Predictors of Disengagement and Loss to Follow-Up of Intravitreal Injection for Neovascular Age-Related Macular Degeneration in a Real-World Clinical Setting: Post Hoc Analysis of the Multicenter Survey from the Japanese Clinical Retinal Study (J-CREST) Group
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection
2.3. Outcome Measures
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Patients with Two Groups
3.2. Baseline Visual Acuity and Ocular Findings of Two Groups
3.3. Anti-VEGF Agents Used and Treatment Strategies
3.4. Visual Acuity After 1 Year
3.5. Mean Number of Injection and Hospital Visits for 1 Year
3.6. Discontinuation Factors of Anti-VEGF Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flaxman, S.R.; Bourne, R.R.A.; Resnikoff, S.; Ackland, P.; Braithwaite, T.; Cicinelli, M.V.; Das, A.; Jonas, J.B.; Keeffe, J.; Kempen, J.H.; et al. Global causes of blindness and distance vision impairment 1990–2020: A systematic review and meta-analysis. Lancet Glob. Health 2017, 5, e1221–e1234. [Google Scholar] [CrossRef] [PubMed]
- Ambati, J.; Fowler, B.J. Mechanisms of age-related macular degeneration. Neuron 2012, 75, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Spaide, R.F.; Jaffe, G.J.; Sarraf, D.; Freund, K.B.; Sadda, S.R.; Staurenghi, G.; Waheed, N.K.; Chakravarthy, U.; Rosenfeld, P.J.; Holz, F.G.; et al. Consensus Nomenclature for Reporting Neovascular Age-Related Macular Degeneration Data. Ophthalmology 2020, 127, 616–636. [Google Scholar] [CrossRef]
- Yannuzzi, L.A.; Wong, D.W.; Sforzolini, B.S.; Goldbaum, M.; Tang, K.C.; Spaide, R.F.; Freund, K.B.; Slakter, J.S.; Guyer, D.R.; Sorenson, J.A.; et al. Polypoidal choroidal vasculopathy and neovascularized age-related macular degeneration. Arch. Ophthalmol. 1999, 117, 1503–1510. [Google Scholar] [CrossRef] [PubMed]
- Singerman, L.J.; Brucker, A.J.; Jampol, L.M.; Lim, J.I.; Rosenfeld, P.; Schachat, A.P.; Spaide, R.F. Neovascular age-related macular degeneration: Roundtable. Retina 2005, 25, S1–S22. [Google Scholar] [CrossRef]
- Yannuzzi, L.A.; Negrão, S.; Iida, T.; Carvalho, C.; Rodriguez-Coleman, H.; Slakter, J.; Freund, K.B.; Sorenson, J.; Orlock, D.; Borodoker, N. Retinal angiomatous proliferation in age-related macular degeneration. Retina 2001, 21, 416–434. [Google Scholar] [CrossRef]
- Solomon, S.D.; Lindsley, K.; Vedula, S.S.; Krzystolik, M.G.; Hawkins, B.S. Anti-vascular endothelial growth factor for neovascular age-related macular degeneration. Cochrane Database Syst. Rev. 2019, 3, CD005139. [Google Scholar] [CrossRef]
- Bakri, S.J.; Thorne, J.E.; Ho, A.C.; Ehlers, J.P.; Schoenberger, S.D.; Yeh, S.; Kim, S.J. Safety and Efficacy of Anti-Vascular Endothelial Growth Factor Therapies for Neovascular Age-Related Macular Degeneration: A Report by the American Academy of Ophthalmology. Ophthalmology 2019, 126, 55–63. [Google Scholar] [CrossRef]
- Rosenfeld, P.J.; Brown, D.M.; Heier, J.S.; Boyer, D.S.; Kaiser, P.K.; Chung, C.Y.; Kim, R.Y. Ranibizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 2006, 355, 1419–1431. [Google Scholar] [CrossRef]
- Brown, D.M.; Kaiser, P.K.; Michels, M.; Soubrane, G.; Heier, J.S.; Kim, R.Y.; Sy, J.P.; Schneider, S. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N. Engl. J. Med. 2006, 355, 1432–1444. [Google Scholar] [CrossRef]
- Heier, J.S.; Brown, D.M.; Chong, V.; Korobelnik, J.F.; Kaiser, P.K.; Nguyen, Q.D.; Kirchhof, B.; Ho, A.; Ogura, Y.; Yancopoulos, G.D.; et al. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology 2012, 119, 2537–2548. [Google Scholar] [CrossRef] [PubMed]
- Dugel, P.U.; Koh, A.; Ogura, Y.; Jaffe, G.J.; Schmidt-Erfurth, U.; Brown, D.M.; Gomes, A.V.; Warburton, J.; Weichselberger, A.; Holz, F.G.; et al. HAWK and HARRIER: Phase 3, Multicenter, Randomized, Double-Masked Trials of Brolucizumab for Neovascular Age-Related Macular Degeneration. Ophthalmology 2020, 127, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Heier, J.S.; Khanani, A.M.; Quezada Ruiz, C.; Basu, K.; Ferrone, P.J.; Brittain, C.; Figueroa, M.S.; Lin, H.; Holz, F.G.; Patel, V.; et al. Efficacy, durability, and safety of intravitreal faricimab up to every 16 weeks for neovascular age-related macular degeneration (TENAYA and LUCERNE): Two randomised, double-masked, phase 3, non-inferiority trials. Lancet 2022, 399, 729–740. [Google Scholar] [CrossRef]
- Yoneda, K.; Takeuchi, M.; Yasukawa, T.; Terasaki, H.; Yamamoto, Y.; Jujo, T.; Wakuta, M.; Matsubara, H.; Mitamura, Y.; Kato, A.; et al. Anti-VEGF Treatment Strategies for 3 Subtypes of Neovascular Age-Related Macular Degeneration in a Clinical Setting: A Multicenter Cohort Study in Japan. Ophthalmol. Retin. 2023, 7, 869–878. [Google Scholar] [CrossRef]
- Westborg, I.; Rosso, A. Risk Factors for Discontinuation of Treatment for Neovascular Age-Related Macular Degeneration. Ophthalmic Epidemiol. 2018, 25, 176–182. [Google Scholar] [CrossRef]
- Bakri, S.J.; Karcher, H.; Andersen, S.; Souied, E.H. Anti-Vascular Endothelial Growth Factor Treatment Discontinuation and Interval in Neovascular Age-Related Macular Degeneration in the United States. Am. J. Ophthalmol. 2022, 242, 189–196. [Google Scholar] [CrossRef]
- Cho, S.C.; Park, K.H.; Park, S.J.; Joo, K.; Woo, S.J. Discontinuation of treatment and retreatment of neovascular age-related macular degeneration in the real-world: Bundang AMD cohort study report 5. Front. Med. 2023, 10, 1204026. [Google Scholar] [CrossRef] [PubMed]
- Gillies, M.; Arnold, J.; Bhandari, S.; Essex, R.W.; Young, S.; Squirrell, D.; Nguyen, V.; Barthelmes, D. Ten-Year Treatment Outcomes of Neovascular Age-Related Macular Degeneration from Two Regions. Am. J. Ophthalmol. 2020, 210, 116–124. [Google Scholar] [CrossRef]
- Hujanen, P.; Ruha, H.; Lehtonen, E.; Pirinen, I.; Huhtala, H.; Vaajanen, A.; Syvanen, U.; Tuulonen, A.; Uusitalo-Jarvinen, H. Ten-year real-world outcomes of antivascular endothelial growth factor therapy in neovascular age-related macular degeneration using pro re nata regimen. BMJ Open Ophthalmol. 2023, 8, e001328. [Google Scholar] [CrossRef]
- Rasmussen, A.; Sander, B.; Larsen, M.; Brandi, S.; Fuchs, J.; Hansen, L.H.; Lund-Andersen, H. Neovascular age-related macular degeneration treated with ranibizumab or aflibercept in the same large clinical setting: Visual outcome and number of injections. Acta Ophthalmol. 2017, 95, 128–132. [Google Scholar] [CrossRef]
- Basilious, A.; Smuck, B.; Duncan, J.; Malvankar-Mehta, M.S.; Juncal, V.R.; Hooper, P.; Sheidow, T.G. Patterns of anti-vascular endothelial growth factor discontinuation in neovascular age-related macular degeneration. Can. J. Ophthalmol. 2024, 59, e161–e169. [Google Scholar] [CrossRef]
- Starr, M.R.; Kung, F.F.; Mejia, C.A.; Bui, Y.T.; Bakri, S.J. Ten-year follow-up of patients with exudative age-related macular degeneration treated with intravitreal anti-vascular endothelial growth factor injections. Retina 2020, 40, 1665–1672. [Google Scholar] [CrossRef] [PubMed]
- Brynskov, T.; Munch, I.C.; Larsen, T.M.; Erngaard, L.; Sorensen, T.L. Real-world 10-year experiences with intravitreal treatment with ranibizumab and aflibercept for neovascular age-related macular degeneration. Acta Ophthalmol. 2020, 98, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Chang, Y.S.; Kim, J.W. Natural course of patients discontinuing treatment for age-related macular degeneration and factors associated with visual prognosis. Retina 2017, 37, 2254–2261. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.; Vaze, A.; Fraser-Bell, S.; Arnold, J.; Essex, R.W.; Barthelmes, D.; Gillies, M.C.; Fight Retinal Blindness! Study Group. Outcomes of Suspending VEGF Inhibitors for Neovascular Age-Related Macular Degeneration When Lesions Have Been Inactive for 3 Months. Ophthalmol. Retin. 2019, 3, 623–628. [Google Scholar] [CrossRef]
- Scoles, D.; Ying, G.S.; Pan, W.; Hua, P.; Grunwald, J.E.; Daniel, E.; Jaffe, G.J.; Toth, C.A.; Martin, D.F.; Maguire, M.G.; et al. Characteristics of Eyes with Good Visual Acuity at 5 Years After Initiation of Treatment for Age-Related Macular Degeneration but Not Receiving Treatment from Years 3 to 5: Post Hoc Analysis of the CATT Randomized Clinical Trial. JAMA Ophthalmol. 2020, 138, 276–284. [Google Scholar] [CrossRef]
- Adrean, S.D.; Chaili, S.; Grant, S.; Pirouz, A. Recurrence Rate of Choroidal Neovascularization in Neovascular Age-Related Macular Degeneration Managed with a Treat-Extend-Stop Protocol. Ophthalmol. Retin. 2018, 2, 225–230. [Google Scholar] [CrossRef]
- Gomi, F.; Toyoda, R.; Yoon, A.H.; Imai, K. Factors of Anti-Vascular Endothelial Growth Factor Therapy Withdrawal in Patients with Neovascular Age-Related Macular Degeneration: Implications for Improving Patient Adherence. J. Clin. Med. 2021, 10, 3106. [Google Scholar] [CrossRef]
- Vaze, A.; Fraser-Bell, S.; Gillies, M. Reasons for discontinuation of intravitreal vascular endothelial growth factor inhibitors in neovascular age-related macular degeneration. Retina 2014, 34, 1774–1778. [Google Scholar] [CrossRef]
- Boulanger-Scemama, E.; Querques, G.; About, F.; Puche, N.; Srour, M.; Mane, V.; Massamba, N.; Canoui-Poitrine, F.; Souied, E.H. Ranibizumab for exudative age-related macular degeneration: A five year study of adherence to follow-up in a real-life setting. J. Fr. Ophtalmol. 2015, 38, 620–627. [Google Scholar] [CrossRef]
- Dhingra, N.; Upasani, D.; Ghanchi, F.D. Patterns of treatment discontinuation in patients receiving anti-vascular endothelial growth factor for neovascular age-related macular degeneration. Indian J. Ophthalmol. 2022, 70, 2065–2070. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, A.; Bloch, S.B.; Fuchs, J.; Hansen, L.H.; Larsen, M.; LaCour, M.; Lund-Andersen, H.; Sander, B. A 4-year longitudinal study of 555 patients treated with ranibizumab for neovascular age-related macular degeneration. Ophthalmology 2013, 120, 2630–2636. [Google Scholar] [CrossRef] [PubMed]
- Droege, K.M.; Muether, P.S.; Hermann, M.M.; Caramoy, A.; Viebahn, U.; Kirchhof, B.; Fauser, S. Adherence to ranibizumab treatment for neovascular age-related macular degeneration in real life. Graefes Arch. Clin. Exp. Ophthalmol. 2013, 251, 1281–1284. [Google Scholar] [CrossRef] [PubMed]
- Okada, M.; Wong, T.Y.; Mitchell, P.; Eldem, B.; Talks, S.J.; Aslam, T.; Daien, V.; Rodriguez, F.J.; Gale, R.; Barratt, J.; et al. Defining Nonadherence and Nonpersistence to Anti-Vascular Endothelial Growth Factor Therapies in Neovascular Age-Related Macular Degeneration. JAMA Ophthalmol. 2021, 139, 769–776. [Google Scholar] [CrossRef]
- Jones, R.; Stratton, I.M.; Scanlon, P.H.; Theodoropoulou, S. Disengagement and loss to follow-up in intravitreal injection clinics for neovascular age-related macular degeneration. Eye 2023, 37, 3186–3190. [Google Scholar] [CrossRef]
Total nAMD (n = 667) | Continuation (n = 580) | Discontinuation (n = 87) | p Value * | |
---|---|---|---|---|
Age, yrs | ||||
Mean (SD) | 75.5 (9.1) | 75.5 (8.6) | 75.3 (11.9) | 0.6376 |
[95% CI] | [74.8, 76.2] | [74.7, 76.1] | [72.8, 77.8] | |
Gender, no (%) | ||||
Male | 455 (68.2) | 395 (68.1) | 60 (69.0) | 0.9025 |
Female | 212 (31.8) | 185 (31.9) | 27 (31.0) | |
Systemic factors, n (%) | ||||
Smoking history (n = 444) | 247 (55.6) | 225 (57.5) | 22 (41.5) | 0.0384 |
Diabetes (n = 579) | 117 (20.2) | 102 (20.5) | 15 (18.5) | 0.7665 |
Hypertension (n = 578) | 318 (55.0) | 281 (56.4) | 37 (46.3) | 0.0918 |
Cardiovascular disease (n = 575) | 84 (14.6) | 69 (13.9) | 15 (19.2) | 0.2275 |
Cerebrovascular disease (n = 583) | 50 (8.5) | 41 (8.1) | 9 (11.5) | 0.2853 |
Anticoagulant agents (n = 428) | 72 (16.8) | 61 (16.7) | 11 (17.5) | 0.8564 |
Total nAMD (n = 667) | Continuation (n = 580) | Discontinuation (n = 87) | p Value * | ||
---|---|---|---|---|---|
Subtype of nAMD n (%) | tAMD | 359 (53.8) | 312 (53.8) | 47 (54.0) | 0.5424 |
PCV | 266 (39.9) | 229 (39.5) | 37 (42.5) | ||
RAP | 42 (6.3) | 39 (6.7) | 3 (3.5) |
Continuation (n = 580) | Discontinuation (n = 87) | p Value * | |
---|---|---|---|
logMAR VA in affected eye | 0.1909 | ||
Mean (SD) [95% CI] | 0.32 (0.47) [0.28, 0.36] | 0.44 (0.58) [0.32, 0.56] | |
Median (range) | 0.22 (−0.18–3) | 0.22 (−0.18–3) | |
logMAR VA in fellow eye | 0.2682 | ||
Mean (SD) | 0.28 (0.58) [0.23, 0.33] | 0.39 (0.74) [0.23, 0.55] | |
Median (range) | 0 (−0.18–5) | 0 (−0.18–5) | |
Mean central retinal thickness in affected eye, µm (SD) | 312 (144) | 368 (194) | 0.0465 |
[95% CI] | [300, 324] | [327, 409] | |
Mean central choroidal thickness in affected eye, µm, (SD) | 288 (130) | 285 (123) | 0.9404 |
[95% CI] | [277, 299] | [259, 311] | |
SD-OCT findings, n. (%) | |||
IRF (n = 665) | 171 (29.6) | 30 (34.5) | 0.3812 |
SHRM (n = 664) | 232 (40.0) | 37 (43.0) | 0.6386 |
SRF (n = 667) | 499 (86.0) | 73 (83.9) | 0.6215 |
SRH (n = 660) | 198 (34.6) | 29 (33.3) | 0.9038 |
Serous PED (n = 667) | 262 (45.2) | 55 (63.2) | 0.0018 |
Total (n = 667) | Continuation (n = 580) | Discontinuation (n = 87) | p Value * | |
---|---|---|---|---|
Anti-VEGF agents, n (%) | 0.4644 | |||
Ranibizumab | 221 (33.1) | 189 (32.6) | 32 (36.8) | |
Aflibercept | 446 (66.9) | 391 (67.4) | 55 (63.2) | |
Injection protocol, n (%) | <0.001 | |||
PRN | 342 (51.4) | 269 (46.4) | 73 (84.9) | |
TAE | 281 (42.2) | 269 (46.4) | 12 (14.0) | |
Bimonthly | 43 (6.5) | 42 (7.2) | 1 (1.2) |
Continuation (n = 580) | Discontinuation (n = 49) | p Value * | |
---|---|---|---|
logMAR VA in affected eye | |||
Mean (SD) [95% CI] | 0.29 (0.44) [0.25, 0.33] | 0.60 (0.90) [0.35, 0.85] | 0.0193 |
Median (range) | 0.15 (−0.18–4) | 0.30 (−0.18–5) | |
logMAR VA in fellow eye | |||
Mean (SD) [95% CI] | 0.18 (0.54) [0.14, 0.22] | 0.24 (0.83) [0.008, 0.47] | 0.8462 |
Median (range) | 0 (−0.18–4) | 0 (−0.18–5) | |
Mean number of injections for 1 year (SD) | 5.6 (2.4) | 3.6 (1.9) | <0.001 |
[95% CI] | [5.4, 5.8] | [3.1, 4.1] | |
Mean hospital visits for 1 year (SD) | 13.0 (6.1) | 10.4 (2.7) | 0.0016 |
[95% CI] | [12.5, 13.5] | [9.6, 11.2] |
Odds Ratio | p Value | 95% CI of Odds Ratio | ||
---|---|---|---|---|
Lower limit | Upper limit | |||
Age | 1.00 | 0.87678 | 0.96 | 1.04 |
Gender (male/female) | 0.98 | 0.94867 | 0.58 | 1.66 |
CCI | 0.94 | 0.68773 | 0.67 | 1.30 |
logMAR VA in affected eye | 1.57 | 0.04944 | 1.01 | 2.45 |
logMAR VA in fellow eye | 1.28 | 0.16369 | 0.91 | 1.82 |
Subtype of nAMD PCV vs. tAMD | 1.11 | 0.6811 | 0.68 | 1.82 |
Subtype of nAMD PCV vs. RAP | 3.19 | 0.0758 | 0.89 | 11.47 |
Subtype of nAMD RAP vs. tAMD | 0.35 | 0.1004 | 0.10 | 1.23 |
Anti-VEGF regimen PRN vs. TAE | 6.16 | <0.0001 | 3.25 | 11.68 |
Anti-VEGF regimen PRN vs. bimonthly | 11.54 | 0.0169 | 1.55 | 85.89 |
Anti-VEGF regimen bimonthly vs. TAE | 0.53 | 0.5532 | 0.07 | 4.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imazeki, M.; Takeuchi, M.; Yasukawa, T.; Terasaki, H.; Yamamoto, Y.; Jujo, T.; Wakuta, M.; Matsubara, H.; Mitamura, Y.; Kato, A.; et al. Predictors of Disengagement and Loss to Follow-Up of Intravitreal Injection for Neovascular Age-Related Macular Degeneration in a Real-World Clinical Setting: Post Hoc Analysis of the Multicenter Survey from the Japanese Clinical Retinal Study (J-CREST) Group. J. Clin. Med. 2025, 14, 1803. https://doi.org/10.3390/jcm14061803
Imazeki M, Takeuchi M, Yasukawa T, Terasaki H, Yamamoto Y, Jujo T, Wakuta M, Matsubara H, Mitamura Y, Kato A, et al. Predictors of Disengagement and Loss to Follow-Up of Intravitreal Injection for Neovascular Age-Related Macular Degeneration in a Real-World Clinical Setting: Post Hoc Analysis of the Multicenter Survey from the Japanese Clinical Retinal Study (J-CREST) Group. Journal of Clinical Medicine. 2025; 14(6):1803. https://doi.org/10.3390/jcm14061803
Chicago/Turabian StyleImazeki, Masaya, Masaru Takeuchi, Tsutomu Yasukawa, Hiroto Terasaki, Yuki Yamamoto, Tatsuya Jujo, Makiko Wakuta, Hisashi Matsubara, Yoshinori Mitamura, Aki Kato, and et al. 2025. "Predictors of Disengagement and Loss to Follow-Up of Intravitreal Injection for Neovascular Age-Related Macular Degeneration in a Real-World Clinical Setting: Post Hoc Analysis of the Multicenter Survey from the Japanese Clinical Retinal Study (J-CREST) Group" Journal of Clinical Medicine 14, no. 6: 1803. https://doi.org/10.3390/jcm14061803
APA StyleImazeki, M., Takeuchi, M., Yasukawa, T., Terasaki, H., Yamamoto, Y., Jujo, T., Wakuta, M., Matsubara, H., Mitamura, Y., Kato, A., Kondo, M., Kimura, K., Takagi, H., Gomi, F., & Sakamoto, T., on behalf of the Japanese Clinical Retinal Study (J-CREST) Group. (2025). Predictors of Disengagement and Loss to Follow-Up of Intravitreal Injection for Neovascular Age-Related Macular Degeneration in a Real-World Clinical Setting: Post Hoc Analysis of the Multicenter Survey from the Japanese Clinical Retinal Study (J-CREST) Group. Journal of Clinical Medicine, 14(6), 1803. https://doi.org/10.3390/jcm14061803