Economic Evaluation of Direct Oral Anticoagulants Versus Low-Molecular Weight Heparin for Cancer-Associated Thrombosis in a Thai University-Affiliated Hospital
Abstract
1. Introduction
2. Methods
2.1. Overall Description and Study Population
2.2. Interventions and Comparator
2.3. Model Structure and Assumptions
2.4. Model Inputs
2.4.1. Efficacy, Transitional Probabilities, and Mortality
2.4.2. Resource Use and Costs
2.4.3. Utilities
2.4.4. Model Validation
2.4.5. Analyses
2.5. Ethical Approval
3. Results
3.1. Base-Case Analyses
3.2. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wendelboe, A.M.; Raskob, G.E. Global Burden of Thrombosis: Epidemiologic Aspects. Circ. Res. 2016, 118, 1340–1347. [Google Scholar] [CrossRef] [PubMed]
- Girardi, L.; Wang, T.F.; Ageno, W.; Carrier, M. Updates in the Incidence, Pathogenesis, and Management of Cancer and Venous Thromboembolism. Arterioscler. Thromb. Vasc. Biol. 2023, 43, 824–831. [Google Scholar] [CrossRef] [PubMed]
- Mulder, F.I.; Bosch, F.T.M.; Young, A.M.; Marshall, A.; McBane, R.D.; Zemla, T.J.; Carrier, M.; Kamphuisen, P.W.; Bossuyt, P.M.M.; Büller, H.R.; et al. Direct oral anticoagulants for cancer-associated venous thromboembolism: A systematic review and meta-analysis. Blood 2020, 136, 1433–1441. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.F.; Khorana, A.A.; Agnelli, G.; Bloomfield, D.; Bonaca, M.P.; Büller, H.R.; Connors, J.M.; Goto, S.; Jing, Z.-C.; Kakkar, A.K.; et al. Treatment of Cancer-Associated Thrombosis: Recent Advances, Unmet Needs, and Future Direction. Oncologist 2023, 28, 555–564. [Google Scholar] [CrossRef]
- Marin-Barrera, L.; Muñoz-Martin, A.J.; Rios-Herranz, E.; Garcia-Escobar, I.; Beato, C.; Font, C.; Oncala-Sibajas, E.; Revuelta-Rodriguez, A.; Areses, M.C.; Rivas-Jimenez, V.; et al. A case-control analysis of the impact of venous thromboembolic disease on quality of life of patients with cancer: Quality of life in cancer (QCA) study. Cancers 2019, 12, 75. [Google Scholar] [CrossRef]
- Guntupalli, S.R.; Brennecke, A.; Behbakht, K.; Tayebnejad, A.; Breed, C.A.; Babayan, L.M.; Cheng, G.; Ramzan, A.A.; Wheeler, L.J.; Corr, B.R.; et al. Safety and Efficacy of Apixaban vs. Enoxaparin for Preventing Postoperative Venous Thromboembolism in Women Undergoing Surgery for Gynecologic Malignant Neoplasm: A Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e207410. [Google Scholar] [CrossRef]
- de Jong, L.A.; van der Velden, A.W.G.; Hulst, M.V.; Postma, M.J. Cost-effectiveness analysis and budget impact of rivaroxaban compared with dalteparin in patients with cancer at risk of recurrent venous thromboembolism. BMJ Open 2020, 10, e039057. [Google Scholar] [CrossRef]
- Lopes, D.G.; Tamayo, A.; Schipp, B.; Siepmann, T. Cost-effectiveness of edoxaban vs. low-molecular-weight heparin and warfarin for cancer-associated thrombosis in Brazil. Thromb. Res. 2020, 196, 4–10. [Google Scholar] [CrossRef]
- Li, A.; Manohar, P.M.; Garcia, D.A.; Lyman, G.H.; Steuten, L.M. Cost effectiveness analysis of direct oral anticoagulant (DOAC) versus dalteparin for the treatment of cancer associated thrombosis (CAT) in the United States. Thromb. Res. 2019, 180, 37–42. [Google Scholar] [CrossRef]
- Connell, N.T.; Connors, J.M. Cost-effectiveness of edoxaban versus dalteparin for the treatment of cancer-associated thrombosis. J. Thromb. Thrombolysis 2019, 48, 382–386. [Google Scholar] [CrossRef]
- Wu, S.; Lv, M.; Chen, J.; Jiang, S.; Chen, M.; Fang, Z.; Zeng, Z.; Qian, J.; Xu, W.; Guan, C.; et al. Direct oral anticoagulants for venous thromboembolism in cancer patients: A systematic review and network meta-analysis. Support. Care Cancer 2022, 30, 10407–10420. [Google Scholar] [CrossRef] [PubMed]
- Meanwatthana, J.; Mitsuntisuk, P. Assessment of direct-acting oral anticoagulants for the treatment of venous thromboembolism in cancer patients in Thai Tertiary Care Hospital. Pharm. Sci. Asia 2022, 49, 147–152. [Google Scholar] [CrossRef]
- Key, N.S.; Khorana, A.A.; Kuderer, N.M.; Bohlke, K.; Lee, A.Y.Y.; Arcelus, J.I.; Wong, S.L.; Balaban, E.P.; Flowers, C.R.; Francis, C.W.; et al. Venous Thromboembolism Prophylaxis and Treatment in Patients With Cancer: ASCO Clinical Practice Guideline Update. J. Clin. Oncol. 2020, 38, 496–520. [Google Scholar] [CrossRef] [PubMed]
- Farge, D.; Frere, C.; Connors, J.M.; Ay, C.; Khorana, A.A.; Munoz, A.; Brenner, B.; Kakkar, A.; Rafii, H.; Solymoss, S.; et al. 2019 international clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer. Lancet Oncol. 2019, 20, e566–e581. [Google Scholar] [CrossRef]
- Lyman, G.H.; Carrier, M.; Ay, C.; Di Nisio, M.; Hicks, L.K.; Khorana, A.A.; Leavitt, A.D.; Lee, A.Y.Y.; Macbeth, F.; Morgan, R.L.; et al. American Society of Hematology 2021 guidelines for management of venous thromboembolism: Prevention and treatment in patients with cancer. Blood Adv. 2021, 5, 927–974. [Google Scholar] [CrossRef]
- Key, N.S.; Khorana, A.A.; Kuderer, N.M.; Bohlke, K.; Lee, A.Y.Y.; Arcelus, J.I.; Wong, S.L.; Balaban, E.P.; Flowers, C.R.; Gates, L.E.; et al. Venous Thromboembolism Prophylaxis and Treatment in Patients With Cancer: ASCO Guideline Update. J. Clin. Oncol. 2023, 41, 3063–3071. [Google Scholar] [CrossRef]
- Agnelli, G.; Becattini, C.; Meyer, G.; Muñoz, A.; Huisman, M.V.; Connors, J.M.; Cohen, A.; Bauersachs, R.; Brenner, B.; Torbicki, A.; et al. Apixaban for the Treatment of Venous Thromboembolism Associated with Cancer. N. Engl. J. Med. 2020, 382, 1599–1607. [Google Scholar] [CrossRef]
- McBane, R.D., 2nd; Wysokinski, W.E.; Le-Rademacher, J.G.; Zemla, T.; Ashrani, A.; Tafur, A.; Perepu, U.; Anderson, D.; Gundabolu, K.; Kuzma, C.; et al. Apixaban and dalteparin in active malignancy-associated venous thromboembolism: The ADAM VTE trial. J. Thromb. Haemost. 2020, 18, 411–421. [Google Scholar] [CrossRef]
- Raskob, G.E.; van Es, N.; Verhamme, P.; Carrier, M.; Di Nisio, M.; Garcia, D.; Grosso, M.A.; Kakkar, A.K.; Kovacs, M.J.; Mercuri, M.F.; et al. Edoxaban for the Treatment of Cancer-Associated Venous Thromboembolism. N. Engl. J. Med. 2018, 378, 615–624. [Google Scholar] [CrossRef]
- Young, A.M.; Marshall, A.; Thirlwall, J.; Chapman, O.; Lokare, A.; Hill, C.; Hale, D.; Dunn, J.A.; Lyman, G.H.; Hutchinson, C.; et al. Comparison of an Oral Factor Xa Inhibitor With Low Molecular Weight Heparin in Patients With Cancer With Venous Thromboembolism: Results of a Randomized Trial (SELECT-D). J. Clin. Oncol. 2018, 36, 2017–2023. [Google Scholar] [CrossRef]
- Kim, J.H.; Yoo, C.; Seo, S.; Jeong, J.H.; Ryoo, B.Y.; Kim, K.P.; Lee, J.B.; Lee, K.W.; Kim, J.W.; Kim, I.H.; et al. A Phase II Study to Compare the Safety and Efficacy of Direct Oral Anticoagulants versus Subcutaneous Dalteparin for Cancer-Associated Venous Thromboembolism in Patients with Advanced Upper Gastrointestinal, Hepatobiliary and Pancreatic Cancer: PRIORITY. Cancers 2022, 14, 559. [Google Scholar] [CrossRef] [PubMed]
- Agnelli, G.; Buller, H.R.; Cohen, A.; Gallus, A.S.; Lee, T.C.; Pak, R.; Raskob, G.E.; Weitz, J.I.; Yamabe, T. Oral apixaban for the treatment of venous thromboembolism in cancer patients: Results from the AMPLIFY trial. J. Thromb. Haemost. 2015, 13, 2187–2191. [Google Scholar] [CrossRef] [PubMed]
- Prins, M.H.; Lensing, A.W.; Brighton, T.A.; Lyons, R.M.; Rehm, J.; Trajanovic, M.; Davidson, B.L.; Beyer-Westendorf, J.; Pap, Á.F.; Berkowitz, S.D.; et al. Oral rivaroxaban versus enoxaparin with vitamin K antagonist for the treatment of symptomatic venous thromboembolism in patients with cancer (EINSTEIN-DVT and EINSTEIN-PE): A pooled subgroup analysis of two randomised controlled trials. Lancet Haematol. 2014, 1, e37–e46. [Google Scholar] [CrossRef] [PubMed]
- Schulman, S.; Kakkar, A.K.; Goldhaber, S.Z.; Schellong, S.; Eriksson, H.; Mismetti, P.; Christiansen, A.V.; Friedman, J.; Le Maulf, F.; Peter, N.; et al. Treatment of acute venous thromboembolism with dabigatran or warfarin and pooled analysis. Circulation 2014, 129, 764–772. [Google Scholar] [CrossRef]
- Planquette, B.; Bertoletti, L.; Charles-Nelson, A.; Laporte, S.; Grange, C.; Mahé, I.; Pernod, G.; Elias, A.; Couturaud, F.; Falvo, N.; et al. Rivaroxaban vs Dalteparin in Cancer-Associated Thromboembolism: A Randomized Trial. Chest 2022, 161, 781–790. [Google Scholar] [CrossRef]
- Mokadem, M.E.; Hassan, A.; Algaby, A.Z. Efficacy and safety of apixaban in patients with active malignancy and acute deep venous thrombosis. Vascular 2021, 29, 745–750. [Google Scholar] [CrossRef]
- Schrag, D.; Uno, H.; Rosovsky, R.; Rutherford, C.; Sanfilippo, K.; Villano, J.L.; Drescher, M.; Jayaram, N.; Holmes, C.; Feldman, L.; et al. Direct Oral Anticoagulants vs Low-Molecular-Weight Heparin and Recurrent VTE in Patients With Cancer: A Randomized Clinical Trial. JAMA 2023, 329, 1924–1933. [Google Scholar] [CrossRef]
- Raskob, G.E.; van Es, N.; Segers, A.; Angchaisuksiri, P.; Oh, D.; Boda, Z.; Lyons, R.M.; Meijer, K.; Gudz, I.; Weitz, J.I.; et al. Edoxaban for venous thromboembolism in patients with cancer: Results from a non-inferiority subgroup analysis of the Hokusai-VTE randomised, double-blind, double-dummy trial. Lancet Haematol. 2016, 3, e379–e387. [Google Scholar] [CrossRef]
- Strategy and Planning Division of Office of the Permanent Secretary Ministry of Public Health. Public Health Statistics; Strategy and Planning Division of Office of the Permanent Secretary Ministry of Public Health: Nonthaburi, Thailand, 2019. [Google Scholar]
- Tanvejsilp, P.; Ngorsuraches, S. Defining the scope of health technology assessment and types of health economic evaluation. J. Med. Assoc. Thai. 2014, 97, S10–S16. [Google Scholar]
- Vichaidit, K.; Chantrathammachart, P.; Niparuck, P.; Puawilai, T.; Angchaisuksiri, P.; Boonyawat, K. Reduced- versus full-dose anticoagulants for the extended treatment of cancer-associated venous thromboembolism in Thai patients. Res. Pract. Thromb. Haemost. 2025, 9, 102643. [Google Scholar] [CrossRef]
- Drug Medical Supply Information Center, MoPH Drug Search. 2025. Available online: http://dmsic.moph.go.th/index/drugsearch/1 (accessed on 20 June 2025).
- Health Intervention and Technology Assessment: HITAP: Ministry of Public Health. Title Standard Cost Lists for Health Technology Assessment. 2022. Available online: http://www.hitap.net/costingmenu/ (accessed on 1 December 2024).
- Lloyd, A.J.; Dewilde, S.; Noble, S.; Reimer, E.; Lee, A.Y.Y. What Impact Does Venous Thromboembolism and Bleeding Have on Cancer Patients’ Quality of Life? Value Health 2018, 21, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Bureau of Trade and Economic Indices. Consumer Price Index Bangkok, Thailand: Ministry of Commerce. 2019. Available online: https://index.tpso.go.th/cpi (accessed on 31 May 2025).
- Bank of Thailand. Foreign Exchange Rates. 2025. Available online: https://www.bot.or.th/en/statistics/exchange-rate.html (accessed on 31 July 2025).
- Khiaocharoen, O.; Sriwongchai, C.; Khattiyod, T.; Prasertworakul, C.; Srisirianun, T.; Lampu, P.; Pannarunothai, P.; Zungsontiporn, C.; Pannarunothai, S. Ratio of Cost to Charge to Estimate Service Cost; Ministry of Public Health: Thai CaseMix Centre: Bangkok, Thailand, 2023. [Google Scholar]
- Barca-Hernando, M.; Lopez-Ruz, S.; Marin-Romero, S.; Garcia-Garcia, V.; Elias-Hernandez, T.; Otero-Candelera, R.; Carrier, M.; Jara-Palomares, L. Risk of recurrent cancer-associated thrombosis after discontinuation of anticoagulant therapy. Res. Pract. Thromb. Haemost. 2023, 7, 100115. [Google Scholar] [CrossRef] [PubMed]
- Moik, F.; Colling, M.; Mahé, I.; Jara-Palomares, L.; Pabinger, I.; Ay, C. Extended anticoagulation treatment for cancer-associated thrombosis-Rates of recurrence and bleeding beyond 6 months: A systematic review. J. Thromb. Haemost. 2022, 20, 619–634. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lv, H.; Li, D.; Chen, C.; Gu, G.; Sun, Y.; Yang, X.; Liu, Y.; Fang, F.; Liu, J.; et al. Efficacy and Safety of Direct Oral Anticoagulants for Secondary Prevention of Cancer-Associated Thrombosis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials and Prospective Cohort Studies. Front. Pharmacol. 2019, 10, 773. [Google Scholar] [CrossRef]
- Ueyama, H.; Miyashita, H.; Takagi, H.; Cruz, C.; Burger, A.; Briasoulis, A.; Kuno, T. Network meta-analysis of anticoagulation strategies for venous thromboembolism in patients with cancer. J. Thromb. Thrombolysis 2021, 51, 102–111. [Google Scholar] [CrossRef]
- Song, X.; Liu, Z.; Zeng, R.; Shao, J.; Liu, B.; Zheng, Y.; Liu, C.; Ye, W. Treatment of venous thromboembolism in cancer patients: A systematic review and meta-analysis on the efficacy and safety of different direct oral anticoagulants (DOACs). Ann. Transl. Med. 2021, 9, 162. [Google Scholar] [CrossRef]
- Bin Riaz, I.; Fuentes, H.E.; Naqvi, S.A.A.; He, H.; Sipra, Q.-U.R.; Tafur, A.J.; Padranos, L.; Wysokinski, W.E.; Marshall, A.L.; Vandvik, P.O.; et al. Direct Oral Anticoagulants Compared with Dalteparin for Treatment of Cancer-Associated Thrombosis: A Living, Interactive Systematic Review and Network Meta-analysis. Mayo Clin. Proc. 2022, 97, 308–324. [Google Scholar] [CrossRef]
- Ning, H.; Yang, N.; Ding, Y.; Chen, H.; Wang, L.; Han, Y.; Cheng, G.; Zou, M. Efficacy and safety of direct oral anticoagulants for the treatment of cancer-associated venous thromboembolism: A systematic review and Bayesian network meta-analysis. Med. Clin. 2023, 160, 245–252. [Google Scholar] [CrossRef]
- Murphy, A.C.; Koshy, A.N.; Farouque, O.; Yeo, B.; Raman, J.; Kearney, L.; Yudi, M.B. Factor Xa Inhibition for the Treatment of Venous Thromboembolism Associated with Cancer: A Meta-Analysis of the Randomised Controlled Trials. Heart Lung Circ. 2022, 31, 716–725. [Google Scholar] [CrossRef]
- Mai, V.; Tanguay, V.F.; Guay, C.A.; Bertoletti, L.; Magnan, S.; Turgeon, A.F.; Lacasse, Y.; Lega, J.C.; Provencher, S. DOAC compared to LMWH in the treatment of cancer related-venous thromboembolism: A systematic review and meta-analysis. J. Thromb. Thrombolysis 2020, 50, 661–667. [Google Scholar] [CrossRef]
- Frere, C.; Farge, D.; Schrag, D.; Prata, P.H.; Connors, J.M. Direct oral anticoagulant versus low molecular weight heparin for the treatment of cancer-associated venous thromboembolism: 2022 updated systematic review and meta-analysis of randomized controlled trials. J. Hematol. Oncol. 2022, 15, 69. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wang, Y.; Ma, R.-L.; Liu, M.; Gao, J.-Z.; Su, W.-Y.; Yan, L.; Sun, J.-J. Efficacy and safety of direct oral anticoagulants versus low-molecular-weight heparin in patients with cancer: A systematic review and meta-analysis. J. Thromb. Thrombolysis 2019, 48, 400–412. [Google Scholar] [CrossRef] [PubMed]
- Desai, R.; Koipallil, G.K.; Thomas, N.; Mhaskar, R.; Visweshwar, N.; Laber, D.; Patel, A.; Jaglal, M. Efficacy and safety of direct oral anticoagulants for secondary prevention of cancer associated thrombosis: A meta-analysis of randomized controlled trials. Sci. Rep. 2020, 10, 18945. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, N.D.; Tricarico, L.; Correale, M.; De Gennaro, L.; Santoro, F.; Ieva, R.; Di Biase, M. Direct oral anticoagulants more effective than low-molecular-weight heparin for venous thrombo-embolism in cancer: An updated meta-analysis of randomized trials. J. Thromb. Thrombolysis 2020, 50, 305–310. [Google Scholar] [CrossRef]
- Brandão, G.M.S.; Malgor, R.D.; Vieceli, T.; Cândido, R.C.F.; Inácio, J.F.S.; Rodrigues, C.G.; Malgor, E.A.; Sobreira, M.L. A network meta-analysis of direct factor Xa inhibitors for the treatment of cancer-associated venous thromboembolism. Vascular 2022, 30, 130–145. [Google Scholar] [CrossRef]
- Giustozzi, M.; Agnelli, G.; del Toro-Cervera, J.; Klok, F.A.; Rosovsky, R.P.; Martin, A.-C.; Herold, J.; Tzoran, I.; Szmit, S.; Bertoletti, L.; et al. Direct Oral Anticoagulants for the Treatment of Acute Venous Thromboembolism Associated with Cancer: A Systematic Review and Meta-Analysis. Thromb. Haemost. 2020, 120, 1128–1136. [Google Scholar] [CrossRef]
- Awan, A.R.; Ahmad, A.; Daniyal, M.; Khan, M.M.H.; Saeed, S.J.; Siddiqui, M.B.; Hakeem, S.; Shahab, A.; Ali, S.H.; Siddiqi, A.K. Efficacy and Safety of Rivaroxaban Versus Enoxaparin in Prevention of Recurrence of Venous Thrombo-Embolism Events in Cancer Patients: A Meta-Analysis. Clin. Appl. Thromb. Hemost. 2024, 30, 10760296241261364. [Google Scholar] [CrossRef]
- Baloch, M.F.; Adepoju, A.V.; Falki, V.; Hajjaj, M.; Habet, K.; Mahrosh, A.; Kundu, S.; Kataria, J.; Mathew, M.; Saka, T.; et al. Comparative Efficacy of Oral Apixaban and Subcutaneous Low Molecular Weight Heparins in the Treatment of Cancer-Associated Thromboembolism: A Meta-Analysis. Cureus 2023, 15, e43447. [Google Scholar] [CrossRef]
- Xing, J.; Yin, X.; Chen, D. Rivaroxaban versus enoxaparin for the prevention of recurrent venous thromboembolism in patients with cancer: A meta-analysis. Medicine 2018, 97, e11384. [Google Scholar] [CrossRef]
- Mohamed, M.F.H.; ElShafei, M.N.; Ahmed, M.B.; Abdalla, L.O.; Ahmed, I.; Elzouki, A.-N.; Danjuma, M.I.-M. The Net Clinical Benefit of Rivaroxaban Compared to Low-Molecular-Weight Heparin in the Treatment of Cancer-Associated Thrombosis: Systematic Review and Meta-Analysis. Clin. Appl. Thromb. Hemost. 2021, 27, 1076029620940046. [Google Scholar] [CrossRef]
- Prins, M.H.; Lensing, A.W.; Bauersachs, R.; van Bellen, B.; Bounameaux, H.; Brighton, T.A.; Cohen, A.T.; Davidson, B.L.; Decousus, H.; Raskob, G.E.; et al. Oral rivaroxaban versus standard therapy for the treatment of symptomatic venous thromboembolism: A pooled analysis of the EINSTEIN-DVT and PE randomized studies. Thromb. J. 2013, 11, 21. [Google Scholar] [CrossRef]
- Schulman, S.; Goldhaber, S.Z.; Kearon, C.; Kakkar, A.K.; Schellong, S.; Eriksson, H.; Hantel, S.; Feuring, M.; Kreuzer, J. Treatment with dabigatran or warfarin in patients with venous thromboembolism and cancer. Thromb. Haemost. 2015, 114, 150–157. [Google Scholar] [CrossRef]
- Schulman, S.; Kearon, C.; Kakkar, A.K.; Mismetti, P.; Schellong, S.; Eriksson, H.; Baanstra, D.; Schnee, J.; Goldhaber, S.Z. RE-COVER Study Group. Dabigatran versus warfarin in the treatment of acute venous thromboembolism. N. Engl. J. Med. 2009, 361, 2342–2352. [Google Scholar] [CrossRef]



| Parameter | Value | Range | Distribution | Source |
|---|---|---|---|---|
| Transition probabilities of patients receiving enoxaparin | ||||
| probability of rPE (month 1–6) | 0.00775 | 0.0062–0.0093 | beta | [9] |
| probability of rPE (month 7–12) | 0.00185 | 0.0015–0.0022 | beta | [9] |
| probability of rDVT (month 1–6) | 0.00725 | 0.0058–0.0087 | beta | [9] |
| probability of rDVT (month 7–12) | 0.00425 | 0.0034–0.0051 | beta | [9] |
| probability of CRNMB (month 1–6) | 0.0118 | 0.0094–0.0142 | beta | [9] |
| probability of MB (month 1–6) | 0.0044 | 0.0035–0.0053 | beta | [9] |
| probability of ICH (month 1–6) | 0.0009 | 0.0007–0.0011 | beta | [9] |
| probability of rPE when off drug (month 1–6) | 0.02035 | 0.0163–0.0244 | beta | [9] |
| probability of rPE when off drug (month 7–12) | 0.0033 | 0.0026–0.004 | beta | [9] |
| probability of rDVT when off drug (month 1–6) | 0.019 | 0.0152–0.0228 | beta | [9] |
| probability of rDVT when off drug (month 7–12) | 0.0073 | 0.0058–0.0088 | beta | [9] |
| probability of drug discontinuation | 0.028 | 0.0224–0.0336 | beta | [9] |
| probability of cancer death (month 1–6) | 0.04515 | 0.0361–0.0542 | beta | [9] |
| probability of cancer death (month 7–12) | 0.0321 | 0.0257–0.0385 | beta | [9] |
| probability of death due to PE | 0.13515 | 0.1081–0.1622 | beta | [9] |
| probability of death due to non-ICH MB | 0.08695 | 0.0696–0.1043 | beta | [9] |
| probability of death due to ICH | 0.25 | 0.2–0.3 | beta | [9] |
| Efficacy parameters of DOACs # | ||||
| Risk of overall rVTE between DOACs and LMWH | ||||
| apixaban | 0.57 | 0.3–1.1 | lognormal | retrieved from our systematic umbrella review |
| edoxaban | 0.68 | 0.45–1.04 | lognormal | retrieved from our systematic umbrella review |
| dabigatran | 0.95 | 0.23–3.97 | lognormal | retrieved from our systematic umbrella review |
| rivaroxaban | 0.68 | 0.38–1.21 | lognormal | retrieved from our systematic umbrella review |
| Risk of MB between DOACs and LMWH | ||||
| apixaban | 0.83 | 0.5–1.38 | lognormal | retrieved from our systematic umbrella review |
| edoxaban | 1.86 | 1.15–3.01 | lognormal | retrieved from our systematic umbrella review |
| dabigatran | 2.83 | 0.57–14.12 | lognormal | retrieved from our systematic umbrella review |
| rivaroxaban | 1.22 | 0.59–2.51 | lognormal | retrieved from our systematic umbrella review |
| Risk of CRNMB between DOACs and LMWH | ||||
| apixaban | 1.31 | 0.95–1.81 | lognormal | retrieved from our systematic umbrella review |
| edoxaban | 1.38 | 1.05–1.83 | lognormal | retrieved from our systematic umbrella review |
| dabigatran | 3.55 | 1.27–9.93 | lognormal | retrieved from our systematic umbrella review |
| rivaroxaban | 2.27 | 1.53–3.36 | lognormal | retrieved from our systematic umbrella review |
| Fixed Assumptions | ||||
| Discount (%) | 3 | fixed | [30] | |
| Age (years) | 60 | fixed | [12] | |
| Weight (kilograms) | 60 | fixed | [31] | |
| Direct medical treatment costs (THB) | ||||
| Cost estimates per cycle * (per month; THB) | ||||
| cost enoxaparin per month | 12,198.00 | 9758.40–14,637.60 | gamma | hospital database |
| apixaban cost for first cycle | 3384.76 | 2707.81–4061.71 | gamma | hospital database |
| edoxaban cost for first cycle | 4413.75 | 3531.00–5296.50 | gamma | hospital database |
| dabigatran cost for first cycle | 4842.00 | 3873.60–5810.40 | gamma | hospital database |
| rivaroxaban cost for first cycle | 2341.41 | 1873.13–2809.69 | gamma | hospital database |
| apixaban cost for following cycle | 2744.40 | 2195.52–3293.28 | gamma | hospital database |
| edoxaban cost for following cycle | 2856.90 | 2285.52–3428.28 | gamma | hospital database |
| dabigatran cost for following cycle | 3370.80 | 2696.64–4044.96 | gamma | hospital database |
| rivaroxaban cost for following cycle | 1662.90 | 1330.32–1995.48 | gamma | hospital database |
| apixaban cost for first cycle for sensitivity analysis | 1233.89 | 987.11–1480.67 | gamma | [32] |
| edoxaban cost for first cycle for sensitivity analysis | 4165.25 | 3332.20–4998.30 | gamma | [32] |
| dabigatran cost for first cycle for sensitivity analysis | 4058.25 | 3246.60–4869.90 | gamma | [32] |
| rivaroxaban cost for first cycle for sensitivity analysis | 2294.46 | 1835.57–2753.35 | gamma | [32] |
| apixaban cost for following cycle for sensitivity analysis | 1000.45 | 800.36–1200.54 | gamma | [32] |
| edoxaban cost for following cycle for sensitivity analysis | 2856.90 | 2285.52–3428.28 | gamma | [32] |
| dabigatran cost for following cycle for sensitivity analysis | 2728.50 | 2182.80–3274.20 | gamma | [32] |
| rivaroxaban cost for following cycle for sensitivity analysis | 1506.39 | 1205.11–1807.67 | gamma | [32] |
| Cost of treatment (THB) | ||||
| cost of PE treatment (IPD) | 85,098.42 | 68,078.74–102,118.10 | gamma | hospital database |
| cost of MB(ICH) treatment (IPD) | 144,775.67 | 115,820.54–173,730.80 | gamma | hospital database |
| cost of MB (non-ICH) treatment (IPD) | 57,597.65 | 46,078.12–69,117.18 | gamma | hospital database |
| cost of CRNMB treatment (OPD) | 1936.69 | 1549.35–2324.03 | gamma | hospital database |
| cost of DVT treatment (OPD) | 2975.58 | 2380.46–3570.70 | gamma | hospital database |
| Direct non-medical costs (THB) | ||||
| cost of travel | 147.78 | 118.22–177.34 | gamma | [33] |
| cost of food | 71.64 | 57.31–85.97 | gamma | [33] |
| cost of caregiver | 104.14 | 83.32–124.97 | gamma | [33] |
| Utilities | ||||
| utility of CAT | 0.65 | 0.62–0.67 | beta | [34] |
| utility of rVTE | 0.57 | 0.49–0.64 | beta | [34] |
| utility of MB | 0.59 | 0.46–0.69 | beta | [34] |
| utility of ICH | 0.33 | 0.14–0.53 | beta | [34] |
| utility of CRNMB | 0.62 | 0.57–0.67 | beta | [34] |
| Treatment | Cost (THB) | Cost (USD) | Life-Years | QALYs | Incremental Cost, THB | Incremental Cost, USD | Incremental QALY | ICER (95% CI) THB/QALY |
|---|---|---|---|---|---|---|---|---|
| enoxaparin | 70,928 | 2163 | 1.198 | 0.771 | reference | |||
| apixaban | 26,323 | 803 | 1.204 | 0.775 | −44,605 | −1360 | 0.004 | cost-saving (dominance) |
| dabigatran | 33,667 | 1027 | 1.160 | 0.746 | −37,261 | −1136 | −0.025 | less costly and less effective |
| edoxaban | 29,570 | 902 | 1.179 | 0.759 | −41,358 | −1261 | −0.012 | less costly and less effective |
| rivaroxaban | 22,310 | 680 | 1.196 | 0.770 | −48,618 | −1483 | −0.001 | less costly and less effective |
| Treatment | Cost (THB) | Cost (USD) | Life-Years | QALYs | Incremental Cost, THB | Incremental Cost, USD | Incremental QALY | ICER (95% CI) THB/QALY |
|---|---|---|---|---|---|---|---|---|
| enoxaparin | 70,928 | 2163 | 1.198 | 0.771 | reference | |||
| apixaban | 17,914 | 546 | 1.204 | 0.775 | −53,014 | −1617 | 0.004 | cost-saving (dominance) |
| dabigatran | 30,783 | 939 | 1.160 | 0.746 | −40,145 | −1224 | −0.025 | less costly and less effective |
| edoxaban | 29,378 | 896 | 1.179 | 0.759 | −41,550 | −1267 | −0.012 | less costly and less effective |
| rivaroxaban | 21,699 | 662 | 1.196 | 0.770 | −49,229 | −1501 | −0.001 | less costly and less effective |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Chaiwattanakowit, T.; Pinitpracharome, N.; Dilokthornsakul, W.; Akrawikrai, T.; Dilokthornsakul, P. Economic Evaluation of Direct Oral Anticoagulants Versus Low-Molecular Weight Heparin for Cancer-Associated Thrombosis in a Thai University-Affiliated Hospital. J. Clin. Med. 2026, 15, 212. https://doi.org/10.3390/jcm15010212
Chaiwattanakowit T, Pinitpracharome N, Dilokthornsakul W, Akrawikrai T, Dilokthornsakul P. Economic Evaluation of Direct Oral Anticoagulants Versus Low-Molecular Weight Heparin for Cancer-Associated Thrombosis in a Thai University-Affiliated Hospital. Journal of Clinical Medicine. 2026; 15(1):212. https://doi.org/10.3390/jcm15010212
Chicago/Turabian StyleChaiwattanakowit, Thanyarat, Nutnicha Pinitpracharome, Witoo Dilokthornsakul, Tananchai Akrawikrai, and Piyameth Dilokthornsakul. 2026. "Economic Evaluation of Direct Oral Anticoagulants Versus Low-Molecular Weight Heparin for Cancer-Associated Thrombosis in a Thai University-Affiliated Hospital" Journal of Clinical Medicine 15, no. 1: 212. https://doi.org/10.3390/jcm15010212
APA StyleChaiwattanakowit, T., Pinitpracharome, N., Dilokthornsakul, W., Akrawikrai, T., & Dilokthornsakul, P. (2026). Economic Evaluation of Direct Oral Anticoagulants Versus Low-Molecular Weight Heparin for Cancer-Associated Thrombosis in a Thai University-Affiliated Hospital. Journal of Clinical Medicine, 15(1), 212. https://doi.org/10.3390/jcm15010212

