Clinical Features and Antibiotic Susceptibility of Staphylococcus aureus-Infected Dermatoses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Patient Selection
2.3. Sample Collection, Transport, and Processing
2.4. Statistical Analysis
2.5. Ethical Considerations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MRSA | methicillin-resistant Staphylococcus aureus |
S. aureus | Staphylococcus aureus |
CLSI | Clinical and Laboratory Standards Institute |
ID | infected dermatoses |
MuRSA | mupirocin-resistant S. aureus |
SSSS | staphylococcal scalded skin syndrome |
TSS | toxic shock syndrome |
References
- Ji, X.; Zhu, W.; Lu, H.; Wu, Z.; Chen, H.; Lin, C.; Zeng, Z.; You, C.; Li, L. Antibiotic Resistance Profiles and MLST Typing of Staphylococcus aureus Clone Associated with Skin and Soft Tissue Infections in a Hospital of China. Infect. Drug Resist. 2024, 17, 2555–2566. [Google Scholar] [CrossRef] [PubMed]
- See, I.; Mu, Y.; Albrecht, V.; Karlsson, M.; Dumyati, G.; Hardy, D.J.; Koeck, M.; Lynfield, R.; Nadle, J.; Ray, S.M.; et al. Trends in Incidence of Methicillin-resistant Staphylococcus aureus Bloodstream Infections Differ by Strain Type and Healthcare Exposure, United States, 2005–2013. Clin. Infect. Dis. 2020, 70, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Jayawardena, N.S.; Wargon, O.; Tatian, A.H. Review: The spectrum of antimicrobial resistance in bacteria isolated from wounds of patients with epidermolysis bullosa. J. Dermatol. Treat. 2024, 1, 2370424. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.P. Methicillin-resistant Staphylococcus aureus: The European landscape. J. Antimicrob. Chemother. 2011, 66 (Suppl. S4), iv43–iv48. [Google Scholar] [CrossRef] [PubMed]
- Ferry, T.; Etienne, J. Community acquired MRSA in Europe. BMJ 2007, 335, 947–948. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, S.L. Community-acquired methicillin-resistant Staphylococcus aureus infections in children. Semin. Pediatr. Infect. Dis. 2006, 3, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Zaghen, F.; Sora, V.M.; Meroni, G.; Laterza, G.; Martino, P.A.; Soggiu, A.; Bonizzi, L.; Zecconi, A. Epidemiology of Antimicrobial Resistance Genes in Staphylococcus aureus Isolates from a Public Database from a One Health Perspective-Sample Origin and Geographical Distribution of Isolates. Antibiotics 2023, 12, 1654. [Google Scholar] [CrossRef] [PubMed]
- Bloomfield, L.E.; Coombs, G.; Armstrong, P. Community-associated methicillin-resistant Staphylococcus aureus in the Kimberley region of Western Australia, epidemiology and burden on hospitals. Epidemiol. Infect. 2024, 152, e147. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Wu, Y.; Xu, H.; Lei, Y.; Long, W.; Li, M.; Gu, Y.; Jiang, Z.; Cao, C. Prevalence and clinical characteristics of methicillin-resistant Staphylococcus aureus infections among dermatology inpatients: A 7-year retrospective study at a tertiary care center in southwest China. Front. Public Health 2023, 11, 1124930. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, Z.; Yang, Z.; Sun, J.; Ma, L. Characterization of community-associated Staphylococcus aureus from skin and soft-tissue infections: A multicenter study in China. Emerg. Microbes Infect. 2016, 5, e127. [Google Scholar] [CrossRef] [PubMed]
- Packer, S.; Pichon, B.; Thompson, S.; Neale, J.; Njoroge, J.; Kwiatkowska, R.M.; Oliver, I.; Telfer, M.; Doumith, M.; Buunaaisie, C.; et al. Clonal expansion of community-associated meticillin-resistant Staphylococcus aureus (MRSA) in people who inject drugs (PWID): Prevalence, risk factors and molecular epidemiology, Bristol, United Kingdom, 2012 to 2017. EuroSurveillance 2019, 13, 1800124. [Google Scholar] [CrossRef] [PubMed]
- Baek, Y.S.; Jeon, J.; Ahn, J.W.; Song, H.J. Antimicrobial resistance of Staphylococcus aureus isolated from skin infections and its implications in various clinical conditions in Korea. Int. J. Dermatol. 2016, 4, e191–e197. [Google Scholar] [CrossRef] [PubMed]
- Błażewicz, I.; Jaśkiewicz, M.; Bauer, M.; Piechowicz, L.; Nowicki, R.J.; Kamysz, W.; Barańska-Rybak, W. Decolonization of Staphylococcus aureus in patients with atopic dermatitis: A reason for increasing resistance to antibiotics? Postep. Dermatol. Alergol. 2017, 6, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Katahira, K.; Gotoh, Y.; Kasama, K.; Yoshimura, D.; Itoh, T.; Shimauchi, C.; Tajiri, A.; Hayashi, T. Mobile genetic element-driven genomic changes in a community-associated methicillin-resistant Staphylococcus aureus clone during its transmission in a regional community outbreak in Japan. Microb. Genom. 2024, 7, 001272. [Google Scholar] [CrossRef] [PubMed]
- Krasagakis, K.; Samonis, G.; Valachis, A.; Maniatakis, P.; Evangelou, G.; Tosca, A. Local complications of erysipelas: A study of associated risk factors. Clin. Exp. Dermatol. 2011, 4, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Krasagakis, K.; Samonis, G.; Maniatakis, P.; Georgala, S.; Tosca, A. Bullous erysipelas: Clinical presentation, staphylococcal involvement and methicillin resistance. Dermatology 2006, 212, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wu, H.; Wu, M.; Wei, W.; Wei, Y.; Li, T.; Cao, C.; Yao, Z. The Clinical Characteristics and Antimicrobial Resistance of Staphylococcus aureus Isolated from Patients with Staphylococcal Scalded Skin Syndrome (SSSS) in Southwestern China. Antibiotics 2024, 13, 516. [Google Scholar] [CrossRef] [PubMed]
- Lan, T.; Zhang, B.; Liu, J.L.; Jia, Q.; Gao, J.; Cao, L.; Yan, J.; Li, B.L.; Xie, X.J.; Xu, Y.H.; et al. Prevalence and Antibiotic Resistance Patterns of Methicillin-Resistant Staphylococcus aureus (MRSA) in a Hospital Setting: A Retrospective Study from 2018 to 2022. Indian J. Microbiol. 2024, 3, 1035–1043. [Google Scholar] [CrossRef] [PubMed]
- Koumaki, D.; Maraki, S.; Evangelou, G.; Rovithi, E.; Petrou, D.; Apokidou, E.S.; Gregoriou, S.; Koumaki, V.; Ioannou, P.; Zografaki, K.; et al. Clinical Significance and Microbiological Characteristics of Staphylococcus lugdunensis in Cutaneous Infections. J. Clin. Med. 2024, 13, 4327. [Google Scholar] [CrossRef] [PubMed]
- Katoulis, A.; Koumaki, V.; Efthymiou, O.; Koumaki, D.; Dimitroulia, E.; Voudouri, M.; Voudouri, A.; Bozi, E.; Tsakris, A. Staphylococcus aureus Carriage Status in Patients with Hidradenitis Suppurativa: An Observational Cohort Study in a Tertiary Referral Hospital in Athens, Greece. Dermatology 2020, 236, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Katoulis, A.C.; Koumaki, D.; Liakou, A.I.; Vrioni, G.; Koumaki, V.; Kontogiorgi, D.; Tzima, K.; Tsakris, A.; Rigopoulos, D. Aerobic and Anaerobic Bacteriology of Hidradenitis Suppurativa: A Study of 22 Cases. Ski. Appendage Disord. 2015, 2, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Nonhoff, C.; Rottiers, S.; Struelens, M.J. Evaluation of the Vitek 2 system for identification and antimicrobial susceptibility testing of Staphylococcus spp. Clin. Microbiol. Infect. 2005, 11, 150–153. [Google Scholar] [CrossRef] [PubMed]
- CLSI M100-Ed33; Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed. Clinical Laboratory Standards Institute: Wayne, PA, USA, 2023.
- Moran, G.J.; Amii, R.N.; Abrahamian, F.M.; Talan, D.A. Methicillin-resistant Staphylococcus aureus in community-acquired skin infections. Emerg. Infect. Dis. 2005, 6, 928–930. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Wang, Q.; Yang, Y.; Geng, W.; Wang, Q.; Yu, S.; Yao, K.; Yuan, L.; Shen, X. Epidemiology and molecular characteristics of community-associated methicillin-resistant and methicillin-susceptible Staphylococcus aureus from skin/soft tissue infections in a children’s hospital in Beijing, China. Diagn. Microbiol. Infect. Dis. 2010, 67, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Krishna, S.; Miller, L.S. Innate and adaptive immune responses against Staphylococcus aureus skin infections. Semin. Immunopathol. 2012, 34, 261–280. [Google Scholar] [CrossRef] [PubMed]
- Castleman, M.J.; Pokhrel, S.; Triplett, K.D.; Kusewitt, D.F.; Elmore, B.O.; Joyner, J.A.; Femling, J.K.; Sharma, G.; Hathaway, H.J.; Prossnitz, E.R.; et al. Innate Sex Bias of Staphylococcus aureus Skin Infection Is Driven by α-Hemolysin. J. Immunol. 2018, 200, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Tiong, M.; Irvin, E.; Zhai, G.; Sinkins, M.; Johnston, H.; Yassi, A.; Smith, P.M.; Koehoorn, M. Gender and sex differences in occupation-specific infectious diseases: A systematic review. Occup. Environ. Med. 2024, 81, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.; Watters, A.A.; Bell, J.M.; Turnidge, J.D.; Jones, R.N. Fusidic acid resistance rates and prevalence of resistance mechanisms among Staphylococcus spp. isolated in North America and Australia, 2007–2008. Antimicrob. Agents Chemother. 2010, 9, 3614–3617. [Google Scholar] [CrossRef] [PubMed]
- Deplano, A.; Hallin, M.; Bustos Sierra, N.; Michel, C.; Prevost, B.; Martiny, D.; Yin, N. Persistence of the Staphylococcus aureus epidemic European fusidic acid-resistant impetigo clone (EEFIC) in Belgium. J. Antimicrob. Chemother. 2023, 78, 2061–2065. [Google Scholar] [CrossRef] [PubMed]
- Boucherabine, S.; Nassar, R.; Mohamed, L.; Habous, M.; Nabi, A.; Husain, R.A.; Alfaresi, M.; Oommen, S.; Khansaheb, H.H.; Al Sharhan, M.; et al. Methicillin-Resistant Staphylococcus aureus: The Shifting Landscape in the United Arab Emirates. Antibiotics 2025, 14, 24. [Google Scholar] [CrossRef] [PubMed]
- Koumaki, D.; Evangelou, G.; Maraki, S.; Rovithi, E.; Petrou, D.; Apokidou, E.S.; Gregoriou, S.; Koumaki, V.; Ioannou, P.; Zografaki, K.; et al. Antimicrobial Resistance Trends in Hidradenitis Suppurativa Lesions. J. Clin. Med. 2024, 13, 4246. [Google Scholar] [CrossRef] [PubMed]
- Kengne, M.F.; Mbaveng, A.T.; Kuete, V. Antibiotic Resistance Profile of Staphylococcus aureus in Cancer Patients at Laquintinie Hospital in Douala, Littoral Region, Cameroon. BioMed Res. Int. 2024, 2024, 5859068. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Pfeltz, R.F.; Wilkinson, B.J.; Gustafson, J.E. Transcriptomic and Metabolomic Analysis of a Fusidic Acid-Selected fusA Mutant of Staphylococcus aureus. Antibiotics 2022, 11, 1051. [Google Scholar] [CrossRef] [PubMed]
- Hajikhani, B.; Goudarzi, M.; Kakavandi, S.; Amini, S.; Zamani, S.; van Belkum, A.; Goudarzi, H.; Dadashi, M. The global prevalence of fusidic acid resistance in clinical isolates of Staphylococcus aureus: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2021, 10, 75. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Adam, H.J.; Baxter, M.; Lagace-Wiens, P.R.S.; Karlowsky, J.A. In vitro activity and resistance rates of topical antimicrobials fusidic acid, mupirocin and ozenoxacin against skin and soft tissue infection pathogens obtained across Canada (CANWARD 2007-18). J. Antimicrob. Chemother. 2021, 76, 1808–1814. [Google Scholar] [CrossRef] [PubMed]
- Graham, E.E.; Bredtoft Boel, J.; Eriksen, H.B.; Petersen, A.; Mogensen, D.; Pedersen, J.; Holzknecht, B.J. Success rates of decolonisation treatment and risk factors for chronic carriage in methicillin-resistant Staphylococcus aureus throat carriers: A retrospective population-based cohort study. Infect. Dis. 2024, 25, 2433239. [Google Scholar] [CrossRef] [PubMed]
- Yin, N.; Michel, C.; Makki, N.; Deplano, A.; Milis, A.; Prevost, B.; Miendje-Deyi, V.Y.; Hallin, M.; Martiny, D. Emergence and spread of a mupirocin-resistant variant of the European epidemic fusidic acid-resistant impetigo clone of Staphylococcus aureus, Belgium, 2013 to 2023. EuroSurveillance 2024, 19, 2300668. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Xu, L.; Wang, B.; Rao, L.; Xu, Y.; Wang, X.; Zhao, H.; Yu, J.; Zhou, Y.; Yu, F. Dissemination of Methicillin-Resistant Staphylococcus aureus Sequence Type 764 Isolates with Mupirocin Resistance in China. Microbiol. Spectr. 2023, 11, e0379422. [Google Scholar] [CrossRef] [PubMed]
- Abdulgader, S.M.; Lentswe, T.; Whitelaw, A.; Newton-Foot, M. The prevalence and molecular mechanisms of mupirocin resistance in Staphylococcus aureus isolates from a Hospital in Cape Town, South Africa. Antimicrob. Resist. Infect. Control 2020, 9, 47. [Google Scholar] [CrossRef] [PubMed]
- Dadashi, M.; Hajikhani, B.; Darban-Sarokhalil, D.; van Belkum, A.; Goudarzi, M. Mupirocin resistance in Staphylococcus aureus: A systematic review and meta-analysis. J. Glob. Antimicrob. Resist. 2020, 20, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.B.; Gorwitz, R.J.; Jernigan, J.A. Mupirocin resistance. Clin. Infect. Dis. 2009, 49, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Shittu, A.O.; Kaba, M.; Abdulgader, S.M.; Ajao, Y.O.; Abiola, M.O.; Olatimehin, A.O. Mupirocin-resistant Staphylococcus aureus in Africa: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2018, 7, 101. [Google Scholar] [CrossRef] [PubMed]
- Anwar, K.A.; Saadalla, S.M.; Muhammad Amin, A.J.; Ahmed, S.M.; Qadir, M.K. Antibiotic susceptibility and phenotypic profile of Staphylococcus species isolated from different clinical samples from health facilities: A cross-sectional study. SAGE Open Med. 2024, 12, 20503121241306968. [Google Scholar] [CrossRef] [PubMed]
- Silvola, J.; Gröndahl-Yli-Hannuksela, K.; Hirvioja, T.; Rantakokko-Jalava, K.; Kanerva, M.; Auranen, K.; Marttila, H.; Junnila, J.; Vuopio, J. Increasing trend of antimicrobial resistance among methicillin-resistant Staphylococcus aureus strains in Southwest Finland, 2007–2016: An analysis of shifting strain dynamics and emerging risk factors. J. Glob. Antimicrob. Resist. 2024, 40, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Mahfouz, A.A.; Said, H.S.; Elfeky, S.M.; Shaaban, M.I. Inhibition of Erythromycin and Erythromycin-Induced Resistance among Staphylococcus aureus Clinical Isolates. Antibiotics 2023, 12, 503. [Google Scholar] [CrossRef] [PubMed]
- Bawankar, N.S.; Agrawal, G.N.; Zodpey, S.S. Revealing inducible clindamycin resistance in methicillin-resistant S. aureus: A vital diagnostic imperative for effective treatment. J. Postgrad. Med. 2024, 70, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Goudarzi, M.; Tayebi, Z.; Fazeli, M.; Miri, M.; Nasiri, M.J. Molecular Characterization, Drug Resistance and Virulence Analysis of Constitutive and Inducible Clindamycin Resistance Staphylococcus aureus Strains Recovered from Clinical Samples, Tehran—Iran. Infect. Drug Resist. 2020, 13, 1155–1162. [Google Scholar] [CrossRef] [PubMed]
- Assefa, M. Inducible Clindamycin-Resistant Staphylococcus aureus Strains in Africa: A Systematic Review. Int. J. Microbiol. 2022, 2022, 1835603. [Google Scholar] [CrossRef] [PubMed]
- Leszczyński, P.K.; Olędzka, A.; Wierzchowska, K.; Frankowska-Maciejewska, A.; Mitura, K.M.; Celinski, D. Occurrence and Phenotypic Characteristics of Methicillin-Resistant Staphylococcus aureus (MRSA) in Emergency Medical Service Ambulances as a Potential Threat to Medical Staff and Patients. J. Clin. Med. 2024, 13, 7160. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.; Lee, J.; Hasan, N.; Hakim, M.L.; Kwak, D.; Kim, H.; Lee, E.; Ahn, J.; Mun, B.; Lee, E.H.; et al. Clindamycin-Loaded Polyhydroxyalkanoate Nanoparticles for the Treatment of Methicillin-Resistant Staphylococcus aureus-Infected Wounds. Pharmaceutics 2024, 16, 1315. [Google Scholar] [CrossRef] [PubMed]
- Lessa de Menezes, I.; Moura Pone, S.; da Silva Pone, M.V. Clinical, demographic characteristics and antimicrobial resistance profile of Staphylococcus aureus isolated in clinical samples from pediatric patients in a tertiary hospital in Rio de Janeiro: 7-year longitudinal study. BMC Infect. Dis. 2024, 24, 1081. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Tong, X.; Liu, S.; Wang, D.; Wang, L.; Fan, H. Prevalence of methicillin-resistant Staphylococcus aureus in healthy Chinese population: A system review and meta-analysis. PLoS ONE 2019, 14, e0223599. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Shirvankar, C.M.; Jacob, R.K.; Adhya, D.G.; Sinha, S.; Bhattacharya, S.; Walia, K.; Bhattacharya, S.D. A systematic review and meta-analysis to develop a landscape map of antibiotic resistance for six WHO priority pathogens in east and north-east India from 2011 to 2022. Indian J. Med. Microbiol. 2024, 52, 100732. [Google Scholar] [CrossRef] [PubMed]
- Gideskog, M.; Melhus, Å. Outbreak of Methicillin-resistant Staphylococcus aureus in a Hospital Center for Children’s and Women’s Health in a Swedish County. APMIS 2019, 4, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Katopodis, G.D.; Grivea, I.N.; Tsantsaridou, A.J.; Pournaras, S.; Petinaki, E.; Syrogiannopoulos, G.A. Fusidic acid and clindamycin resistance in community-associated, methicillin-resistant Staphylococcus aureus infections in children of Central Greece. BMC Infect. Dis. 2010, 10, 351. [Google Scholar] [CrossRef] [PubMed]
- Ruhe, J.J.; Monson, T.; Bradsher, R.W.; Menon, A. Use of long-acting tetracyclines for methicillin-resistant Staphylococcus aureus infections: Case series and review of the literature. Clin. Infect. Dis. 2005, 40, 1429–1434. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wang, C.; He, L.; Xu, H.; Jing, C.; Chen, Y.; Lin, A.; Deng, J.; Cao, Q.; Deng, H.; et al. Antimicrobial resistance profile of methicillin-resistant Staphylococcus aureus isolates in children reported from the ISPED surveillance of bacterial resistance, 2016–2021. Front. Cell. Infect. Microbiol. 2023, 13, 1102779. [Google Scholar] [CrossRef] [PubMed]
- Carrel, M.; Smith, M.; Shi, Q.; Hasegawa, S.; Clore, G.S.; Perencevich, E.N.; Goto, M. Antimicrobial Resistance Patterns of Outpatient Staphylococcus aureus Isolates. JAMA Netw. Open 2024, 7, e2417199. [Google Scholar] [CrossRef] [PubMed]
- Kistler, J.M.; Vroome, C.M.; Ramsey, F.V.; Ilyas, A.M. Increasing Multidrug Antibiotic Resistance in MRSA Infections of the Hand: A 10-Year Analysis of Risk Factors. Hand 2020, 6, 877–881. [Google Scholar] [CrossRef] [PubMed]
- Alseqely, M.; Newton-Foot, M.; Khalil, A.; El-Nakeeb, M.; Whitelaw, A.; Abouelfetouh, A. Association between fluoroquinolone resistance and MRSA genotype in Alexandria, Egypt. Sci. Rep. 2021, 11, 4253. [Google Scholar] [CrossRef] [PubMed]
- Rizwana, M.M.; Shanmugapriya, S.; Sudha, M.J.; Appalaraju, B.; Ramesh, S. Staphylococcal scalded skin syndrome in neonate: Another face of CA-MRSA. Indian. J. Pathol. Microbiol. 2024; online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Berk, D.R.; Bayliss, S.J. MRSA, staphylococcal scalded skin syndrome, and other cutaneous bacterial emergencies. Pediatr. Ann. 2010, 10, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Azarian, T.; Cella, E.; Baines, S.L.; Shumaker, M.J.; Samel, C.; Jubair, M.; Pegues, D.A.; David, M.Z. Genomic Epidemiology and Global Population Structure of Exfoliative Toxin A-Producing Staphylococcus aureus Strains Associated With Staphylococcal Scalded Skin Syndrome. Front. Microbiol. 2021, 12, 663831. [Google Scholar] [CrossRef] [PubMed]
- Drago, F.; Ciccarese, G.; Merlo, G.; Trave, I.; Javor, S.; Rebora, A.; Parodi, A. Oral and cutaneous manifestations of viral and bacterial infections: Not only COVID-19 disease. Clin. Dermatol. 2021, 39, 384–404. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Honarpisheh, H.; Camp, R.; Lazova, R. Staphylococcal Purpura Fulminans: Report of a Case. Am. J. Dermatopathol. 2015, 8, 643–646. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, O.; Sugihara, S.; Kajita, A.; Yokoyama, E.; Miyake, T.; Hirai, Y.; Morizane, S. Staphylococcal enterotoxin B- and lipopolysaccharide-induced toxic shock syndrome in a burn patient. J. Dermatol. 2021, 4, 547–550. [Google Scholar] [CrossRef] [PubMed]
- Lo, W.T.; Tang, C.S.; Chen, S.J.; Huang, C.F.; Tseng, M.H.; Wang, C.C. Panton-Valentine leukocidin is associated with exacerbated skin manifestations and inflammatory response in children with community-associated staphylococcal scarlet fever. Clin. Infect. Dis. 2009, 49, e69–e75. [Google Scholar] [CrossRef] [PubMed]
Variable | p-Value | |
---|---|---|
MRSA status | ||
MRSA | 15/68 (22.1%) | |
MSSA | 53/68 (77.9%) | |
Gender | p = 0.014 | |
Male N, % | 37/68 (54.4%) | |
Males with MRSA | 4/15 (26.7%) | |
Males with MSSA | 33/53 (62.3%) | |
Female N, % | 31/68 (45.6%) | |
Females with MRSA | 11/15 (73.3%) | |
Females with MSSA | 20/53 (37.7%) | |
Age, years Mean | 46.71 | p = 0.155 |
Median ± SD | 42 ± 25.05 | |
Age groups | p = 0.141 | |
From 0- to 18-year-olds | 7/68 (10.3%) | |
Above the age of 66 | 61/68 (89.7%) | |
Sample type | p = 0.303 | |
Exudate | 42/68 (61.8%) | |
Pus | 26/68 (38.2%) | |
Sample site | p = 0.257 | |
Head and neck | 9/68 (13.2%) | |
Upper limbs | 13/68 (19.1%) | |
Trunk | 10/68 (14.7%) | |
Buttocks | 6/68 (8.8%) | |
Inguinal fold/genital area | 2/68 (2.9%) | |
Lower limbs | 28/68 (41.2%) | |
Body site | p = 0.542 | |
Above waist | 32/68 (47.1%) | |
Below waist | 36/68 (52.9%) | |
Trauma history, N % | 13/68 (19.1%) | p = 0.407 |
Clinical presentation | p = 0.849 | |
Eczema | 24/68 (35.3%) | |
Folliculitis | 13/68 (19.1%) | |
Hidradenitis suppurativa (HS) | 7/68 (10.3%) | |
Psoriasis | 5/68 (7.4%) | |
Impetigo | 3/68 (4.4%) | |
Rosacea | 3/68 (4.4%) | |
Paronychia | 3/68 (4.4%) | |
Lichen planus | 2/68 (2.9%) | |
Bullous pemphigoid | 2/68 (2.9%) | |
Lichen sclerosus | 1/68 (1.5%) | |
Darier’s disease | 1/68 (1.5%) | |
Pemphigus | 1/68 (1.5%) | |
Mycosis fungoides | 1/68 (1.5%) | |
Grover’s disease | 1/68 (1.5%) | |
Kaposi sarcoma | 1/68 (1.5%) | |
Other bacteria isolated | p = 0.903 | |
No other bacteria were isolated | 49/68 (72.1%) | |
Yes, other bacteria were also isolated | 19/68 (27.9%) | |
Hospital-acquired | ||
No | 0/68 (0%) | |
Community-acquired | ||
Yes | 68/68 (100%) | |
Immunological status | p = 0.655 | |
Immunosuppressed | 11/68 (16.2%) | |
Immunocompetent | 57/68 (83.8%) | |
Immunosuppressed medications used | p = 0.768 | |
Oral prednisolone | 5/11 (45.4%) | |
Oral methotrexate (MTX) | 3/11 (27.3%) | |
Azathioprine (AZTH) | 2/11 (18.2%) | |
Mycophenolate mofetil (MMF) | 1/11 (9.1%) | |
Other topical treatments used before recruitment to the study | p = 0.864 | |
Emollients | 42/68 (61.76%) | |
Topical corticosteroids | 38/68 (55.88%) | |
Topical adapalene | 8/68 (11.76%) | |
Topical calcitriol ointment | 5/68 (7.4%) | |
Treatment | p = 0.087 | |
Topical treatment | 36/68 (52.9%) | |
Systemic antibiotic treatment | 32/68 (47.1%) | |
Type of treatment | p = 0.039 | |
Topical fusidic acid | 19/68 (27.9%) | |
Topical mupirocin | 11/68 (16.2%) | |
Topical clindamycin | 6/68 (8.8%) | |
Oral doxycycline | 10/68 (14.7%) | |
Oral amoxicillin/clavulanic acid | 9/68 (13.2%) | |
Oral cefuroxime axetil | 7/68 (10.3%) | |
Oral erythromycin | 5/68 (7.4%) | |
Oral trimethoprim/sulfamethoxazole | 1/68 (1.5%) | |
Treatment outcome | ||
Cure | 68/68 (100%) |
Escherichia coli |
Κlebsiella aerogenes |
Proteus mirabilis Enterobacter cloacae |
Serratia marcescens Pseudomonas aeruginosa |
Acinetobacter baumannii Achromobacter denitrificans |
Staphylococcus epidermidis |
Staphylococcus lugdunensis |
Streptococcus pyogenes |
Streptococcus mitis/oralis |
Antimicrobial Agents | Susceptible N (%) | Resistant N (%) |
---|---|---|
Benzylpenicillin | 12/66 (18.2%) | 54/66 (81.8%) |
Oxacillin | 53/68 (77.9%) | 15/68 (22.1%) |
Gentamicin | 61/68 (89.7%) | 7/68 (10.3%) |
Levofloxacin | 23/51 (45.1%) | 28/51 (54.9%) |
Erythromycin | 40/66 (60.6%) | 26/66 (39.4%) |
Clindamycin | 54/68 (79.4%) | 14/68 (20.6%) |
Linezolid | 68/68 (100%) | 0/68 (0%) |
Daptomycin | 62/62 (100%) | 0/62 (0%) |
Teicoplanin | 62/68 (91.2%) | 6/68 (8.8%) |
Vancomycin | 68/68 (100%) | 0/68 (0%) |
Tetracycline | 61/68 (89.7%) | 7/68 (10.3%) |
Tigecycline | 68/68 (100%) | 0/68 (0%) |
Fusidic acid | 42/68 (61.8%) | 26/68 (38.2%) |
Mupirocin | 54/65 (83.1%) | 11/65 (16.9%) |
Rifampicin | 68/68 (100%) | 0/68 (0%) |
Trimethoprim/sulfamethoxazole | 65/68 (95.6%) | 3/68 (4.4%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koumaki, D.; Maraki, S.; Evangelou, G.; Koumaki, V.; Gregoriou, S.; Kouloumvakou, S.; Petrou, D.; Rovithi, E.; Zografaki, K.; Doxastaki, A.; et al. Clinical Features and Antibiotic Susceptibility of Staphylococcus aureus-Infected Dermatoses. J. Clin. Med. 2025, 14, 1084. https://doi.org/10.3390/jcm14041084
Koumaki D, Maraki S, Evangelou G, Koumaki V, Gregoriou S, Kouloumvakou S, Petrou D, Rovithi E, Zografaki K, Doxastaki A, et al. Clinical Features and Antibiotic Susceptibility of Staphylococcus aureus-Infected Dermatoses. Journal of Clinical Medicine. 2025; 14(4):1084. https://doi.org/10.3390/jcm14041084
Chicago/Turabian StyleKoumaki, Dimitra, Sofia Maraki, Georgios Evangelou, Vasiliki Koumaki, Stamatios Gregoriou, Stamatoula Kouloumvakou, Danae Petrou, Evangelia Rovithi, Kyriaki Zografaki, Aikaterini Doxastaki, and et al. 2025. "Clinical Features and Antibiotic Susceptibility of Staphylococcus aureus-Infected Dermatoses" Journal of Clinical Medicine 14, no. 4: 1084. https://doi.org/10.3390/jcm14041084
APA StyleKoumaki, D., Maraki, S., Evangelou, G., Koumaki, V., Gregoriou, S., Kouloumvakou, S., Petrou, D., Rovithi, E., Zografaki, K., Doxastaki, A., Ioannou, P., Gkiaouraki, I., Rogdakis, A., Mavromanolaki, V. E., & Krasagakis, K. (2025). Clinical Features and Antibiotic Susceptibility of Staphylococcus aureus-Infected Dermatoses. Journal of Clinical Medicine, 14(4), 1084. https://doi.org/10.3390/jcm14041084