The Impact of Vascular Anatomic Variations in the Infra-Pyloric Area on the Surgical Outcomes of Laparoscopic Pylorus-Preserving Gastrectomy in Early Gastric Cancer: A Post Hoc Analysis of a Multicenter Prospective Trial (KLASS-04)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Surgical Quality Control
2.3. Statistical Analysis
3. Results
3.1. Patients
3.2. Surgical Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar]
- Huang, J.; Lucero-Prisno, D.E., III; Zhang, L.; Xu, W.; Wong, S.H.; Ng, S.C.; Wong, M.C. Updated epidemiology of gastrointestinal cancers in East Asia. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 271–287. [Google Scholar] [PubMed]
- Eom, S.S.; Ryu, K.W.; Han, H.S.; Kong, S.-H. A Comprehensive and Comparative Review of Global Gastric Cancer Treatment Guidelines: 2024 Update. J. Gastric Cancer 2025, 25, 153–176. [Google Scholar] [PubMed]
- Kim, D.J.; Song, J.H.; Park, J.-H.; Kim, S.; Park, S.H.; Shin, C.M.; Kwak, Y.; Bang, K.; Gong, C.-S.; Oh, S.E.; et al. Korean Gastric Cancer Association-Led Nationwide Survey on Surgically Treated Gastric Cancers in 2023. J. Gastric Cancer 2025, 25, 115–132. [Google Scholar]
- Kosuga, T.; Tsujiura, M.; Nakashima, S.; Masuyama, M.; Otsuji, E. Current status of function-preserving gastrectomy for gastric cancer. Ann. Gastroenterol. Surg. 2021, 5, 278–286. [Google Scholar] [CrossRef]
- Park, D.J.; Kim, Y.-W.; Yang, H.-K.; Ryu, K.W.; Han, S.-U.; Kim, H.-H.; Hyung, W.-J.; Park, J.H.; Suh, Y.-S.; Kwon, O.K.; et al. Short-term outcomes of a multicentre randomized clinical trial comparing laparoscopic pylorus-preserving gastrectomy with laparoscopic distal gastrectomy for gastric cancer (the KLASS-04 trial). Br. J. Surg. 2021, 108, 1043–1049. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, Y.W.; Park, D.J.; Han, S.U.; Ryu, K.W.; Kim, H.H.; Hyung, W.J.; Park, J.H.; Suh, Y.S.; Kwon, O.K.; et al. Laparoscopic Pylorus Preserving Gastrectomy vs Distal Gastrectomy for Early Gastric Cancer; A Multicenter Randomized Controlled Trial (KLASS-04). Ann. Surg. 2024, 281, 573–581. [Google Scholar] [CrossRef]
- Kim, I.-H.; Kang, S.J.; Choi, W.; Seo, A.N.; Eom, B.W.; Kang, B.; Kim, B.J.; Min, B.-H.; Tae, C.H.; Choi, C.I.; et al. Korean Practice Guidelines for Gastric Cancer 2024: An Evidence-based, Multidisciplinary Approach (Update of 2022 Guideline). J. Gastric Cancer 2025, 25, 5–114. [Google Scholar] [CrossRef]
- Japanese Gastric Cancer Association. Japanese classification of gastric carcinoma: 3rd English edition. Gastric Cancer. 2011, 14, 101–112. [Google Scholar] [CrossRef]
- Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2018 (5th edition). Gastric Cancer. 2021, 24, 1–21. [Google Scholar]
- Vandamme, J.P.; Bonte, J. The blood supply of the stomach. Cells Tissues Organs 1988, 131, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Lastoria, D.A.A.; Benny, C.K. Variations in the origin of the infrapyloric artery: A systematic review and meta-analysis. Ann. Anat. Anat. Anz. 2023, 249, 152109. [Google Scholar]
- Kim, M.; Son, S.-Y.; Cui, L.-H.; Shin, H.-J.; Hur, H.; Han, S.-U. Real-time vessel navigation using indocyanine green fluorescence during robotic or laparoscopic gastrectomy for gastric cancer. J. Gastric Cancer 2017, 17, 145–153. [Google Scholar]
- Haruta, S.; Shinohara, H.; Ueno, M.; Udagawa, H.; Sakai, Y.; Uyama, I. Anatomical considerations of the infrapyloric artery and its associated lymph nodes during laparoscopic gastric cancer surgery. Gastric Cancer 2015, 18, 876–880. [Google Scholar] [CrossRef]
- Miao, R.; Qu, J.; Li, Z.; Wang, D.; Yu, J.; Zang, W.; Li, Y.; Liu, F.; Zhang, J.; Song, W.; et al. Anatomical variation of infra-pyloric artery origination: A prospective multicenter observational study (IPA-Origin). Chin. J. Cancer Res. 2018, 30, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Shibata, C.; Saijo, F.; Kakyo, M.; Kinouchi, M.; Tanaka, N.; Sasaki, I.; Aikou, T.; Society for the Study of Postoperative Morbidity After Gastrectomy. Current status of pylorus-preserving gastrectomy for the treatment of gastric cancer: A questionnaire survey and review of literatures. World J. Surg. 2012, 36, 858–863. [Google Scholar] [CrossRef]
- Hiramatsu, Y.; Kikuchi, H.; Takeuchi, H. Function-preserving gastrectomy for early gastric cancer. Cancers 2021, 13, 6223. [Google Scholar] [CrossRef]
- Zhang, C.; Wei, M.-H.; Cao, L.; Liu, Y.-F.; Liang, P.; Hu, X. Performing robot-assisted pylorus and vagus nerve-preserving gastrectomy for early gastric cancer: A case series of initial experience. World J. Gastrointest. Surg. 2022, 14, 1107. [Google Scholar] [CrossRef]
- Haga, Y.; Ikei, S.; Ogawa, M. Estimation of Physiologic Ability and Surgical Stress (E-PASS) as a new prediction scoring system for postoperative morbidity and mortality following elective gastrointestinal surgery. Surg. Today 1999, 29, 219–225. [Google Scholar] [CrossRef]
- Maruyama, K.; Gunven, P.; Okabayashi, K.; Sasako, M.; Kinoshita, T. Lymph node metastases of gastric cancer: General pattern in 1931 patients. Ann. Surg. 1989, 210, 596–602. [Google Scholar] [CrossRef]
- Shinohara, H.; Kurahashi, Y.; Kanaya, S.; Haruta, S.; Ueno, M.; Udagawa, H.; Sakai, Y. Topographic anatomy and laparoscopic technique for dissection of no. 6 infrapyloric lymph nodes in gastric cancer surgery. Gastric Cancer 2013, 16, 615–620. [Google Scholar] [CrossRef] [PubMed]
Variable | ASPDA (Distal) N = 45 | RGEA (Caudal) N = 74 | GDA (Proximal) N = 73 | p-Value | |
---|---|---|---|---|---|
Sex | Female | 24 (53.3%) | 36 (48.7%) | 42 (57.5%) | 0.5582 † |
Male | 21 (46.7%) | 38 (51.4%) | 31 (42.5%) | ||
Age | Mean ± sd | 55.5 ± 11.0 | 58.4 ± 10.8 | 55.3 ± 10.1 | 0.1621 * |
Weight | Mean ± sd | 61.6 ± 9.9 | 61.0 ± 11.4 | 62.8 ± 9.7 | 0.5600 * |
Height | Mean ± sd | 161.7 ± 8.3 | 160.9 ± 8.9 | 162.6 ± 7.8 | 0.5005 * |
Median (min–max) | 161.3 (140–178.7) | 161.2 (137.6–180.7) | 162.7 (146.6–179) | ||
BMI | Mean ± sd | 23.5 ± 3.0 | 23.4 ± 2.9 | 23.7 ± 2.5 | 0.8149 * |
ECOG | 0 | 45 (100%) | 71 (96%) | 72 (98.6%) | 0.4520 ‡ |
1 | 0 (0%) | 3 (4.1%) | 1 (1.4%) | ||
ASA | 1 | 24 (53.3%) | 47 (63.5%) | 48 (65.8%) | 0.3900 ‡ |
2 | 21 (46.7%) | 27 (36.5%) | 24 (32.9%) | ||
3 | 0 (0%) | 0 (0%) | 1 (1.4%) | ||
CEA | Median (min–max) | 1.7 (0.3–12.9) | 1.6 (0.5–8) | 1.3 (0.5–8) | 0.1284 # |
CA 19-9 | Median (min–max) | 6.7 (0.2–39.9) | 6.8 (0.6–119.8) | 6 (0.9–40.6) | 0.8074 # |
Variable | ASPDA (Distal) | RGEA (Caudal) | GDA (Proximal) | p-Value | Post Hoc | |||
---|---|---|---|---|---|---|---|---|
N = 30 | N = 48 | N = 41 | ASPDA vs. RGEA | ASPDA vs. GDA | RGEA vs. GDA | |||
Operating time (min) | Median (min–max) | 202.5 (150–275) | 195 (110–275) | 170 (105–265) | 0.0265 # | 0.7240 | 0.0300 | 0.2234 |
Estimated blood loss (cm3) | Median (min–max) | 39.3 (10–1000) | 38.4 (5–220) | 35.5 (5–785.6) | 0.7512 # | >0.9999 | >0.9999 | >0.9999 |
IPA injury | No | 30 (100%) | 47 (97.9%) | 41 (100%) | >0.9999 ‡ | >0.9999 | >0.9999 | >0.9999 |
Yes | 0 (0%) | 1 (2.1%) | 0 (0%) | |||||
IPV injury | No | 29 (96.7%) | 46 (95.8%) | 40 (97.6%) | >0.9999 ‡ | >0.9999 | >0.9999 | >0.9999 |
Yes | 1 (3.3%) | 2 (4.2%) | 1 (2.4%) | |||||
Length from tumor to pylorus (cm) | Median (min–max) | 7.8 (4.5–20) | 7 (4–15) | 8 (3–18.5) | 0.9398 # | >0.9999 | >0.9999 | >0.9999 |
Antral cuff length (cm) | Median (min–max) | 4 (3–8.6) | 4 (3–6) | 4 (3–6) | 0.3724 # | 0.5285 | >0.9999 | >0.9999 |
Vagus nerve hepatic branch injury | No | 29 (96.7%) | 48 (100%) | 39 (95.1%) | >0.9999 ‡ | >0.9999 | >0.9999 | >0.9999 |
Yes | 1 (3.3%) | 0 (0%) | 2 (4.9%) | |||||
Vagus nerve celiac branch preserved | No | 23 (76.7%) | 41 (85.4%) | 26 (63.4%) | 0.0542 † | >0.9999 | 0.9060 | 0.0767 |
Yes | 7 (23.3%) | 7 (14.6%) | 15 (36.6%) | |||||
Tumor location | Upper | 0 (0%) | 1 (2.1%) | 0 (0%) | 0.0923 ‡ | 0.1492 | >0.9999 | 0.2337 |
Middle | 21 (70%) | 42 (87.5%) | 30 (75%) | |||||
Low | 9 (30%) | 5 (10.4%) | 10 (25%) | |||||
Tumor size (mm) | Median (min–max) | 19 (2.3–57) | 20 (0.8–75) | 18 (0–64) | 0.9825 # | >0.9999 | >0.9999 | >0.9999 |
Proximal margin (cm) | Median (min–max) | 2.8 (0.2–7.3) | 1.95 (0.5–6.5) | 2.2 (0.3–13.5) | 0.1074 # | 0.1239 | >0.9999 | 0.4993 |
Distal margin (cm) | Median (min–max) | 2.75 (0.8–10) | 3.5 (0.2–11) | 2.3 (0.2–13.8) | 0.3906 # | >0.9999 | >0.9999 | 0.5234 |
Resected LN station 6 | Median (min–max) | 6 (0–19) | 5 (0–16) | 7 (0–20) | 0.0879 # | 0.3954 | >0.9999 | 0.1030 |
Resected LN station 9 | Median (min–max) | 4 (1–9) | 3 (0–10) | 2 (0–11) | 0.0110 # | 0.2687 | 0.0112 | 0.1598 |
Resected total LN | Median (min–max) | 34.5 (18–88) | 34 (15–82) | 39 (16–65) | 0.1164 # | 0.5965 | >0.9999 | 0.1256 |
pTstage | T1a | 20 (66.7%) | 28 (58.3%) | 25 (62.5%) | 0.9780 ‡ | >0.9999 | >0.9999 | >0.9999 |
T1b | 9 (30%) | 18 (37.5%) | 14 (35%) | |||||
T2 | 1 (3.3%) | 1 (2.1%) | 1 (2.5%) | |||||
T3 | 0 (0%) | 1 (2.1%) | 0 (0%) | |||||
pNstage | N0 | 26 (86.7%) | 43 (89.6%) | 37 (90.2%) | 0.8886 ‡ | >0.9999 | >0.9999 | >0.9999 |
N1 | 3 (10%) | 4 (8.3%) | 3 (7.3%) | |||||
N2 | 1 (3.3%) | 0 (0%) | 1 (2.4%) | |||||
N3b | 0 (0%) | 1 (2.1%) | 0 (0%) | |||||
Morbidity | No | 22 (73.3%) | 39 (83%) | 35 (85.4%) | 0.4088 † | >0.9999 | 0.7174 | >0.9999 |
Yes | 8 (26.7%) | 8 (17%) | 6 (14.6%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eom, S.S.; Park, S.H.; Rhee, Y.S.; Kim, S.-H.; Lee, H.-J.; Kim, Y.-W.; Yang, H.-K.; Park, D.J.; Han, S.U.; Kim, H.-H.; et al. The Impact of Vascular Anatomic Variations in the Infra-Pyloric Area on the Surgical Outcomes of Laparoscopic Pylorus-Preserving Gastrectomy in Early Gastric Cancer: A Post Hoc Analysis of a Multicenter Prospective Trial (KLASS-04). J. Clin. Med. 2025, 14, 2508. https://doi.org/10.3390/jcm14072508
Eom SS, Park SH, Rhee YS, Kim S-H, Lee H-J, Kim Y-W, Yang H-K, Park DJ, Han SU, Kim H-H, et al. The Impact of Vascular Anatomic Variations in the Infra-Pyloric Area on the Surgical Outcomes of Laparoscopic Pylorus-Preserving Gastrectomy in Early Gastric Cancer: A Post Hoc Analysis of a Multicenter Prospective Trial (KLASS-04). Journal of Clinical Medicine. 2025; 14(7):2508. https://doi.org/10.3390/jcm14072508
Chicago/Turabian StyleEom, Sang Soo, Sin Hye Park, Young Shick Rhee, Sa-Hong Kim, Hyuk-Joon Lee, Young-Woo Kim, Han-Kwang Yang, Do Joong Park, Sang Uk Han, Hyung-Ho Kim, and et al. 2025. "The Impact of Vascular Anatomic Variations in the Infra-Pyloric Area on the Surgical Outcomes of Laparoscopic Pylorus-Preserving Gastrectomy in Early Gastric Cancer: A Post Hoc Analysis of a Multicenter Prospective Trial (KLASS-04)" Journal of Clinical Medicine 14, no. 7: 2508. https://doi.org/10.3390/jcm14072508
APA StyleEom, S. S., Park, S. H., Rhee, Y. S., Kim, S.-H., Lee, H.-J., Kim, Y.-W., Yang, H.-K., Park, D. J., Han, S. U., Kim, H.-H., Hyung, W. J., Park, J.-H., Suh, Y.-S., Kwon, O.-K., Kim, W., Park, Y.-K., Yoon, H. M., Ahn, S.-H., Kong, S.-H., & Ryu, K. W. (2025). The Impact of Vascular Anatomic Variations in the Infra-Pyloric Area on the Surgical Outcomes of Laparoscopic Pylorus-Preserving Gastrectomy in Early Gastric Cancer: A Post Hoc Analysis of a Multicenter Prospective Trial (KLASS-04). Journal of Clinical Medicine, 14(7), 2508. https://doi.org/10.3390/jcm14072508