Comparison of the Effects of Endurance Training Conducted in Conditions of Normoxia and Artificial Hypoxia in Patients After Myocardial Infarction
Abstract
:1. Background
2. Objective
- Do the conditions in which rehabilitation training is conducted (normoxia or hypoxia) affect the level of exercise tolerance assessed by an exercise test?
- Do myocardial hemodynamic indicators assessed by echocardiography change depending on the conditions in which the training program is implemented as part of the second stage of rehabilitation (normoxia or hypoxia)?
- Does rehabilitation training conducted in different environmental conditions (normoxia or hypoxia) affect the results of blood tests (cytokines, morphology, fibrinogen)?
3. Material and Research Methods
3.1. Characteristics of the Research Group
- a history of uncomplicated myocardial infarction, at least 4 weeks after the incident,
- men and women aged 35–75,
- qualification for cardiac rehabilitation with model A (≥7 MET),
- informed consent to participate in this study,
- no active inflammatory diseases or other uncontrolled non-cardiac diseases.
- unstable coronary artery disease,
- recent (up to 4 weeks) past heart attack,
- chronic heart failure,
- arrhythmias and ECG conduction disturbances,
- resistant hypertension,
- positive stress test result,
- atherosclerosis of the peripheral arteries of the lower limbs,
- thromboembolism,
- COPD,
- anemia,
- diseases of the musculoskeletal system that make it impossible to perform an exercise test,
- SARS COVID-19 virus infection,
- lack of consent to participate in this study.
3.2. Methods
- -
- test duration [min],
- -
- distance [m],
- -
- energy cost MET,
- -
- resting (HRrest) and peak (HRpeak) heart rate [bpm],
- -
- resting (SBPrest and DBPrest) and peak (SBPpeak and DBPpeak) blood pressure [mmHg],
- -
- peak ventilation VE [1/min],
- -
- BF breathing frequency [1/min],
- -
- peak oxygen consumption VO2peak/kg [mL/min/kg],
- -
- respiratory exchange ratio RER.
3.3. Measured Parameters
- LVEDd—left ventricular end-diastolic dimension (mm)
- LVESd—left ventricular end-systolic dimension (mm)
- LVESV—left ventricular end systolic volume (mL)
- LVEDV—left ventricular end-diastolic volume (mL)
- LVEF—left ventricular ejection fraction (%).
- A wave—diastolic muscle movement during atrial contraction [m/s]
- E wave—diastolic movement of the muscle in the phase of rapid filling of the ventricle [m/s]
- e’ lateral—early diastolic velocity of the lateral part of the mitral annulus [m/s]
- e’ septal—early diastolic velocity of the medial part of the mitral annulus [m/s]
- E/E’—ratio of the maximum speed of blood inflow through the mitral orifice in the fast phase ventricular filling and maximum mitral annulus velocity in the phase of quick filling of the chamber
- E/A—ratio of early mitral inflow velocity and mitral inflow velocity over time of atrial contraction
- TAPSE—tricuspid annular plane systolic excursion
- MAPSE—mitral annulus peak systolic excursion.
3.4. Training Protocol
- normoxia 350 m a.s.l., O2 level = 21%, temperature = 21 °C, atmospheric pressure 965 hPa
- hypoxia 3000 m a.s.l., O2 level = 14.8%, temperature = 21 °C, CO2 level = 1586 ppm, humidity = 33.6%, atmospheric pressure 985 hPa.
3.5. Statistics
4. Results
4.1. Spiroergometric Exercise Test
4.2. Morphology, Cytokines, Fibrinogen
4.3. Echocardiography with Tissue Doppler
4.4. Determining the Significance of Intergroup Differences Before Training
4.5. Blood Oxygen Saturation Level
5. Discussion
5.1. Spiroergometric Exercise Test
5.2. Blood Parameters
5.3. Cytokines
5.4. Echocardiography
5.5. Blood Oxygen Saturation Level
5.6. Study Limitations
6. Conclusions
- The conditions in which the rehabilitation training was conducted affect the level of exercise tolerance.
- The hypoxic conditions in which the training was conducted affected only two hemodynamic parameters: LVESd and e’ septal.
- Rehabilitation training conducted in various environmental conditions had an impact only on the IL-10 value which, in hypoxic conditions, decreased significantly.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanz-Ayán, M.P.; González-Calero, M.C.; García, J.I.; Alcazar, C.G.; de Juan-Baguda, J.; Escudero, A.A.; Chavala, M.L.A.; Esteva, S.; Martin, J.I.C. Acondicionamiento hipóxico-hiperóxico intermitente en la rehabilitación de la insuficiencia cardiaca. CardioClinics 2022, 58, 79–87. [Google Scholar] [CrossRef]
- Dun, Y.; Smith, J.R.; Liu, S.; Olson, T.P. High Intensity Interval Training in Cardiac Rehabilitation. Clin. Geriatr. Med. 2019, 35, 469–487. [Google Scholar] [CrossRef] [PubMed]
- Schmid, J.P.; Nobel, D.; Brugger, N.; Novak, J.; Palau, P.; Trepp, A.; Wilhelm, M.; Saner, H. Short-term high altitude exposure at 3454 m is well tolerated in patients with stable heart failure. Eur. J. Heart Fail. 2015, 17, 182–186. [Google Scholar] [CrossRef]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Jegier, A.; Szalewska, D.; Mawlichanów, A.; Bednarczyk, T.; Eysymont, Z.; Gałaszek, M.; Mamcarz, A.; Mierzynska, A.; Piotrowicz, E.; Piotrowicz, R.; et al. Comprehensive cardiac rehabilitation as the keystone in the secondary prevention of cardiovascular disease. Pol. Heart J. 2021, 79, 901–916. [Google Scholar] [CrossRef]
- Lipiec, P.; Bąk, J.; Braksator, W.; Fijałkowski, M.; Gackowski, A.; Gąsior, Z.; Kasprzak, J.D.; Klisiewicz, A.; Kowalski, M.; Kukulski, T.; et al. Transthoracic echocardiography in adults—Guidelines of the Working Group on Echocardiography of the Polish Cardiac Society. Pol. Heart J. 2018, 76, 488–493. [Google Scholar] [CrossRef]
- Li, D.; Chen, P.; Zhu, J. The Effects of Interval Training and Continuous Training on Cardiopulmonary Fitness and Exercise Tolerance of Patients with Heart Failure-A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public. Health 2021, 18, 6761. [Google Scholar] [CrossRef]
- Papathanasiou, J.V.; Petrov, I.; Tokmakova, M.P.; Dimitrova, D.D.; Spasov, L.; Dzhafer, N.S.; Tsekoura, D.; Dionyssiotis, Y.; Ferreira, A.S.; Lopes, A.J.; et al. Group-based cardiac rehabilitation interventions. A challenge for physical and rehabilitation medicine physicians: A randomized controlled trial. Eur. J. Phys. Rehabil. Med. 2020, 56, 479–488. [Google Scholar] [CrossRef]
- Taylor, J.L.; Holland, D.J.; Keating, S.E.; Leveritt, M.D.; Gomersall, S.R.; Rowlands, A.V.; Bailey, T.G.; Coombes, J.S. Short-term and Long-term Feasibility, Safety, and Efficacy of High-Intensity Interval Training in Cardiac Rehabilitation: The FITR Heart Study Randomized Clinical Trial. JAMA Cardiol. 2020, 5, 1382–1389. [Google Scholar] [CrossRef]
- Piepoli, M.F.; Corrà, U.; Benzer, W.; Bjarnason-Wehrens, B.; Dendale, P.; Gaita, D.; McGee, H.; Mendes, M.; Niebauer, J.; Zwisler, A.D.; et al. Secondary prevention through cardiac rehabilitation: From knowledge to implementation. A position paper from the Cardiac Rehabilitation Section of the European Association of Cardiovascular Prevention and Rehabilitation. Eur. J. Cardiovasc. Prev. Rehabil. 2010, 17, 1–17. [Google Scholar] [CrossRef]
- Gianuzzi, P.; Tavazzi, L. Recommendation for exercise training in chronic heart failure patients. Working Group on Cardiac Rehabilitation & Exercise Physiology and Working Group on Heart Failure of the European Society of Cardiology. Eur. Heart J. 2001, 22, 115–135. [Google Scholar]
- King, M.L.; Williams, M.A.; Fletcher, G.F.; Gordon, N.F.; Gulanick, M.; King, C.N.; Leon, A.S.; Levine, B.G.; Costa, F.; Wenger, N.K. Medical director responsibilities for outpatient cardiac rehabilitation/secondary prevention programs. A scientific statement from the American Heart Association/American Association for Cardiovascular and Pulmonary Rehabilitation. Circulation 2005, 112, 3345–3360. [Google Scholar] [CrossRef] [PubMed]
- Gloc, D.; Nowak, Z.; Nowak-Lis, A.; Gabrys, T.; Szmatlan-Gabrys, U.; Pilis, A. Indoor cycling training in rehabilitation of patients after myocardial infarction. BMC Sports Sci. Med. Rehabil. 2021, 13, 151. [Google Scholar] [CrossRef]
- Grabara, M.; Nowak, Z.; Nowak, A. Effects of Hatha Yoga on Cardiac Hemodynamic Parameters and Physical Capacity in Cardiac Rehabilitation Patients. J. Cardiopulm. Rehabil. Prev. 2020, 40, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Morawiec, M.; Gabrys, T.; Nowak, Z.; Szmatlan-Gabrys, U.; Salcman, V. Effectiveness of Resistance Training with the Use of a Suspension System in Patients after Myocardial Infarction. Int. J. Environ. Res. Public Health 2020, 17, 5419. [Google Scholar] [CrossRef]
- Zbinden, R.; Zbinden, S.; Meier, P.; Hutter, D.; Billinger, M.; Wahl, A.; Schmid, J.P.; Windecker, S.; Meier, B.; Seiler, C. Coronary collateral flow in response to endurance exercise training. Eur. J. Cardiovasc. Prev. Rehabil. 2007, 14, 250–257. [Google Scholar] [CrossRef]
- Elias, J.; Hoebers, L.P.C.; van Dongen, I.M.; Claessen, B.E.P.M.; Henriques, J.P.S. Impact of collateral circulation on survival in ST-Segment elevation myocardial infarction patients undergoing primary percutaneous coronary intervention with a concomitant chronic total occlusion. J. Am. Coll. Cardiol. Intv. 2017, 10, 906–914. [Google Scholar] [CrossRef]
- Mourot, L. Limitation of Maximal Heart Rate in Hypoxia: Mechanisms and Clinical Importance. Front. Physiol. 2018, 9, 972. [Google Scholar] [CrossRef]
- Mourot, L.; Millet, G.P. Is maximal heart rate decrease similar between normobaric versus hypobaric hypoxia in trained and untrained subjects? High Alt. Med. Biol. 2019, 20, 94–98. [Google Scholar] [CrossRef]
- Burtscher, M.; Pachinger, O.; Ehrenbourg, I.; Mitterbauer, G.; Faulhaber, M.; Puhringer, R.; Tkatchouk, E. Intermittent hypoxia increases exercise tolerance in elderly men with and without coronary artery disease. Int. J. Cardiol. 2004, 96, 247–254. [Google Scholar] [CrossRef]
- Park, H.Y.; Lim, K. The effects of aerobic exercise at hypoxic condition during 6 weeks on body composition, blood pressure, arterial stiffness, and blood lipid level in obese women. Int. J. Sports Sci. 2017, 1, 1–5. [Google Scholar]
- Balady, G.J.; Arena, R.; Sietsema, K.; Myers, J.; Coke, L.; Fletcher, G.F.; Forman, D.; Franklin, B.; Guazzi, M.; Gulati, M.; et al. Clinician’s Guide to cardiopulmonary exercise testing in adults: A scientific statement from the American Heart Association. Circulation 2010, 122, 191–225. [Google Scholar] [CrossRef]
- Corrà, U.; Agostoni, P.G.; Anker, S.D.; Coats, A.J.S.; Crespo Leiro, M.G.; de Boer, R.A.; Harjola, V.P.; Hill, L.; Lainscak, M.; Lund, L.H.; et al. Role of cardiopulmonary exercise testing in clinical stratification in heart failure. A position paper from the Committee on Exercise Physiology and Training of the HeartFailure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2018, 20, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Czuba, M.; Waskiewicz, Z.; Zajac, A.; Poprzecki, S.; Cholewa, J.; Roczniok, R. The Effects of Intermittent Hypoxic Training on Aerobic Capacity and Endurance Performance in Cyclists. J. Sports Sci. Med. 2011, 10, 175–183. [Google Scholar] [PubMed]
- Chycki, J.; Czuba, M.; Gołaś, A.; Zając, A.; Fidos-Czuba, O.; Młynarz, A.; Smółka, W. Neuroendocrine Responses and Body Composition Changes Following Resistance Training Under Normobaric Hypoxia. J. Hum. Kinet. 2016, 53, 91–98. [Google Scholar] [CrossRef]
- Mackenzie, R.W.; Watt, P.W.; Maxwell, N.S. Acute Normobaric Hypoxia Stimulates Erythropoietin Release. High Alt. Med. Biol. 2008, 9, 28–37. [Google Scholar] [CrossRef]
- Motowidło, J.; Stronska-Garbien, K.; Bichowska-Pawęska, M.; Kostrzewa, M.; Zając, A.; Ficek, K.; Drozd, M. Effect of Step Load Based on Time under Tension in Hypoxia on the ACL Pre-Operative Rehabilitation and Hormone Levels: A Case Study. J. Clin. Med. 2024, 13, 2792. [Google Scholar] [CrossRef]
- Robach, P.; Fulla, Y.; Westerterp, K.R.; Richalet, J.P. Comparative response of EPO and soluble transferrin receptor at high altitude. Med. Sci. Sports Exerc. 2004, 36, 1493–1498. [Google Scholar] [CrossRef]
- Katayama, K.; Sato, K.; Matsuo, H.; Ishida, K.; Iwasaki, K.; Miyamura, M. Effect of intermittent hypoxia on oxygen uptake during submaximal exercise in endurance athletes. Eur. J. Appl. Physiol. 2004, 92, 75–83. [Google Scholar] [CrossRef]
- Lundby, C.; Nielsen, T.K.; Dela, F.; Damsgaard, R. The influence of intermittent altitude exposure to 4100 m on exercise capacity and blood variables. Scand. J. Med. Sci. Sports 2005, 15, 182–187. [Google Scholar] [CrossRef]
- Bonetti, D.L.; Hopkins, W.G.; Lowe, T.E.; Boussana, A.; Kilding, A.E. Cycling performance following adaptation to two protocols of acutely intermittent hypoxia. Int. J. Sports Physiol. Perform. 2009, 4, 68–83. [Google Scholar] [CrossRef] [PubMed]
- Suchy, J.; Pernica, J. Changes of selected hematological parameters and morning rest during ten days high altitude stay and training. AUC Kinanthropologica 2014, 50, 5–14. [Google Scholar] [CrossRef]
- Schmidt, W.; Prommer, N. Impact of alteration in total hemoglobin mass on VO2max. Exerc. Sport Sci. Rev. 2010, 38, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.J.; Relf, R.L.; Saunders, A.; Gibson, O.R. Similar Inflammatory Responses following Sprint Interval Training Performed in Hypoxia and Normoxia. Front. Physiol. 2016, 7, 332. [Google Scholar] [CrossRef]
- Edlinger, C.; Schreiber, C.; Goebel, B.; Pistulli, R.; Vera, P.; Schernthaner, C.; Rohm, I.; Figulla, H.R.; Hoppe, U.C.; Franz, M.; et al. Impact of Moderate Altitude on Pro-Inflammatory Cytokines in Healthy Volunteers. Clin. Lab. 2017, 63, 1545–1548. [Google Scholar] [CrossRef]
- Rohm, I.; Ratka, J.; Pistulli, R.; Goebel, B.; Gecks, T.; Figulla, H.R.; Yilmaz, A.; Jung, C. Impact of Systemic Normobaric Short-Term Hypoxia on Pro-Inflammatory and Anti-Inflammatory Cytokines in Healthy Volunteers. Clin. Lab. 2015, 61, 1053–1059. [Google Scholar] [CrossRef]
- Peake, J.M.; Della Gatta, P.; Suzuki, K.; Nieman, D.C. Cytokine expression and secretion by skeletal muscle cells: Regulatory mechanisms and exercise effects. Exerc. Immunol. Rev. 2015, 21, 8–25. [Google Scholar]
- Suzuki, K.; Nakaji, S.; Yamada, M.; Totsuka, M.; Sato, K.; Sugawara, K. Systemic inflammatory response to exhaustive exercise. Cytokine kinetics. Exerc. Immunol. Rev. 2002, 8, 46–48. [Google Scholar]
- Piepoli, M.F.; Flather, M.; Coats, A.J.S. Overview of studies of exercise training in chronic heart failure: The need for a prospective randomized multicentre European trial. Eur. Heart J. 1998, 19, 830–841. [Google Scholar]
- Fletcher, G.F.; Balady, G.J.; Amsterdam, E.A.; Chaitman, B.; Eckel, R.; Fleg, J.; Froelicher, V.F.; Leon, A.S.; Piña, I.L.; Rodney, R.; et al. Exercise standards for testing and training: A statement for healthcare professionals from the American Heart Association. Circulation 2001, 104, 1694–1740. [Google Scholar] [CrossRef]
- Coats, A.J. Optimizing exercise training for sub-groups of patients with chronic heart failure. Eur. Heart J. 1998, 19, 29–34. [Google Scholar]
- Haddadzadeh, M.H.; Maiya, A.G.; Padmakumar, R.; Shad, B.; Mirbolouk, F. Effect of exercise-based cardiac rehabilitation on ejection fraction in coronary artery disease patients: A randomized controlled trial. Heart Views Off. J. Gulf Heart Assoc. 2001, 12, 51–57. [Google Scholar] [CrossRef]
- Sadeghi, M.; Garakyaraghi, M.; Khosravi, M.; Taghavi, M.; Sarrafzadegan, N.; Roohafza, H. The impacts of cardiac rehabilitation program on echocardiographic parameters in coronary artery disease patients with left ventricular dysfunction. Cardiol. Res. Pract. 2013, 2013, 201713. [Google Scholar] [CrossRef] [PubMed]
- Nowak, Z.; Plewa, M.; Skowron, M.; Osiadło, G.; Markiewicz, A.; Kucio, C. Minnesota Leisure Time Physical Activity Questionnaire as an additional tool in clinical assessment of patients undergoing Percutaneous Coronary Interventions. J. Hum. Kinet. 2010, 23, 79–87. [Google Scholar] [CrossRef]
- Farheen, H.; Khalid, Z.; Tariq, M.I.; Tariq, M.I.; Sadiq, T.; Amjad, I.; Ramzan, T. Combined effect of aerobic training and interval resistance on ejection fraction in myocardial infarction. J. Coll. Physicians Surg. Pak. 2019, 29, 290–292. [Google Scholar] [CrossRef]
- Yu, C.M.; Li, L.S.; Lam, M.F.; Chung –Wah Siu, D.; Kin-Man Miu, R.; Lau, C.P. Effect of cardiac rehabilitation program on left ventricular diastolic function and its relationship to exercise capacity in patients with coronary heart disease: Experience from a randomised controlled study. Am. Heart J. 2004, 147, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Skaluba, S.J.; Litwin, S.E. Mechanism of exercise intolerance: Insight from tissue Doppler imaging. Circulation 2004, 109, 972–977. [Google Scholar] [CrossRef]
Group of Drugs | Normoxia (n = 19) | 3000 m n.p.m. (n = 17) | p |
---|---|---|---|
β-blocker | 14 (73%) | 12 (70%) | 0.841 |
Clopidogrel | 5 (26%) | 4 (23%) | 0.852 |
Acetylsalicylic acid (ASA) | 16 (84%) | 14 (82%) | 0.885 |
Statins | 14 (73%) | 14 (82%) | 0.547 |
α-blocker | 1 (5%) | 1 (6%) | 0.937 |
Vitamin K antagonists | 5 (26%) | 3 (18%) | 0.545 |
Angiotensin II receptor antagonists (ARB) | 3 (15%) | 3 (18%) | 0.885 |
Metformin | 3 (15%) | 2 (12%) | 0.736 |
Calcium channel blockers | 2 (10%) | 2 (12%) | 0.909 |
Angiotensin-converting enzyme inhibitors (ACEI) | 4 (21%) | 4 (23%) | 0.355 |
Diuretics | 2 (10%) | 1 (6%) | 0.626 |
Normoxia (n = 19) | 3000 m a.s.l. (n = 17) | |
---|---|---|
Age (years) | 58.52 ± 6.09 | 59.88 ± 5.87 |
STEMI | 8 (43%) | 8 (47%) |
NSTEMI | 11 (57%) | 9 (53%) |
Number of stents | ||
1 stent | 8 (42%) | 8 (43%) |
2 stents | 5 (26%) | 5 (26%) |
≥3 stents | 6 (31%) | 4 (21%) |
Parameters | Normoxia | 3000 m a.s.l. | ||||
---|---|---|---|---|---|---|
Test time [min] | I | 9.28 ± 1.39 | F = 1.506 p = 0.228 | I | 9.98 ± 1.11 | F = 8.279 p = 0.007 η2 = 0.20 |
II | 9.56 ± 1.62 | II | 11.34 ± 1.61 | |||
Distance [m] | I | 421.25 ± 113.95 | F = 1.417 p = 0.242 | I | 448.41 ± 107.06 | F = 8.920 p = 0.005 η2 = 0.22 |
II | 443.14 ± 137.39 | II | 546.66 ± 116.16 | |||
MET [mL/kg/min] | I | 8.74 ± 0.66 | F = 4.404 p = 0.043 η2 = 0.10 | I | 8.02 ± 0.87 | F = 7.878 p = 0.008 η2 = 0.20 |
II | 8.96 ± 0.59 | II | 8.79 ± 0.84 | |||
VE [L/min] | I | 88.85 ± 6.53 | F = 0.793 p = 0.379 | I | 87.05 ± 11.62 | F = 2.994 p = 0.093 |
II | 89.81 ± 6.53 | II | 90.41 ± 9.64 | |||
VO2peak [mL/min/kg] | I | 27.17 ± 7.41 | F = 0.263 p = 0.611 | I | 28.45 ± 2.74 | F = 2.218 p = 0.146 |
II | 26.22 ± 5.35 | II | 29.15 ± 2.61 | |||
BF [L/min] | I | 35.24 ± 2.98 | F = 3.934 p = 0.055 | I | 35.68 ± 3.35 | F = 2.216 p = 0.146 |
II | 36.74 ± 2.34 | II | 36.52 ± 3.35 | |||
RER | I | 0.97 ± 0.07 | F = 0.178 p = 0.675 | I | 1.06 ± 0.10 | F = 4.942 p = 0.033 η2 = 0.13 |
II | 0.97 ± 0.07 | II | 0.98 ± 0.09 | |||
HRrest [L/min] | I | 70.60 ± 6.66 | F = 1.320 p = 0.258 | I | 70.41 ± 7.23 | F = 0.000 p = 1.000 |
II | 69.37 ± 7.66 | II | 70.42 ± 7.46 | |||
HRpeak [L/min] | I | 132.07 ± 10.96 | F = 0.036 p = 0.851 | I II | 141.91 ± 5.28 | F = 0.143 p = 0.679 |
II | 132.07 ± 10.96 | 142.29 ± 5.05 | ||||
SBPsp [mmHg] | I | 126.71 ± 11.92 | F = 0.222 p = 0.640 | I | 133.88 ± 7.43 | F = 4.808 p = 0.035 η2 = 0.13 |
II | 125.41 ± 10.95 | II | 128.24 ± 7.28 | |||
DBPsp [mmHg] | I | 76.71 ± 7.00 | F = 0.329 p = 0.570 | I | 70.52 ± 5.15 | F = 6.297 p = 0.001 η2 = 0.16 |
II | 76.05 ± 7.56 | II | 66.47 ± 4.93 | |||
SBPmax [mmHg] | I | 161.05 ± 12.42 | F = 0.017 p = 0.898 | I | 184.26 ± 15.13 | F = 0.381 p = 0.541 |
II | 160.79 ± 13.32 | II | 185.56 ± 12.11 | |||
DBPmax [mmHg] | I | 81.31 ± 7.12 | F = 0.000 p = 1.000 | I | 74.71 ± 4.89 | F = 0.258 p = 0.614 |
II | 81.32 ± 7.79 | II | 75.14 ± 4.99 |
Parameters | Normoxia | 3000 m a.s.l. | ||||
---|---|---|---|---|---|---|
WBC | I | 6.08 ± 1.15 | F = 0.648 p = 0.426 | I | 7.10 ± 1.12 | F = 0.005 p = 0.942 |
II | 5.93 ± 1.06 | II | 7.09 ± 1.28 | |||
RBC | I | 4.97 ± 0.39 | F = 0.147 p = 0.703 | I | 5.03 ± 0.34 | F = 0.518 p = 0.476 |
II | 4.88 ± 0.32 | II | 5.09 ± 0.38 | |||
HGB | I | 15.11 ± 1.04 | F = 0.085 p = 0.772 | I | 15.41 ± 1.04 | F = 0.660 p = 0.422 |
II | 15.07 ± 1.01 | II | 15.56 ± 1.03 | |||
HCT | I | 45.60 ± 3.25 | F = 0.696 p = 0.410 | I | 45.69 ± 3.23 | F = 1.089 p = 0.304 |
II | 46.04 ± 2.83 | II | 46.29 ± 2.79 | |||
PLT | I | 198.23 ± 47.18 | F = 0.072 p = 0.790 | I | 213.64 ± 38.85 | F = 0.407 p = 0.527 |
II | 200.32 ± 45.31 | II | 209.64 ± 35.81 | |||
IL 1β | I | 48.99 ± 29.91 | F = 0.119 p = 0.732 | I | 30.12 ± 35.19 | F = 0.024 p = 0.876 |
II | 50.69 ± 30.66 | II | 31.09 ± 35.36 | |||
IL 10 | I | 3.83 ± 1.08 | F = 1.524 p = 0.225 | I | 4.79 ± 0.02 | F = 0.347 p = 0.559 |
II | 3.62 ± 1.11 | II | 4.76 ± 0.03 | |||
TNF α | I | 10.83 ± 9.79 | F = 0.019 p = 0.891 | I | 11.75 ± 15.06 | F = 0.138 p = 0.712 |
II | 10.61 ± 10.31 | II | 10.78 ± 11.02 |
Parameters | Normoxia | 3000 m a.s.l. | ||||
---|---|---|---|---|---|---|
LVEDd | I | 50.05 ± 4.89 | F = 9.560 p = 0.004 η2 = 0.21 | I | 49.32 ± 5.04 | F = 3.783 p = 0.060 |
II | 43.11 ± 8.48 | II | 47.71 ± 4.73 | |||
LVESd | I | 37.68 ± 8.79 | F = 3.972 p = 0.054 | I | 31.61 ± 6.05 | F = 2.544 p = 0.120 |
II | 40.42 ± 9.79 | II | 33.24 ± 5.40 | |||
LVESV | I | 54.65 ± 12.56 | F = 0.047 p = 0.830 | I | 55.88 ± 18.28 | F = 0.039 p = 0.844 |
II | 54.21 ± 10.99 | II | 55.24 ± 17.20 | |||
LVEDV | I | 113.07 ± 18.77 | F = 0.161 p = 0.690 | I | 104.70 ± 29.78 | F = 1.543 p = 0.223 |
II | 114.32 ± 16.36 | II | 111.00 ± 27.45 | |||
LVEF | I | 50.78 ± 5.23 | F = 0.643 p = 0.428 | I | 50.47 ± 6.38 | F = 0.025 p = 0.874 |
II | 51.47 ± 4.66 | II | 50.65 ± 7.09 | |||
Wave E | I | 0.64 ± 0.16 | F = 0.029 p = 0.865 | I | 0.64 ± 0.14 | F = 4.912 p = 0.033 η2 = 0.13 |
II | 0.65 ± 0.18 | II | 0.77 ± 0.19 | |||
Wave A | I | 0.64 ± 0.13 | F = 0302 p = 0.586 | I | 0.68 ± 0.22 | F = 0.293 p = 0.591 |
II | 0.64 ± 0.17 | II | 0.71 ± 0.21 | |||
e’ lateral | I | 0.09 ± 0.02 | F = 0.736 p = 0.397 | I | 0.09 ± 0.03 | F = 0.574 p = 0.453 |
II | 0.09 ± 0.03 | II | 0.09 ± 0.03 | |||
e’ septal | I | 0.06 ± 0.01 | F = 0.795 p = 0.379 | I | 0.09 ± 0.01 | F = 2.433 p = 0.128 |
II | 0.07 ± 0.01 | II | 0.09 ± 0.02 | |||
E/E’ | I | 8.27 ± 2.43 | F = 0.553 p = 0.462 | I | 8.18 ± 3.77 | F = 0.435 p = 0.514 |
II | 7.98 ± 2.34 | II | 8.64 ± 3.46 | |||
E/A | I | 1.04 ± 0.39 | F = 0.922 p = 0.343 | I | 1.11 ± 0.48 | F = 0.570 p = 0.455 |
II | 1.10 ± 0.45 | II | 1.18 ± 0.55 | |||
TAPSE | I | 21.81 ± 4.98 | F = 0.125 p = 0.726 | I | 23.61 ± 4.02 | F = 0.960 p = 0.334 |
II | 22.11 ± 5.56 | II | 22.94 ± 3.86 | |||
MAPSE | I | 14.89 ± 2.58 | F = 1.007 p = 0.322 | I | 16.32 ± 3.16 | F = 0.842 p = 0.365 |
II | 15.32 ± 2.38 | II | 15.82 ± 2.35 |
Effect of Condition | Effect of Time | |||
---|---|---|---|---|
HRpeak | F = 21.99 | p = 0.001 η2 = 0.24 | F = 0.12 | p = 0.729 |
SBPpeak | F = 49.91 | p = 0.001 η2 = 0.22 | F = 0.17 | p = 0.070 |
DBPpeak | F = 7.19 | p = 0.062 | F = 0.09 | p = 0.778 |
Time | F = 17.615 | p = 0.002 η2 = 0.20 | F = 8.591 | p = 0.004 η2 = 0.11 |
Distance | F = 9.336 | p = 0.003 η2 = 0.14 | F = 8.143 | p = 0.004 η2 = 0.10 |
MET | F = 3.88 | p = 0.053 | F = 3.707 | p = 0.071 |
BF | F = 0.363 | p = 0.546 | F = 3.44 | p = 0.072 |
RER | F = 4.789 | p = 0.033 η2 = 0.10 | F = 2.384 | p = 0.054 |
Effect of Condition | Effect of Time | |||
---|---|---|---|---|
Parameter | ||||
e-septal | F = 66.138 | p > 0.000 η2 = 0.49 | F = 3.357 | p = 0.07 |
LVEDD | F = 3.707 | p = 0.059 | F = 12.75 | p = 0.004 η2 = 0.16 |
LVESD | F = 12.142 | p > 0.000 η2 = 0.15 | F = 6.256 | p = 0.014 η2 = 0.08 |
MAPSE | F = 4.418 | p = 0.040 η2 = 0.06 | F = 0.013 | p = 0.967 η2 = 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak-Lis, A.; Nowak, Z.; Grzybowska-Ganszczyk, D.; Jastrzębski, P.; Konarska-Rawluk, A. Comparison of the Effects of Endurance Training Conducted in Conditions of Normoxia and Artificial Hypoxia in Patients After Myocardial Infarction. J. Clin. Med. 2025, 14, 1790. https://doi.org/10.3390/jcm14061790
Nowak-Lis A, Nowak Z, Grzybowska-Ganszczyk D, Jastrzębski P, Konarska-Rawluk A. Comparison of the Effects of Endurance Training Conducted in Conditions of Normoxia and Artificial Hypoxia in Patients After Myocardial Infarction. Journal of Clinical Medicine. 2025; 14(6):1790. https://doi.org/10.3390/jcm14061790
Chicago/Turabian StyleNowak-Lis, Agata, Zbigniew Nowak, Dominika Grzybowska-Ganszczyk, Paweł Jastrzębski, and Anna Konarska-Rawluk. 2025. "Comparison of the Effects of Endurance Training Conducted in Conditions of Normoxia and Artificial Hypoxia in Patients After Myocardial Infarction" Journal of Clinical Medicine 14, no. 6: 1790. https://doi.org/10.3390/jcm14061790
APA StyleNowak-Lis, A., Nowak, Z., Grzybowska-Ganszczyk, D., Jastrzębski, P., & Konarska-Rawluk, A. (2025). Comparison of the Effects of Endurance Training Conducted in Conditions of Normoxia and Artificial Hypoxia in Patients After Myocardial Infarction. Journal of Clinical Medicine, 14(6), 1790. https://doi.org/10.3390/jcm14061790