Biomarkers of Oxidative Stress, Systemic Inflammation and Thrombosis in Adult Asthmatic Patients Treated with Inhaled Corticosteroids During Exposure to Fine Particulate Matter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Measurements of Air Pollutants (PM2.5) and Meteorological Parameters
2.3. Measurement of Systemic Inflammatory and Hypercoagulable Biomarkers
2.3.1. Complete Blood Count (CBC), High Sensitivity C-Reactive Protein (hsCRP), Fibrinogen and D-Dimer
2.3.2. Determination of Urine 8-Hydroxydeoxyguanosine (8-OHdG) Levels
2.3.3. Determination of Serum Tumor Necrosis Factor-Alpha (TNF-α) and Interleukins (IL-6 and IL-8)
2.4. Sample Size Estimation
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pengchai, P.; Chantara, S.; Sopajaree, K.; Wangkarn, S.; Tengcharoenkul, U.; Rayanakorn, M. Seasonal variation, risk assessment and source estimation of PM10 and PM10-bound PAHs in the ambient air of Chiang Mai and Lamphun, Thailand. Environ. Monit. Assess. 2009, 154, 197–218. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; Executive Summary (Electronic Version); WHO: Geneva, Switzerland, 2021; ISBN 978-92-4-003443-3. Available online: https://apps.who.int/iris/handle/10665/345329 (accessed on 10 April 2024).
- Zhou, X.; Sampath, V.; Nadeau, K.C. Effect of air pollution on asthma. Ann. Allergy Asthma Immunol. 2024, 132, 426–432. [Google Scholar]
- Krittanawong, C.; Qadeer, Y.K.; Hayes, R.B.; Wang, Z.; Thurston, G.D.; Virani, S.; Lavie, C.J. PM2.5 and cardiovascular diseases: State-of-the-Art review. Int. J. Cardiol. Cardiovasc. Risk Prev. 2023, 19, 200217. [Google Scholar] [CrossRef] [PubMed]
- Liwsrisakun, C.; Chaiwong, W.; Bumroongkit, C.; Deesomchok, A.; Theerakittikul, T.; Limsukon, A.; Trongtrakul, K.; Tajarernmuang, P.; Niyatiwatchanchai, N.; Pothirat, C. Influence of Particulate Matter on Asthma Control in Adult Asthma. Atmosphere 2023, 14, 410. [Google Scholar] [CrossRef]
- Pothirat, C.; Tosukhowong, A.; Chaiwong, W.; Liwsrisakun, C.; Inchai, J. Effects of seasonal smog on asthma and COPD exacerbations requiring emergency visits in Chiang Mai, Thailand. Asian Pac. J. Allergy Immunol. 2016, 34, 284–289. [Google Scholar]
- Surit, P.; Wongtanasarasin, W.; Boonnag, C.; Wittayachamnankul, B. Association between air quality index and effects on emergency department visits for acute respiratory and cardiovascular diseases. PLoS ONE 2023, 18, e0294107. [Google Scholar]
- Song, J.; Ding, Z.; Zheng, H.; Xu, Z.; Cheng, J.; Pan, R.; Yi, W.; Wei, J.; Su, H. Short-term PM1 and PM2.5 exposure and asthma mortality in Jiangsu Province, China: What’s the role of neighborhood characteristics? Ecotoxicol. Environ. Saf. 2022, 241, 113765. [Google Scholar] [CrossRef]
- Rinaldi, R.; Russo, M.; Bonanni, A.; Camilli, M.; Caffè, A.; Basile, M.; Salzillo, C.; Animati, F.M.; Trani, C.; Niccoli, G.; et al. Short-term air pollution exposure and mechanisms of plaque instability in acute coronary syndromes: An optical coherence tomography study. Atherosclerosis 2024, 390, 117393. [Google Scholar]
- Bumroongkit, C.; Liwsrisakun, C.; Deesomchok, A.; Pothirat, C.; Theerakittikul, T.; Limsukon, A.; Trongtrakul, K.; Tajarernmuang, P.; Niyatiwatchanchai, N.; Euathrongchit, J.; et al. Correlation of air pollution and prevalence of acute pulmonary embolism in northern Thailand. Int. J. Environ. Res. Public Health 2022, 19, 12808. [Google Scholar] [CrossRef]
- Fongsodsri, K.; Chamnanchanunt, S.; Desakorn, V.; Thanachartwet, V.; Sahassananda, D.; Rojnuckarin, P.; Umemura, T. Particulate matter 2.5 and hematological disorders from dust to diseases: A systematic review of available evidence. Front. Med. 2021, 8, 692008. [Google Scholar] [CrossRef]
- Theofilis, P.; Oikonomou, E.; Chasikidis, C.; Tsioufis, K.; Tousoulis, D. Pathophysiology of acute coronary syndromes-diagnostic and treatment considerations. Life 2023, 13, 1543. [Google Scholar] [CrossRef] [PubMed]
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2024. Available online: https://ginasthma.org/2024-report/ (accessed on 5 December 2024).
- Qu, J.; Li, Y.; Zhong, W.; Gao, P.; Hu, C. Recent developments in the role of reactive oxygen species in allergic asthma. J. Thorac. Dis. 2017, 9, E32–E43. [Google Scholar] [PubMed]
- Wang, L.; Gao, S.; Yu, M.; Sheng, Z.; Tan, W. Association of asthma with coronary heart disease: A meta analysis of 11 trials. PLoS ONE 2017, 12, e0179335. [Google Scholar]
- Aggarwal, K.; Bansal, V.; Mahmood, R.; Kanagala, S.G.; Jain, R. Asthma and Cardiovascular Diseases: Uncovering Common Ground in Risk Factors and Pathogenesis. Cardiol. Rev. 2023; in press. [Google Scholar] [CrossRef] [PubMed]
- Majoor, C.J.; Kamphuisen, P.W.; Zwinderman, A.H.; Brinke, A.T.; Amelink, M.; Rijssenbeek-Nouwens, L.; Sterk, P.J.; Büller, H.R.; Bel, E.H. Risk of deep vein thrombosis and pulmonary embolism in asthma. Eur. Respir. J. 2013, 42, 655–661. [Google Scholar]
- Jousilahti, P.; Salomaa, V.; Hakala, K.; Rasi, V.; Vahtera, E.; Palosuo, T. The association of sensitive systemic inflammation markers with bronchial asthma. Ann. Allergy Asthma Immunol. 2002, 89, 381–385. [Google Scholar]
- Tattersall, M.C.; Guo, M.; Korcarz, C.E.; Gepner, A.D.; Barr, R.G.; Donohue, K.M.; McClelland, R.L.; Delaney, J.A.; Stein, J.H. Asthma predicts cardiovascular disease events: The multi-ethnic study of atherosclerosis. Arter. Thromb. Vasc. Biol. 2015, 35, 1520–1525. [Google Scholar] [CrossRef]
- Takemura, M.; Matsumoto, H.; Niimi, A.; Ueda, T.; Matsuoka, H.; Yamaguchi, M.; Jinnai, M.; Muro, S.; Hirai, T.; Ito, Y.; et al. High sensitivity C reactive protein in asthma. Eur. Respir. J. 2006, 27, 908–912. [Google Scholar]
- Nathan, R.A.; Sorkness, C.A.; Kosinski, M.; Schatz, M.; Li, J.T.; Marcus, P.; Murray, J.J.; Pendergraft, T.B. Development of the asthma control test: A survey for assessing asthma control. J. Allergy Clin. Immunol. 2004, 113, 59–65. [Google Scholar]
- Konstantinides, S.V.; Torbicki, A.; Agnelli, G.; Danchin, N.; Fitzmaurice, D.; Galie, N.; Gibbs, J.S.R.; Huisman, M.V.; Humbert, M.; Kucher, N.; et al. Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC). 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur. Heart J. 2014, 35, 3033–3369. [Google Scholar]
- Li, X.; Liu, X. Effects of PM2.5 on chronic airway diseases: A review of research progress. Atmosphere 2021, 12, 1068. [Google Scholar] [CrossRef]
- Kim, J.H.; Woo, H.D.; Lee, J.J.; Song, D.S.; Lee, K. Association between short-term exposure to ambient air pollutants and biomarkers indicative of inflammation and oxidative stress: A cross-sectional study using KoGES-HEXA data. Environ. Health Prev. Med. 2024, 29, 17. [Google Scholar] [PubMed]
- Ammar, M.; Bahloul, N.; Amri, O.; Omri, R.; Ghozzi, H.; Kammoun, S.; Zeghal, K.; Ben Mahmoud, L. Oxidative stress in patients with asthma and its relation to uncontrolled asthma. J. Clin. Lab. Anal. 2022, 36, e24345. [Google Scholar] [CrossRef]
- Sadowska, A.M.; Klebe, B.; Germonpre, P.; De Backer, W.A. Glucocorticosteroids as antioxidants in treatment of asthma and COPD: New application for an old medication? Steroids 2007, 72, 1–6. [Google Scholar]
- Zinellu, A.; Mangoni, A.A. A systematic review and meta-analysis of the effect of statins on glutathione peroxidase, superoxide dismutase, and catalase. Antioxidants 2021, 10, 1841. [Google Scholar] [CrossRef]
- Sorriento, D.; De Luca, N.; Trimarco, B.; Iaccarino, G. The antioxidant therapy: Newinsights in the treatment of hypertension. Front. Physiol. 2018, 9, 258. [Google Scholar]
- Li, C.H.; Tsai, M.L.; Chiou, H.Y.; Lin, Y.C.; Liao, W.T.; Hung, C.H. Role of macrophages in air pollution exposure related asthma. Int. J. Mol. Sci. 2022, 23, 12337. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Cui, J.; Yi, L.; Qin, J.; Tulake, W.; Teng, F.; Tang, W.; Wei, Y.; Dong, J. The Role of T Cells and Macrophages in Asthma Pathogenesis: A New Perspective on Mutual Crosstalk. Mediat. Inflamm. 2020, 2020, 7835284. [Google Scholar] [CrossRef]
- Marshall, C.L.; Hasani, K.; Mookherjee, N. Immunobiology of steroid-unresponsive severe asthma. Front. Allergy 2021, 2, 718267. [Google Scholar] [CrossRef]
- Berry, M.A.; Hargadon, B.; Shelley, M.; Parker, D.; Shaw, D.E.; Green, R.H.; Bradding, P.; Brightling, C.E.; Wardlaw, A.J.; Pavord, I.D. Evidence of a role of tumor necrosis factor alpha in refractory asthma. N. Engl. J. Med. 2006, 354, 697–708. [Google Scholar] [CrossRef]
- Peters, M.C.; McGrath, K.W.; Hawkins, G.A.; Hastie, A.T.; Levy, B.D.; Israel, E.; Phillips, B.R.; Mauger, D.T.; Comhair, S.A.; Erzurum, S.C.; et al. Plasma IL6 levels, metabolic dysfunction, and asthma severity: A cross-sectional analysis of two cohorts. Lancet Respir. Med. 2016, 4, 574–584. [Google Scholar] [PubMed]
- Ridker, P.M.; Rifai, N.; Stampfer, M.J.; Hennekens, C.H. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 2000, 101, 1767–1772. [Google Scholar]
- Gomulka, K.; Liebhart, J.; Jaskula, E.; Lange, A.; Medrala, W. The –2549 –2567 del18 Polymorphism in VEGF and Irreversible Bronchoconstriction in Asthmatics. J. Investig. Allergol. Clin. Immunol. 2019, 29, 431–435. [Google Scholar] [CrossRef]
- Zhu, H.; Wu, Y.; Kuang, X.; Liu, H.; Guo, Z.; Qian, J.; Wang, D.; Wang, M.; Chu, H.; Gong, W.; et al. Effect of PM2.5 exposure on circulating fibrinogen and IL-6 levels: A systematic review and meta-analysis. Chemosphere 2021, 271, 129565. [Google Scholar]
- Sun, Y.; Wang, Y.; Yuan, S.; Wen, J.; Li, W.; Yang, L.; Huang, X.; Mo, Y.; Zhao, Y.; Lu, Y. Exposure to PM2.5 via vascular endothelial growth factor relationship: Meta-analysis. PLoS ONE 2018, 13, e0198813. [Google Scholar] [CrossRef] [PubMed]
- Levine, S.J.; Larivee, P.; Logun, C.; Angus, C.W.; Shelhamer, J.H. Corticosteroids differentially regulate secretion of IL-6, IL-8, and G-CSF by a human bronchial epithelial cell line. Am. J. Physiol. 1993, 265 Pt 1, L360–L368. [Google Scholar] [PubMed]
- Han, Z.; Li, J.; Yi, X.; Zhang, T.; Liao, D.; You, J.; Ai, J. Diagnostic accuracy of interleukin-6 in multiple diseases: An umbrella review of meta-analyses. Heliyon 2024, 10, e27769. [Google Scholar]
- Zhu, S.H.; Patel, K.V.; Bandinelli, S.; Ferrucci, L.; Guralnik, J.M. Predictors of interleukin-6 elevation in older adults. J. Am. Geriatr. Soc. 2009, 57, 1672–1677. [Google Scholar]
- Docherty, S.; Harley, R.; McAuley, J.J.; Crowe, L.A.N.; Pedret, C.; Kirwan, P.D.; Siebert, S.; Millar, N.L. The effect of exercise on cytokines: Implications for musculoskeletal health: A narrative review. BMC Sports Sci. Med. Rehabil. 2022, 14, 5. [Google Scholar] [CrossRef]
- Salini, V.; Saggini, A.; Maccauro, G.; Caraffa, A.; Shaik-Dasthagirisaheb, Y.B.; Conti, P. Inflammatory markers: Serum amyloid A, fibrinogen and C-reactive protein-a revisited study. Eur. J. Inflam. 2011, 9, 95–102. [Google Scholar]
- Lin, S.C.; Shi, L.S.; Ye, Y.L. Advanced molecular knowledge of therapeutic drugs and natural products focusing on inflammatory cytokines in asthma. Cells 2019, 8, 685. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.; Knox, A.J. Synergistic inhibition by beta(2)-agonists and corticosteroids on tumor necrosis factor-alpha-induced interleukin-8 release from cultured human airway smooth-muscle cells. Am. J. Respir. Cell Mol. Biol. 2000, 23, 79–85. [Google Scholar] [CrossRef]
- Tang, H.; Cheng, Z.; Li, N.; Mao, S.; Ma, R.; He, H.; Niu, Z.; Chen, X.; Xiang, H. The short- and long-term associations of particulate matter with inflammation and blood coagulation markers: A meta-analysis. Environ. Pollut. 2020, 267, 115630. [Google Scholar] [CrossRef] [PubMed]
- Walters, E.H.; Bjermer, L.; Faurschou, P.; Sandström, T. The anti-inflammatory profile of inhaled corticosteroids combined with salmeterol in asthmatic patients. Respir. Med. 2000, 94 (Suppl. S6), S26–S31. [Google Scholar] [CrossRef] [PubMed]
- Kilic, H.; Karalezli, A.; Hasanoglu, H.C.; Erel, O.; Ates, C. The relationship between hs-CRP and asthma control test in asthmatic patients. Allergol. Immunopathol. 2012, 40, 362–367. [Google Scholar] [CrossRef]
- Ridker, P.M.; Hennekens, C.H.; Buring, J.E.; Rifai, N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med. 2000, 342, 836–843. [Google Scholar] [CrossRef]
- Valsecchi, L.; Sprio, A.; Baroso, A.; Sciolla, M.; Carriero, V.; Bertolini, F.; Di Stefano, A.; Ricciardolo, F.L.M. Identification of plasma fibrinogen-high asthma phenotype. Eur. Respir. J. 2022, 60 (Suppl. S66), 1670. [Google Scholar] [CrossRef]
- Sun, M.; Liang, Q.; Ma, Y.; Wang, F.; Lin, L.; Li, T.; Sun, Z.; Duan, J. Particulate matter exposure and biomarkers associated with blood coagulation: A meta-analysis. Ecotoxicol. Environ. Saf. 2020, 206, 111417. [Google Scholar] [CrossRef]
- Montone, R.A.; Rinaldi, R.; Bonanni, A.; Severino, A.; Pedicino, D.; Crea, F.; Liuzzo, G. Impact of air pollution on ischemic heart disease: Evidence, mechanisms, clinical perspectives. Atherosclerosis 2023, 366, 22–31. [Google Scholar] [CrossRef]
- Sneeboer, M.M.; Majoor, C.J.; de Kievit, A.; Meijers, J.C.; van der Poll, T.; Kamphuisen, P.W.; Bel, E.H. Prothrombotic state in patients with severe and prednisolone-dependent asthma. J. Allergy Clin. Immunol. 2016, 137, 1727–1732. [Google Scholar] [CrossRef]
- Shah, P.A.; Brightling, C. Biologics for severe asthma-Which, when and why? Respirology 2023, 28, 709–721. [Google Scholar]
- Yuan, Z.; Miao, L.; Fang, M.; Chen, P.; Yang, L.; Jiang, C.; Wang, H.; Xu, D.; Lin, Z. A panel study of exposure to fine particulate matter and modeled respiratory deposition on biomarkers of inflammation, blood coagulation, and oxidative stress in healthy young adults in Hefei, China. Atmos. Environ. 2024, 329, 120535. [Google Scholar]
- Zhang, B.; Xu, H.; He, X.; Wang, T.; Li, M.; Shan, X.; Zhu, Y.; Liu, C.; Zhao, Q.; Song, X.; et al. Short-term effects of primary and secondary particulate matter on ceramide metabolism, pro-inflammatory response, and blood coagulation. Toxics 2024, 12, 225. [Google Scholar] [CrossRef]
- Thomson, N.C.; Charron, C.E.; Chaudhuri, R.; Spears, M.; Ito, K.; McSharry, C. Atorvastatin in combination with inhaled beclometasone modulates inflammatory sputum mediators in smokers with asthma. Pulm. Pharmacol. Ther. 2015, 31, 1–8. [Google Scholar] [PubMed]
- Zhang, Q.X.; Zhang, H.F.; Lu, X.T.; Zhao, J.; Xu, Q.X. Statins improve asthma symptoms by suppressing inflammation: A meta-analysis based on RCTs. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 8401–8410. [Google Scholar]
- Lin, C.-M.; Huang, T.-H.; Chi, M.-C.; Guo, S.-E.; Lee, C.-W.; Hwang, S.-L.; Shi, C.-S. N-acetylcysteine alleviates fine particulate matter (PM2.5)-induced lung injury by attenuation of ROS-mediated recruitment of neutrophils and Ly6Chigh monocytes and lung inflammation. Ecotoxicol. Environ. Saf. 2022, 239, 113632. [Google Scholar] [CrossRef]
- Bang, D.W.; Wi, C.-I.; Na Kim, E.; Hagan, J.; Roger, V.; Manemann, S.; Lahr, B.; Ryu, E.; Juhn, Y.J. Asthma status and risk of incident myocardial infarction: A population-based case-control study. Allergy Clin. Immunol. Pract. 2016, 4, 917–923. [Google Scholar]
- Suissa, S.; Assimes, T.; Brassard, P. Inhaled corticosteroid use in asthma and the prevention of myocardial infarction. Am. J. Med. 2003, 115, 377–381. [Google Scholar] [CrossRef]
- Camargo, C.A.; Barr, R.G.; Chen, R.; Speizer, F.E. Prospective study of inhaled corticosteroid use, cardiovascular mortality, and all-cause mortality in asthmatic women. Chest 2008, 134, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Wood, L.G.; Baines, K.J.; Fu, J.; Scott, H.A.; Gibson, P.G. The neutrophilic inflammatory phenotype is associated with systemic inflammation in asthma. Chest 2012, 142, 86–93. [Google Scholar] [CrossRef]
Variables | Asthma (n = 41) | Healthy Controls (n = 20) | p-Value |
---|---|---|---|
Age (years) | 55.7 ± 12.1 | 55.9 ± 8.3 | 0.936 |
Female sex, n (%) | 29 (70.7) | 13 (65.0) | 0.770 |
Height (cm) | 156.2 ± 7.8 | 157.5 ± 6.9 | 0.519 |
Body weight (kg) | 63.4 ± 14.8 | 64.1 ± 10.4 | 0.859 |
BMI (kg/m2) | 25.9 ± 5.3 | 25.7 ± 3.0 | 0.897 |
Age of asthma onset (years) | 38.7 ± 14.4 | N.A. | |
Smoking status, n (%) | 1.000 | ||
Non-smoker | 37 (90.2) | 19 (95.0) | |
Current-smoker | 0 (0.0) | 0 (0.0) | |
Ex-smoker | 4 (9.8) | 1 (5.0) | |
Education level | 0.558 | ||
Primary | 8 (19.5) | 2 (10.0) | |
Secondary | 14 (34.1) | 9 (45.0) | |
Bachelor’s degree or higher | 19 (46.3) | 9 (45.0) | |
Underlying disease | 0.060 | ||
No | 21 (51.2) | 3 (15.0) | |
Hypertension | 3 (7.3) | 1 (5.0) | |
Dyslipidemia | 5 (12.2) | 5 (25.0) | |
Hypertension + Dyslipidemia | 7 (17.1) | 8 (40.0) | |
DM + Dyslipidemia | 2 (4.9) | 0 (0.0) | |
Hypertension + DM + Dyslipidemia | 3 (7.3) | 3 (15.0) | |
Inhaled medication used | |||
ICS + LABA | 39 (95.1) | N.A. | |
ICS + LABA + LAMA | 2 (4.9) | N.A. | |
ICS (dose) | |||
Low | 25 (61.0) | N.A. | |
Medium | 15 (36.6) | N.A. | |
High | 1 (2.4) | N.A. | |
N-acetyl cysteine (NAC) use | 5 (12.2) | N.A. | |
Statins use | 17 (41.5) | 16 (80.0) | 0.006 |
Antihypertensives | 13 (31.7) | 12 (60) | 0.052 |
Information on Exposure to Polluted Air in Pollution Period | |||
Use pollution protection, e.g., N-95 mask (yes) | 4 (9.8) | 10 (50.0) | 0.001 |
Have an air purifier at home (yes) | 20 (48.8) | 12 (60.0) | 0.430 |
Duration of air purifier use (hours/day) (median, IQR) | 8.0 (6.5, 10.5) | 10.0 (8.0, 18.8) | 0.248 |
Variables | Non-Pollution Period | Pollution Period | p-Value |
---|---|---|---|
PM2.5 (µg/m3) | 12.7 ± 2.5 | 71.9 ± 22.9 | <0.001 |
Temperature (Celsius) | 25.1 ± 1.4 | 27.5 ± 1.6 | <0.001 |
Humidity (%) | 76.8 ± 10.1 | 57.2 ± 6.9 | <0.001 |
Variables | Asthma (n = 41) | Healthy Controls (n = 20) | ||||
---|---|---|---|---|---|---|
Non-Pollution Period | Pollution Period | p-Value | Non-Pollution Period | Pollution Period | p-Value | |
CBC (mean ± SD) | ||||||
Hemoglobin (g/dL) | 13.2 ± 1.5 | 13.0 ± 1.4 | 0.058 | 13.1 ± 1.5 | 13.1 ± 1.6 | 0.936 |
Hematocrit (%) | 40.7 ± 4.3 | 41.3 ± 4.0 | 0.061 | 40.5 ± 3.1 | 41.1 ± 3.8 | 0.188 |
White blood cells (×103 cells/mm3) | 6.7 ± 1.8 | 7.1 ± 2.6 | 0.156 | 6.4 ± 1.4 | 6.1 ± 1.4 | 0.406 |
Neutrophil count (×103 cells/mm3) | 3.9 (2.9, 4.6) | 3.6 (2.8, 5.3) | 0.892 | 3.5 (2.6, 4.6) | 3.1 (2.6, 4.1) | 0.502 |
Lymphocyte count (×103 cells/mm3) | 1.9 ± 0.6 | 2.0 ± 0.6 | 0.427 | 2.1 ± 0.4 | 2.1 ± 0.5 | 0.823 |
Eosinophil count (cells/mm3) | 276.8 * (149.4, 459.9) | 267.5 ** (140.1, 406.9) | 0.564 | 134.9 (75.6, 223.8) | 153.0 (89.6, 225.6) | 0.852 |
Platelet count (×103 platelets/mm3) | 279.5 ± 59.6 | 279.8 ± 66.0 | 0.950 | 264.6 ± 51.1 | 258.7 ± 46.7 | 0.384 |
Fibrinogen (mg/dL) | 293.0 (253.5, 344.2) | 312.3 (255.8, 356.2) | 0.346 | 280.0 (234.0, 329.0) | 288.2 (245.0, 332.9) | 0.251 |
hsCRP (mg/L) | 1.1 (0.7, 2.9) | 1.6 (0.7, 4.1) | 0.162 | 0.9 (0.5, 2.9) | 1.3 (0.7, 2.5) | 0.605 |
D-dimer (ng/mL) | 324.0 * (221.0, 484.0) | 280.0 ** (210.5, 426.0) | 0.712 | 196.5 (163.0, 329.5) | 203.0 (164.0, 263.5) | 0.220 |
Oxidative stress biomarker | ||||||
8-OHdG (ng/mL) | 11.6 (9.5, 13.0) | 10.9 (9.5, 13.2) | 0.776 | 11.8 (9.2, 13.4) | 11.2 (9.9, 12.9) | 0.709 |
Inflammatory and thrombosis biomarkers | ||||||
IL-6 (pg/mL) | 2.1 (1.3, 4.5) | 2.6 (1.5, 5.1) | 0.539 | 4.5 (1.0, 8.8) | 2.6 (2.1, 4.5) | 0.039 |
IL-8 (pg/mL) | 4.5 (3.5, 6.3) | 4.2 (2.9, 5.5) ** | 0.096 | 4.6 (3.5, 6.2) | 5.9 (4.4, 8.5) | 0.057 |
TNF-α (pg/mL) | 11.3 (7.8, 21.1) | 14.3 (9.3, 27.4) | 0.041 | 9.4 (7.2, 19.2) | 9.9 (7.3, 20.1) | 0.455 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaiwong, W.; Liwsrisakun, C.; Inchai, J.; Duangjit, P.; Bumroongkit, C.; Deesomchok, A.; Theerakittikul, T.; Limsukon, A.; Tajarernmuang, P.; Niyatiwatchanchai, N.; et al. Biomarkers of Oxidative Stress, Systemic Inflammation and Thrombosis in Adult Asthmatic Patients Treated with Inhaled Corticosteroids During Exposure to Fine Particulate Matter. J. Clin. Med. 2025, 14, 2360. https://doi.org/10.3390/jcm14072360
Chaiwong W, Liwsrisakun C, Inchai J, Duangjit P, Bumroongkit C, Deesomchok A, Theerakittikul T, Limsukon A, Tajarernmuang P, Niyatiwatchanchai N, et al. Biomarkers of Oxidative Stress, Systemic Inflammation and Thrombosis in Adult Asthmatic Patients Treated with Inhaled Corticosteroids During Exposure to Fine Particulate Matter. Journal of Clinical Medicine. 2025; 14(7):2360. https://doi.org/10.3390/jcm14072360
Chicago/Turabian StyleChaiwong, Warawut, Chalerm Liwsrisakun, Juthamas Inchai, Pilaiporn Duangjit, Chaiwat Bumroongkit, Athavudh Deesomchok, Theerakorn Theerakittikul, Atikun Limsukon, Pattraporn Tajarernmuang, Nutchanok Niyatiwatchanchai, and et al. 2025. "Biomarkers of Oxidative Stress, Systemic Inflammation and Thrombosis in Adult Asthmatic Patients Treated with Inhaled Corticosteroids During Exposure to Fine Particulate Matter" Journal of Clinical Medicine 14, no. 7: 2360. https://doi.org/10.3390/jcm14072360
APA StyleChaiwong, W., Liwsrisakun, C., Inchai, J., Duangjit, P., Bumroongkit, C., Deesomchok, A., Theerakittikul, T., Limsukon, A., Tajarernmuang, P., Niyatiwatchanchai, N., Trongtrakul, K., Chitchun, C., Chattipakorn, N., Chattipakorn, S. C., Apaijai, N., & Pothirat, C. (2025). Biomarkers of Oxidative Stress, Systemic Inflammation and Thrombosis in Adult Asthmatic Patients Treated with Inhaled Corticosteroids During Exposure to Fine Particulate Matter. Journal of Clinical Medicine, 14(7), 2360. https://doi.org/10.3390/jcm14072360