Retinal Vascular Density and Thickness in Long-Term Type 1 Diabetes Without Visible Vascular Signs of Retinopathy
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Solomon, S.D.; Chew, E.; Duh, E.J.; Sobrin, L.; Sun, J.K.; VanderBeek, B.L.; Wykoff, C.C.; Gardner, T.W. Diabetic Retinopathy: A Position Statement by the American Diabetes Association. Diabetes Care 2017, 40, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.; Karuranga, S.; Malanda, B.; Saeedi, P.; Basit, A.; Besançon, S.; Bommer, C.; Esteghamati, A.; Ogurtsova, K.; Zhang, P.; et al. Global and Regional Estimates and Projections of Diabetes-Related Health Expenditure: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Res. Clin. Pract. 2020, 162, 108072. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.; Airey, M.; Baxter, H.; Forrester, J.; Kennedy-Martin, T.; Girach, A. Epidemiology of Diabetic Retinopathy and Macular Oedema: A Systematic Review. Eye 2004, 18, 963–983. [Google Scholar] [CrossRef]
- Zhang, B.; Chou, Y.; Zhao, X.; Yang, J.; Chen, Y. Early Detection of Microvascular Impairments with Optical Coherence Tomography Angiography in Diabetic Patients Without Clinical Retinopathy: A Meta-Analysis. Am. J. Ophthalmol. 2021, 222, 226–237. [Google Scholar] [CrossRef]
- van Dijk, H.W.; Verbraak, F.D.; Stehouwer, M.; Kok, P.H.B.; Garvin, M.K.; Sonka, M.; DeVries, J.H.; Schlingemann, R.O.; Abràmoff, M.D. Association of Visual Function and Ganglion Cell Layer Thickness in Patients with Diabetes Mellitus Type 1 and No or Minimal Diabetic Retinopathy. Vision Res. 2011, 51, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Pinilla, I.; Idoipe, M.; Perdices, L.; Sanchez-Cano, A.; Acha, J.; Lopez-Galvez, M.I.; Cuenca, N.; Abecia, E.; Orduna-Hospital, E. Changes in total and inner retinal thicknesses in type 1 diabetes with no retinopathy after 8 years of follow-up. Retina 2020, 40, 1379–1386. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, H.W.; Verbraak, F.D.; Kok, P.H.B.; Garvin, M.K.; Sonka, M.; Lee, K.; Devries, J.H.; Michels, R.P.J.; van Velthoven, M.E.J.; Schlingemann, R.O.; et al. Decreased Retinal Ganglion Cell Layer Thickness in Patients with Type 1 Diabetes. Investig. Ophthalmol. Vis. Sci. 2010, 51, 3660–3665. [Google Scholar] [CrossRef]
- Sun, J.K.; Keenan, H.A.; Cavallerano, J.D.; Asztalos, B.F.; Schaefer, E.J.; Sell, D.R.; Strauch, C.M.; Monnier, V.M.; Doria, A.; Aiello, L.P.; et al. Protection from Retinopathy and Other Complications in Patients with Type 1 Diabetes of Extreme Duration: The Joslin 50-Year Medalist Study. Diabetes Care 2011, 34, 968–974. [Google Scholar] [CrossRef]
- Lachin, J.M.; McGee, P.; Palmer, J.P. Impact of C-Peptide Preservation on Metabolic and Clinical Outcomes in the Diabetes Control and Complications Trial. Diabetes 2014, 63, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Vujosevic, S.; Muraca, A.; Alkabes, M.; Villani, E.; Cavarzeran, F.; Rossetti, L.; De Cilla, S. Early Microvascular and Neural Changes in Patients with Type 1 and Type 2 Diabetes Mellitus without Clinical Signs of Diabetic Retinopathy. Retina 2019, 39, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Simó, R.; Stitt, A.W.; Gardner, T.W. Neurodegeneration in Diabetic Retinopathy: Does It Really Matter? Diabetologia 2018, 61, 1902–1912. [Google Scholar] [CrossRef]
- Sacconi, R.; Tombolini, B.; Cartabellotta, A.; Zerbini, G.; Bandello, F.; Querques, G. Structural and Functional Characterization of Retinal Impairment in T1DM Patients without Diabetic Retinopathy: A 3-Year Longitudinal Study. Acta Diabetol. 2024, 61, 1433–1442. [Google Scholar] [CrossRef]
- Aschauer, J.; Pollreisz, A.; Karst, S.; Hülsmann, M.; Hajdu, D.; Datlinger, F.; Egner, B.; Kriechbaum, K.; Pablik, E.; Schmidt-Erfurth, U.M. Longitudinal Analysis of Microvascular Perfusion and Neurodegenerative Changes in Early Type 2 Diabetic Retinal Disease. Br. J. Ophthalmol. 2022, 106, 528–533. [Google Scholar] [CrossRef]
- Marques, I.P.; Alves, D.; Santos, T.; Mendes, L.; Lobo, C.; Santos, A.R.; Durbin, M.; Cunha-Vaz, J. Characterization of Disease Progression in the Initial Stages of Retinopathy in Type 2 Diabetes: A 2-Year Longitudinal Study. Investig. Opthalmol. Vis. Sci. 2020, 61, 20. [Google Scholar] [CrossRef] [PubMed]
- Delaey, C.; van de Voorde, J. Regulatory Mechanisms in the Retinal and Choroidal Circulation. Ophthalmic Res. 2000, 32, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Feke, G.T.; Buzney, S.M.; Ogasawara, H.; Fujio, N.; Goger, D.G.; Spack, N.P.; Gabbay, K.H. Retinal Circulatory Abnormalities in Type 1 Diabetes. Investig. Ophthalmol. Vis. Sci. 1994, 35, 2968–2975. [Google Scholar]
- Clermont, A.C.; Aiello, L.P.; Mori, F.; Aiello, L.M.; Bursell, S.-E. Vascular Endothelial Growth Factor and Severity of Nonproliferative Diabetic Retinopathy Mediate Retinal Hemodynamics In Vivo: A Potential Role for Vascular Endothelial Growth Factor in the Progression of Nonproliferative Diabetic Retinopathy. Am. J. Ophthalmol. 1997, 124, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Grunwald, J.E.; Riva, C.E.; Baine, J.; Brucker, A.J. Total Retinal Volumetric Blood Flow Rate in Diabetic Patients with Poor Glycemic Control. Investig. Ophthalmol. Vis. Sci. 1992, 33, 356–363. [Google Scholar]
- Curtis, T.M.; Gardiner, T.A.; Stitt, A.W. Microvascular Lesions of Diabetic Retinopathy: Clues towards Understanding Pathogenesis? Eye 2009, 23, 1496–1508. [Google Scholar] [CrossRef]
- Scholfield, C.N.; McGeown, J.G.; Curtis, T.M. Cellular Physiology of Retinal and Choroidal Arteriolar Smooth Muscle Cells. Microcirculation 2007, 14, 11–24. [Google Scholar] [CrossRef]
- Delaey, C.; Boussery, K.; Van de Voorde, J. A Retinal-Derived Relaxing Factor Mediates the Hypoxic Vasodilation of Retinal Arteries. Investig. Ophthalmol. Vis. Sci. 2000, 41, 3555–3560. [Google Scholar]
- Nesper, P.L.; Roberts, P.K.; Onishi, A.C.; Chai, H.; Liu, L.; Jampol, L.M.; Fawzi, A.A. Quantifying Microvascular Abnormalities with Increasing Severity of Diabetic Retinopathy Using Optical Coherence Tomography Angiography. Investig. Opthalmol. Vis. Sci. 2017, 58, BIO307. [Google Scholar] [CrossRef]
- Onishi, A.C.; Nesper, P.L.; Roberts, P.K.; Moharram, G.A.; Chai, H.; Liu, L.; Jampol, L.M.; Fawzi, A.A. Importance of Considering the Middle Capillary Plexus on OCT Angiography in Diabetic Retinopathy. Investig. Opthalmol. Vis. Sci. 2018, 59, 2167. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.X.; Fawzi, A.A. Perspectives on Diabetic Retinopathy from Advanced Retinal Vascular Imaging. Eye 2022, 36, 319–327. [Google Scholar] [CrossRef]
- Rosen, R.B.; Andrade Romo, J.S.; Krawitz, B.D.; Mo, S.; Fawzi, A.A.; Linderman, R.E.; Carroll, J.; Pinhas, A.; Chui, T.Y.P.P. Earliest Evidence of Preclinical Diabetic Retinopathy Revealed Using Optical Coherence Tomography Angiography Perfused Capillary Density. Am. J. Ophthalmol. 2019, 203, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.S.; Mucollari, I.; Kwan, C.C.; Dingillo, G.; Amar, J.; Schwartz, G.W.; Fawzi, A.A. Reversed Neurovascular Coupling on Optical Coherence Tomography Angiography Is the Earliest Detectable Abnormality before Clinical Diabetic Retinopathy. J. Clin. Med. 2020, 9, 3523. [Google Scholar] [CrossRef] [PubMed]
- Palochak, C.M.A.; Lee, H.E.; Song, J.; Geng, A.; Linsenmeier, R.A.; Burns, S.A.; Fawzi, A.A. Retinal Blood Velocity and Flow in Early Diabetes and Diabetic Retinopathy Using Adaptive Optics Scanning Laser Ophthalmoscopy. J. Clin. Med. 2019, 8, 1165. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Li, Z. Is Preclinical Diabetic Retinopathy in Diabetic Nephropathy Individuals More Severe? Front. Endocrinol. 2023, 14, 1144257. [Google Scholar] [CrossRef] [PubMed]
- Nakahara, T.; Hoshino, M.; Hoshino, S.; Mori, A.; Sakamoto, K.; Ishii, K. Structural and Functional Changes in Retinal Vasculature Induced by Retinal Ischemia-Reperfusion in Rats. Exp. Eye Res. 2015, 135, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Nippert, A.R.; Newman, E.A. Regulation of Blood Flow in Diabetic Retinopathy. Vis. Neurosci. 2020, 37, E004. [Google Scholar] [CrossRef]
- Mozolewska-Piotrowska, K.; Nowacka, M.; Masiuk, M.; Świder, M.; Babiak, K.; Safranow, K.; Machalińska, A. Flicker-Induced Retinal Vessels Dilatation in Diabetic Patients without Clinically Detectable Diabetic Retinopathy. Klin. Oczna 2019, 2019, 94–99. [Google Scholar] [CrossRef]
- Lim, L.S.; Ling, L.H.; Ong, P.G.; Foulds, W.; Tai, E.S.; Wong, T.Y. Dynamic Responses in Retinal Vessel Caliber with Flicker Light Stimulation and Risk of Diabetic Retinopathy and Its Progression. Investig. Opthalmol. Vis. Sci. 2017, 58, 2449. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Tang, F.; Wong, R.; Lok, J.; Szeto, S.K.H.; Chan, J.C.K.; Chan, C.K.M.; Tham, C.C.; Ng, D.S.; Cheung, C.Y. OCT Angiography Metrics Predict Progression of Diabetic Retinopathy and Development of Diabetic Macular Edema. Ophthalmology 2019, 126, 1675–1684. [Google Scholar] [CrossRef]
- Nathan, D.M. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study at 30 Years: Overview. Diabetes Care 2014, 37, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Hafner, J.; Karst, S.; Sacu, S.; Scholda, C.; Pablik, E.; Schmidt-Erfurth, U. Correlation between Corneal and Retinal Neurodegenerative Changes and Their Association with Microvascular Perfusion in Type II Diabetes. Acta Ophthalmol. 2019, 97, e545–e550. [Google Scholar] [CrossRef]
- Oram, R.A.; Jones, A.G.; Besser, R.E.J.; Knight, B.A.; Shields, B.M.; Brown, R.J.; Hattersley, A.T.; McDonald, T.J. The Majority of Patients with Long-Duration Type 1 Diabetes Are Insulin Microsecretors and Have Functioning Beta Cells. Diabetologia 2014, 57, 187–191. [Google Scholar] [CrossRef]
- Chen, F.K.; Menghini, M.; Hansen, A.; Mackey, D.A.; Constable, I.J.; Sampson, D.M. Intrasession Repeatability and Interocular Symmetry of Foveal Avascular Zone and Retinal Vessel Density in OCT Angiography. Transl. Vis. Sci. Technol. 2018, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Deng, C.; Paulus, Y.M. Advances in Structural and Functional Retinal Imaging and Biomarkers for Early Detection of Diabetic Retinopathy. Biomedicines 2024, 12, 1405. [Google Scholar] [CrossRef]
Type 1 Diabetes Group | Mean ± SD 2018 | Mean ± SD 2022 | p |
---|---|---|---|
Metabolic Values | |||
Age at diagnosis (years) | 17.96 ± 13.43 | - | |
Duration of diabetes (years) | 25.68 ± 8.33 | 28.88 ± 8.04 | - |
HbA1c (%) | 7.34 ± 0.94 | 7.60 ± 0.99 | 0.032 |
Glycaemia (mg/dL) | 186.60 ± 113.61 | 160.40 ± 71.21 | 0.738 |
Total cholesterol (mg/dL) | 194.08 ± 34.95 | 189.80 ± 35.79 | 0.204 |
HDL cholesterol (mg/dL) | 57.24 ± 13.78 | 62.24 ± 12.75 | 0.003 |
LDL cholesterol (mg/dL) | 119.84 ± 27.13 | 115.00 ± 29.28 | 0.180 |
Urea (mg/dL) | 35.00 ± 7.67 | 35.89 ± 11.02 | 0.831 |
Creatinine (mg/dL) | 0.80 ± 0.12 | 0.81 ± 0.10 | 0.474 |
Albumin/creatinine ratio (mg/g Cr) | 7.31 ± 7.83 | 8.46 ± 12.66 | 0.475 |
Ophthalmic Evaluation | |||
BCVA (LogMAR) | −0.19 ± 0.11 | 0.04 ± 0.07 | <0.001 |
SE (D) | −1.16 ± 1.86 | −1.03 ± 1.71 | 0.302 |
AL (mm) | 23.71 ± 1.12 | 23.89 ± 1.18 | 0.954 |
IOP (mmHg) | 16.59 ± 3.00 | 16.85 ± 2.47 | 0.635 |
Mean ± SD 2018 | Mean ± SD 2022 | p | ||
---|---|---|---|---|
SCP | C | 19.63 ± 2.66 | 22.27 ± 3.41 | <0.001 |
S | 46.14 ± 3.61 | 48.14 ± 3.32 | 0.005 | |
T | 44.62 ± 3.38 | 48.10 ± 2.52 | <0.001 | |
N | 43.54 ± 2.84 | 46.68 ± 2.72 | <0.001 | |
I | 46.81 ± 3.07 | 47.80 ± 3.08 | 0.114 | |
FAZ area | 289.00 ± 104.30 | 288.37 ± 92.84 | 0.977 | |
FAZ horizontal Ø | 622.16 ± 121.56 | 609.40 ± 104.03 | 0.236 | |
FAZ vertical Ø | 576.92 ± 145.57 | 589.20 ± 136.59 | 0.206 | |
DCP | C | 20.02 ± 4.05 | 20.30 ± 5.93 | 0.757 |
S | 49.29 ± 2.99 | 48.41 ± 3.18 | 0.300 | |
T | 45.84 ± 2.75 | 47.84 ± 3.66 | 0.021 | |
N | 48.06 ± 3.46 | 47.66 ± 3.68 | 0.451 | |
I | 51.39 ± 3.19 | 49.17 ± 3.30 | 0.020 | |
FAZ area | 304.75 ± 86.36 | 319.36 ± 92.80 | 0.619 | |
FAZ horizontal Ø | 704.00 ± 135.62 | 648.32 ± 95.76 | 0.007 | |
FAZ vertical Ø | 572.04 ± 119.38 | 605.20 ± 116.91 | 0.146 | |
CC | C | 53.85 ± 2.64 | 54.48 ± 2.23 | 0.367 |
S | 51.48 ± 1.96 | 52.16 ± 2.35 | 0.313 | |
T | 54.00 ± 1.86 | 54.28 ± 1.56 | 0.600 | |
N | 52.74 ± 1.81 | 53.69 ± 1.50 | 0.045 | |
I | 52.97 ± 2.45 | 53.17 ± 2.09 | 0.657 |
SCP | DCP | CC | |
---|---|---|---|
FAZ abnormalities | 92% | 88% | |
Marked ischaemia | 4% | 4% | 0% |
Capillary dropout | 96% | 96% | 76% |
MA | 8% | 20% | |
Normal | 4% | 4% | 24% |
DM1 2018 | DM1 2022 | p | ||||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||
Total retina thickness (µm) | C | 251.28 | 23.41 | 250.16 | 23.10 | 0.320 |
IS | 322.16 | 15.18 | 321.60 | 16.36 | 0.676 | |
IT | 291.48 | 62.32 | 307.12 | 17.96 | 0.658 | |
IN | 323.04 | 14.31 | 321.92 | 14.78 | 0.114 | |
II | 319.72 | 15.57 | 318.96 | 17.01 | 0.715 | |
OS | 282.08 | 14.49 | 282.88 | 14.92 | 0.241 | |
OT | 264.44 | 14.16 | 264.16 | 14.01 | 0.796 | |
ON | 298.84 | 13.77 | 297.68 | 14.65 | 0.133 | |
OI | 269.28 | 11.79 | 271.96 | 18.81 | 0.563 | |
GCL+ protocol thickness (µm) | C | 47.72 | 7.57 | 48.44 | 6.70 | 0.234 |
IS | 95.40 | 5.18 | 95.24 | 8.39 | 0.078 | |
IT | 90.92 | 6.51 | 92.16 | 9.08 | 0.311 | |
IN | 94.72 | 6.98 | 94.52 | 10.75 | 0.218 | |
II | 94.16 | 7.34 | 94.04 | 11.30 | 0.042 | |
OS | 67.56 | 3.97 | 67.84 | 7.80 | 0.336 | |
OT | 71.80 | 3.58 | 72.36 | 6.01 | 0.857 | |
ON | 73.56 | 4.87 | 74.28 | 10.29 | 0.133 | |
OI | 63.76 | 3.90 | 64.96 | 9.22 | 0.534 | |
GCL++ protocol thickness (µm) | C | 52.52 | 9.95 | 52.76 | 9.08 | 0.678 |
IS | 123.76 | 6.29 | 123.28 | 10.28 | 0.777 | |
IT | 111.36 | 7.93 | 111.44 | 9.75 | 0.415 | |
IN | 120.48 | 6.95 | 119.64 | 9.03 | 0.977 | |
II | 124.24 | 7.22 | 124.04 | 10.82 | 0.304 | |
OS | 108.92 | 7.27 | 109.32 | 11.75 | 0.113 | |
OT | 94.44 | 4.86 | 94.36 | 7.69 | 0.699 | |
ON | 127.24 | 6.35 | 125.24 | 12.75 | 0.920 | |
OI | 107.20 | 5.95 | 106.56 | 11.33 | 0.329 |
Correlations | Duration of Diabetes (Years) | HbA1c | ||
---|---|---|---|---|
Spearman’s Rho | 1st Assessment | 2nd Assessment | 2nd Assessment | |
SCP C | C. coefficient | 0.062 | −0.114 | −0.240 |
p | 0.769 | 0.586 | 0.248 | |
SCP S | C. coefficient | −0.294 | −0.170 | −0.471 |
p | 0.153 | 0.416 | 0.017 | |
SCP T | C. coefficient | −0.679 | −0.410 | −0.313 |
p | <0.001 | 0.042 | 0.128 | |
SCP N | C. coefficient | −0.257 | −0.338 | −0.174 |
p | 0.215 | 0.098 | 0.406 | |
SCP I | C. coefficient | −0.248 | −0.352 | 0.096 |
p | 0.231 | 0.085 | 0.650 | |
SCP FAZ AREA | C. coefficient | 0.237 | 0.271 | 0.272 |
p | 0.254 | 0.189 | 0.188 | |
SCP FAZ HOR Ø | C. coefficient | 0.234 | 0.312 | 0.008 |
p | 0.261 | 0.129 | 0.969 | |
SCP FAZ VERT Ø | C. coefficient | 0.019 | 0.155 | 0.235 |
p | 0.927 | 0.458 | 0.258 | |
DCP C | C. coefficient | 0.497 | −0.007 | 0.087 |
p | 0.012 | 0.976 | 0.678 | |
DCP S | C. coefficient | −0.180 | −0.086 | −0.567 |
p | 0.389 | 0.682 | 0.003 | |
DCP T | C. coefficient | −0.167 | 0.030 | −0.077 |
p | 0.426 | 0.888 | 0.713 | |
DCP N | C. coefficient | −0.104 | −0.043 | −0.351 |
p | 0.620 | 0.840 | 0.085 | |
DCP I | C. coefficient | 0.063 | −0.230 | 0.036 |
p | 0.764 | 0.269 | 0.864 | |
DCP FAZ AREA | C. coefficient | −0.078 | −0.190 | 0.031 |
p | 0.710 | 0.363 | 0.882 | |
DCP FAZ HOR Ø | C. coefficient | −0.318 | −0.042 | −0.128 |
p | 0.122 | 0.843 | 0.541 | |
DCP FAZ VERT Ø | C. coefficient | −0.065 | −0.267 | 0.183 |
p | 0.757 | 0.197 | 0.381 | |
CC C | C. coefficient | 0.035 | 0.071 | −0.517 |
p | 0.866 | 0.735 | 0.008 | |
CC S | C. coefficient | −0.070 | −0.106 | 0.055 |
p | 0.739 | 0.613 | 0.794 | |
CC T | C. coefficient | −0.127 | 0.261 | −0.123 |
p | 0.547 | 0.208 | 0.559 | |
CC N | C. coefficient | −0.205 | 0.361 | −0.313 |
p | 0.325 | 0.076 | 0.128 | |
CC I | C. coefficient | −0.077 | 0.222 | 0.290 |
p | 0.714 | 0.286 | 0.160 |
Correlations | Duration of Diabetes (Years) | HbA1c | ||
---|---|---|---|---|
Spearman’s Rho | 1st Assessment | 2nd Assessment | 2nd Assessment | |
TOTAL RETINAL C | C. coefficient | −0.041 | −0.151 | 0.173 |
p | 0.846 | 0.471 | 0.410 | |
TOTAL RETINAL IS | C. coefficient | −0.310 | −0.255 | −0.029 |
p | 0.131 | 0.218 | 0.889 | |
TOTAL RETINAL IT | C. coefficient | −0.114 | −0.341 | 0.123 |
p | 0.588 | 0.096 | 0.559 | |
TOTAL RETINAL IN | C. coefficient | −0.425 | −0.376 | 0.091 |
p | 0.034 | 0.064 | 0.664 | |
TOTAL RETINAL II | C. coefficient | −0.433 | −0.445 | 0.037 |
p | 0.031 | 0.026 | 0.862 | |
TOTAL RETINAL OS | C. coefficient | 0.059 | −0.041 | 0.035 |
p | 0.788 | 0.844 | 0.869 | |
TOTAL RETINAL OT | C. coefficient | −0.044 | −0.208 | −0.096 |
p | 0.834 | 0.319 | 0.647 | |
TOTAL RETINAL ON | C. coefficient | −0.289 | −0.319 | −0.069 |
p | 0.161 | 0.120 | 0.745 | |
TOTAL RETINAL OI | C. coefficient | −0.205 | −0.178 | 0.037 |
p | 0.325 | 0.394 | 0.087 | |
GCL+ C | C. coefficient | −0.051 | −0.207 | −0.349 |
p | 0.807 | 0.321 | 0.087 | |
GCL+ IS | C. coefficient | −0.433 | −0.473 | −0.220 |
p | 0.026 | 0.017 | 0.291 | |
GCL+ IT | C. coefficient | −0.570 | −0.558 | −0.199 |
p | 0.003 | 0.004 | 0.340 | |
GCL+ IN | C. coefficient | −0.428 | −0.444 | −0.263 |
p | 0.033 | 0.026 | 0.203 | |
GCL+ II | C. coefficient | −0.504 | −0.439 | −0.131 |
p | 0.010 | 0.028 | 0.532 | |
GCL+ OS | C. coefficient | 0.192 | −0.052 | 0.342 |
p | 0.359 | 0.804 | 0.095 | |
GCL+ OT | C. coefficient | 0.080 | −0.341 | −0.217 |
p | 0.702 | 0.095 | 0.297 | |
GCL+ ON | C. coefficient | −0.058 | −0.184 | 0.219 |
p | 0.784 | 0.380 | 0.293 | |
GCL+ OI | C. coefficient | −0.014 | −0.075 | 0.011 |
p | 0.945 | 0.721 | 0.960 | |
GCL++ C | C. coefficient | 0.001 | −0.222 | −0.401 |
p | 0.996 | 0.286 | 0.047 | |
GCL++ IS | C. coefficient | −0.374 | −0.373 | −0.707 |
p | 0.065 | 0.066 | <0.001 | |
GCL++ IT | C. coefficient | −0.586 | −0.340 | −0.399 |
p | 0.004 | 0.096 | 0.048 | |
GCL++ IN | C. coefficient | −0.287 | −0.231 | −0.619 |
p | 0.164 | 0.266 | 0.001 | |
GCL++ II | C. coefficient | −0.469 | −0.297 | −0.427 |
p | 0.018 | 0.149 | 0.033 | |
GCL++ OS | C. coefficient | 0.379 | 0.018 | −0.322 |
p | 0.062 | 0.933 | 0.117 | |
GCL++ OT | C. coefficient | 0.132 | −0.309 | −0.493 |
p | 0.528 | 0.133 | 0.012 | |
GCL++ ON | C. coefficient | 0.022 | −0.045 | −0.478 |
p | 0.917 | 0.832 | 0.016 | |
GCL++ OI | C. coefficient | 0.029 | 0.058 | −0.435 |
p | 0.890 | 0.782 | 0.030 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sopeña-Pinilla, M.; Arias-Alvarez, M.; Lopez-Galvez, M.I.; Orduna-Hospital, E.; Fernandez-Espinosa, G.; Boned-Murillo, A.; Díaz-Barreda, M.D.; Tomas-Grasa, C.; Pinilla, I. Retinal Vascular Density and Thickness in Long-Term Type 1 Diabetes Without Visible Vascular Signs of Retinopathy. J. Clin. Med. 2025, 14, 1082. https://doi.org/10.3390/jcm14041082
Sopeña-Pinilla M, Arias-Alvarez M, Lopez-Galvez MI, Orduna-Hospital E, Fernandez-Espinosa G, Boned-Murillo A, Díaz-Barreda MD, Tomas-Grasa C, Pinilla I. Retinal Vascular Density and Thickness in Long-Term Type 1 Diabetes Without Visible Vascular Signs of Retinopathy. Journal of Clinical Medicine. 2025; 14(4):1082. https://doi.org/10.3390/jcm14041082
Chicago/Turabian StyleSopeña-Pinilla, Maria, Marta Arias-Alvarez, Maria Isabel Lopez-Galvez, Elvira Orduna-Hospital, Guisela Fernandez-Espinosa, Ana Boned-Murillo, María Dolores Díaz-Barreda, Cristina Tomas-Grasa, and Isabel Pinilla. 2025. "Retinal Vascular Density and Thickness in Long-Term Type 1 Diabetes Without Visible Vascular Signs of Retinopathy" Journal of Clinical Medicine 14, no. 4: 1082. https://doi.org/10.3390/jcm14041082
APA StyleSopeña-Pinilla, M., Arias-Alvarez, M., Lopez-Galvez, M. I., Orduna-Hospital, E., Fernandez-Espinosa, G., Boned-Murillo, A., Díaz-Barreda, M. D., Tomas-Grasa, C., & Pinilla, I. (2025). Retinal Vascular Density and Thickness in Long-Term Type 1 Diabetes Without Visible Vascular Signs of Retinopathy. Journal of Clinical Medicine, 14(4), 1082. https://doi.org/10.3390/jcm14041082