532
Chicago/Turabian StyleAvrămuț, Robert-Paul, Serban Talpos, Andra-Alexandra Stăncioiu, Alexandru Cătălin Motofelea, Malina Popa, and Camelia-Alexandrina Szuhanek. 2026. "From Digital Planning to Surgical Precision: Assessing the Accuracy of NemoFAB in Orthognathic Surgery" Journal of Clinical Medicine 15, no. 2: 532. https://doi.org/10.3390/jcm15020532
APA StyleAvrămuț, R.-P., Talpos, S., Stăncioiu, A.-A., Motofelea, A. C., Popa, M., & Szuhanek, C.-A. (2026). From Digital Planning to Surgical Precision: Assessing the Accuracy of NemoFAB in Orthognathic Surgery. Journal of Clinical Medicine, 15(2), 532. https://doi.org/10.3390/jcm15020532

