Practical Benefits of Single- vs. Three-Port Laparoscopic Appendectomy for Pain Relief and Long-Term Cosmesis in Pediatric Patients: A Prospective Comparative Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Surgical Techniques
2.3. Postoperative Care and Follow-Up
2.4. Outcome Measurements
2.5. Sample Size Calculation
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics and Surgical Outcomes
3.2. Pain Outcomes
- deltaPOD7_walk: SLA showed greater pain reduction (−6.46 ± 2.28 vs. −4.80 ± 3.06, MD: −1.66, 95% CI: −2.49 to −0.83, p = 0.000, Cohen’s d = 0.61, medium effect)
- deltaPOD7_cough: SLA demonstrated superior pain reduction (−6 [−8 to −4] vs. −5 [−7 to −2], p = 0.003, r = 0.33)
- deltaPOD7_rest: The difference became statistically significant (−6.96 ± 2.30 vs. −5.95 ± 2.73, MD: −1.01, 95% CI: −1.78 to −0.24, p = 0.011, Cohen’s d = 0.40)
3.3. Cosmetic Satisfaction Outcomes
- VASC scores at 3 years remained significantly better for SLA patients (10 [9–10] vs. 8 [7–9], p < 0.001, Wilcoxon signed-rank test, r = 0.52, representing a large effect), confirming the robustness of the cosmetic benefit.
- The difference remained highly significant and clinically meaningful (9.56 ± 0.56 vs. 7.71 ± 1.63, MD: 1.84, 95% CI: 1.42 to 2.27, p = 0.000).
3.4. Scar Perception Outcomes
- Color: 1 [1–2] vs. 3 [2–5] (p = 0.000, r = 0.42, medium effect);
- Stiffness: 1 [1–1] vs. 2 [1–3] (p = 0.000, r = 0.31, medium effect);
- Thickness: 1 [1–1] vs. 2 [1–4] (p = 0.000, r = 0.38, medium effect);
- Irregularity: 1 [1–1] vs. 2 [1–3] (p = 0.000, r = 0.29, small-to-medium effect).
- Color: 1 [1–1] vs. 3 [2–5] (p = 0.000, r = 0.48, medium effect size);
- Stiffness: 1 [1–1] vs. 2 [1–3] (p = 0.001, r = 0.36, medium effect size);
- Thickness: 1 [1–1] vs. 2 [1–4] (p = 0.000, r = 0.43, medium effect size);
- Irregularity: 1 [1–1] vs. 2 [1–3] (p = 0.002, r = 0.34, medium effect size);
- Total PSAS: 7 [6–8] vs. 11 [7–17] (p = 0.000, r = 0.51, large effect size).
3.5. Mediation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SLA | Single-port laparoscopic appendectomy |
TLA | Three-port laparoscopic appendectomy |
POD | Postoperative days |
VASP | Visual Analog Scale for Pain |
VASC | Visual Analog Scale for Cosmesis |
PSAS | Patient and Parental Scar Assessment Scale |
PSM | Propensity score matching |
MCID | Minimal clinically important difference |
ACME | Average causal mediation effect |
ADE | Average direct effect |
Appendix A
Patient and Parental Scar Assessment Scale | |||
---|---|---|---|
No complaint | 1 2 3 4 5 6 7 8 9 10 | Worst imaginable | |
Is the scar painful? | |||
Is the scar itching? | |||
As normal skin | 1 2 3 4 5 6 7 8 9 10 | Very different | |
Is the color of the scar different? | |||
Is the scar stiffer? | |||
Is the thickness of the scar different? | |||
Is the scar irregular? |
Variable | SLA (Mean, SD or Median, IQR) | SLA (n) | TLA (Mean, SD or Median, IQR) | TLA (n) | MD [95% CI] or U | p-Value | Effect Size |
---|---|---|---|---|---|---|---|
VASPpreop_rest | 6.87 ± 2.42 | 121 | 6.46 ± 2.57 | 101 | 0.41 [−0.25, 1.07] | 0.221 | d = 0.16 |
VASP1_rest | 5.39 ± 2.56 | 121 | 5.31 ± 2.60 | 101 | 0.09 [−0.59, 0.77] | 0.803 | d = 0.03 |
VASP2_rest | 3.13 ± 2.10 | 121 | 2.95 ± 1.99 | 101 | 0.18 [−0.36, 0.72] | 0.509 | d = 0.09 |
VASP7_rest * | 0 [0–0] | 118 | 0 [0–1] | 99 | 5525 | 0.321 | r = 0.07 |
VASPpreop_cough | 6.90 ± 2.47 | 121 | 6.32 ± 2.68 | 101 | 0.58 [−0.10, 1.27] | 0.094 | d = 0.22 |
VASP1_cough | 7.09 ± 2.06 | 121 | 6.86 ± 2.14 | 101 | 0.23 [−0.33, 0.78] | 0.419 | d = 0.11 |
VASP2_cough | 5.07 ± 1.92 | 121 | 5.00 ± 2.00 | 101 | 0.07 [−0.45, 0.59] | 0.803 | d = 0.04 |
VASP7_cough * | 0 [0–2] | 118 | 1 [0–2] | 99 | 5291 | 0.080 | r = 0.12 |
VASPpreop_walk | 6.94 ± 2.50 | 121 | 6.54 ± 2.65 | 101 | 0.40 [−0.28, 1.08] | 0.253 | d = 0.15 |
VASP1_walk | 6.18 ± 2.26 | 121 | 6.10 ± 2.11 | 101 | 0.08 [−0.49, 0.66] | 0.781 | d = 0.04 |
VASP2_walk | 4.30 ± 1.99 | 121 | 3.99 ± 1.98 | 101 | 0.31 [−0.22, 0.83] | 0.250 | d = 0.16 |
VASP7_walk * | 0 [0–1] | 118 | 1 [0–2] | 99 | 4877 | 0.002 | r = 0.21 |
deltaVASP1_rest | −1.48 ± 3.35 | 121 | −1.15 ± 3.34 | 101 | −0.33 [−1.21, 0.56] | 0.468 | d = 0.10 |
deltaVASP2_rest | −3.74 ± 3.10 | 121 | −3.50 ± 3.25 | 101 | −0.24 [−1.08, 0.60] | 0.577 | d = 0.08 |
deltaVASP7_rest | −6.53 ± 2.48 | 118 | −5.86 ± 2.82 | 99 | −0.68 [−1.39, 0.04] | 0.065 | d = 0.25 |
deltaVASP1_cough | 0.19 ± 2.77 | 121 | 0.54 ± 3.00 | 101 | −0.36 [−1.12, 0.41] | 0.361 | d = 0.12 |
deltaVASP2_cough | −1.84 ± 2.81 | 121 | −1.32 ± 3.30 | 101 | −0.53 [−1.34, 0.29] | 0.207 | d = 0.17 |
deltaVASP7_cough * | −6 [−8 to −4] | 118 | −5 [−8 to −2] | 99 | 4892 | 0.005 | r = 0.19 |
deltaVASP1_walk | −0.76 ± 2.88 | 121 | −0.45 ± 3.03 | 101 | −0.32 [−1.10, 0.46] | 0.427 | d = 0.11 |
deltaVASP2_walk | −2.65 ± 2.72 | 121 | −2.55 ± 3.56 | 101 | −0.10 [−0.95, 0.75] | 0.820 | d = 0.03 |
deltaVASP7_walk | −6.22 ± 2.60 | 118 | −5.06 ± 3.23 | 99 | −1.16 [−1.95, −0.37] | 0.004 | d = 0.39 |
VASC_1month * | 10 [9–10] | 111 | 10 [9–10] | 97 | 5164 | 0.177 | r = 0.09 |
VASC_3yrs * | 10 [9–10] | 102 | 8 [6–9] | 90 | 2835 | 0.000 | r = 0.44 |
PSAS_pain * | 1 [1–1] | 102 | 1 [1–1] | 90 | 4419 | 0.218 | r = 0.09 |
PSAS_itchiness * | 1 [1–1] | 102 | 1 [1–1] | 90 | 4545 | 0.498 | r = 0.05 |
PSAS_color * | 1 [1–2] | 102 | 3 [1–5] | 90 | 2548 | 0.000 | r = 0.42 |
PSAS_stiffness * | 1 [1–1] | 102 | 2 [1–3] | 90 | 3244 | 0.000 | r = 0.31 |
PSAS_thickness * | 1 [1–1] | 102 | 2 [1–4] | 90 | 2870 | 0.000 | r = 0.38 |
PSAS_irregularity * | 1 [1–1] | 102 | 2 [1–3] | 90 | 3397 | 0.000 | r = 0.29 |
PSAS_total * | 7 [6–8] | 102 | 11 [8–17] | 90 | 2403 | 0.000 | r = 0.45 |
Variable | SLA (Mean, SD or Median, IQR) | SLA (n) | TLA (Mean, SD or Median, IQR) | TLA (n) | MD [95% CI] or W | p-Value | Effect Size |
---|---|---|---|---|---|---|---|
VASPpreop_rest | 7.26 ± 2.34 | 82 | 6.37 ± 2.54 | 82 | 0.89 [0.14, 1.64] | 0.020 | d = 0.36 |
VASP1_rest | 5.01 ± 2.47 | 82 | 5.02 ± 2.62 | 82 | −0.01 [−0.79, 0.77] | 0.975 | d = 0.02 |
VASP2_rest | 3.23 ± 2.27 | 82 | 3.07 ± 2.02 | 82 | 0.16 [−0.50, 0.82] | 0.637 | d = 0.08 |
VASP7_rest * | 0 [0–0] | 82 | 0 [0–1] | 82 | 1653 | 0.378 | r = 0.10 |
VASPpreop_cough | 6.95 ± 2.45 | 82 | 6.20 ± 2.63 | 82 | 0.76 [−0.02, 1.53] | 0.058 | d = 0.29 |
VASP1_cough | 6.76 ± 1.97 | 82 | 6.62 ± 2.14 | 82 | 0.13 [−0.50, 0.76] | 0.676 | d = 0.10 |
VASP2_cough | 4.67 ± 1.85 | 82 | 4.95 ± 2.14 | 82 | −0.28 [−0.89 to 0.33] | 0.370 | d = 0.05 |
VASP7_cough * | 0 [0–1] | 82 | 1 [0–2] | 82 | 1456 | 0.066 | r = 0.20 |
VASPpreop_walk | 7.10 ± 2.42 | 82 | 6.27 ± 2.63 | 82 | 0.83 [0.06, 1.60] | 0.037 | d = 0.33 |
VASP1_walk | 5.54 ± 2.29 | 82 | 5.89 ± 2.17 | 82 | −0.35 [−1.04, 0.33] | 0.312 | d = 0.04 |
VASP2_walk | 3.87 ± 1.88 | 82 | 4.09 ± 1.99 | 82 | −0.22 [−0.81, 0.37) | 0.468 | d = 0.16 |
VASP7_walk * | 0 [0–1] | 82 | 1 [0–2] | 82 | 1089 | 0.000 | r = 0.43 |
deltaVASP1_rest | −2.24 ± 3.64 | 82 | −1.34 ± 3.35 | 82 | −0.90 [−1.97, 0.17] | 0.100 | d = 0.10 |
deltaVASP2_rest | −4.02 ± 3.40 | 82 | −3.29 ± 3.18 | 82 | −0.73 [−1.74, 0.27] | 0.156 | d = 0.08 |
deltaVASP7_rest | −6.96 ± 2.30 | 82 | −5.95 ± 2.73 | 82 | −1.01 [−1.78, −0.24] | 0.011 | d = 0.40 |
deltaVASP1_cough | −0.20 ± 2.73 | 82 | 0.43 ± 3.10 | 82 | −0.62 [−1.52, 0.27] | 0.174 | d = 0.12 |
deltaVASP2_cough | −2.28 ± 2.72 | 82 | −1.24 ± 3.39 | 82 | −1.04 [−1.98, −0.10] | 0.032 | d = 0.17 |
deltaVASP7_cough * | −6 [−8 to −4] | 82 | −5 [−7 to −2] | 82 | 1234 | 0.003 | r = 0.33 |
deltaVASP1_walk | −1.56 ± 2.87 | 82 | −0.38 ± 3.08 | 82 | −1.18 [−2.09, −0.27] | 0.011 | d = 0.12 |
deltaVASP2_walk | −3.23 ± 2.77 | 82 | −2.18 ± 3.46 | 82 | −1.05 [−2.01, −0.09) | 0.033 | d = 0.04 |
deltaVASP7_walk | −6.46 ± 2.28 | 82 | −4.80 ± 3.06 | 82 | −1.66 [−2.49, −0.83] | 0.000 | d = 0.61 |
VASC_1month * | 10 [9–10] | 63 | 9 [8–10] | 63 | 892 | 0.020 | r = 0.26 |
VASC_3yrs * | 10 [9–10] | 63 | 8 [7–9] | 63 | 378 | 0.000 | r = 0.52 |
PSAS_pain * | 1 [1–1] | 63 | 1 [1–1] | 63 | 1024 | 0.057 | r = 0.21 |
PSAS_itchiness * | 1 [1–1] | 63 | 1 [1–1] | 63 | 126 | 1.000 | r = 0.00 |
PSAS_color * | 1 [1–1] | 63 | 3 [2–5] | 63 | 456 | 0.000 | r = 0.48 |
PSAS_stiffness * | 1 [1–1] | 63 | 2 [1–3] | 63 | 687 | 0.001 | r = 0.36 |
PSAS_thickness * | 1 [1–1] | 63 | 2 [1–4] | 63 | 523 | 0.000 | r = 0.43 |
PSAS_irregularity * | 1 [1–1] | 63 | 2 [1–3] | 63 | 712 | 0.002 | r = 0.34 |
PSAS_total * | 7 [6–8] | 63 | 11 [7–17] | 63 | 398 | 0.000 | r = 0.51 |
(a) | |
Effect | Estimate |
ACME (indirect) | 1.12 |
ADE (direct) | 0.58 |
Total Effect | 1.70 |
Proportion Mediated | 0.66 |
(b) | |
PSAS Subitem | Beta Coefficient (β) Predicting VASC_3yrs |
Color | −0.19 |
Thickness | −0.30 |
Irregularity | −0.30 |
Pliability | −0.08 |
Pain | −0.07 |
Itchiness | −0.05 |
References
- Addiss, D.G.; Shaffer, N.; Fowler, B.S.; Tauxe, R.V. The epidemiology of appendicitis and appendectomy in the United States. Am. J. Epidemiol. 1990, 132, 910–925. [Google Scholar] [CrossRef]
- Pogorelić, Z.; Ødeverp, A.; Jukić, M. The Safety and Feasibility of Single-Stage Versus Staged Laparoscopic Approach for Acute Appendicitis with Inguinal Hernia in Pediatric Patients: A Comparative Study. J. Clin. Med. 2025, 14, 4243. [Google Scholar] [CrossRef] [PubMed]
- Aziz, O.; Athanasiou, T.; Tekkis, P.P.; Purkayastha, S.; Haddow, J.; Malinovski, V.; Paraskeva, P.; Darzi, A.; Heriot, A.G. Laparoscopic versus open appendectomy in children: A meta-analysis. Ann. Surg. 2006, 243, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Sauerland, S.; Jaschinski, T.; Neugebauer, E.A. Laparoscopic versus open surgery for suspected appendicitis. Cochrane Database Syst. Rev. 2018, 11, CD001546. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Sang, L.; Zhang, W.; Chu, Z.; Li, X.; Liu, Y. Laparoscopic versus conventional appendectomy--a meta-analysis of randomized controlled trials. BMC Gastroenterol. 2010, 10, 129. [Google Scholar] [CrossRef]
- Pelosi, M.A.; Pelosi, M.A., 3rd. Laparoscopic appendectomy using a single umbilical puncture (minilaparoscopy). J. Reprod. Med. 1992, 37, 588–594. [Google Scholar]
- Hong, T.H.; Kim, H.L.; Lee, Y.S.; Kim, J.J.; Lee, K.H.; You, Y.K.; Oh, S.J.; Park, S.M. Transumbilical single-port laparoscopic appendectomy (TUSPLA): Scarless intracorporeal appendectomy. J. Laparoendosc. Adv. Surg. Tech. A 2009, 19, 75–78. [Google Scholar] [CrossRef]
- Antoniou, S.A.; Koch, O.O.; Antoniou, G.A.; Pointner, R.; Granderath, F.A. Meta-analysis of randomized trials on single-incision laparoscopic versus conventional laparoscopic appendectomy. Am. J. Surg. 2014, 207, 613–622. [Google Scholar] [CrossRef]
- Clerveus, M.; Morandeira-Rivas, A.; Moreno-Sanz, C.; Tadeo-Ruiz, G.; Picazo-Yeste, J.S.; Tadeo-Ruiz, G. Systematic review and meta-analysis of randomized controlled trials comparing single incision versus conventional laparoscopic appendectomy. World J. Surg. 2014, 38, 1937–1946. [Google Scholar] [CrossRef]
- Sozutek, A.; Colak, T.; Dirlik, M.; Ocal, K.; Turkmenoglu, O.; Dag, A. A prospective randomized comparison of single-port laparoscopic procedure with open and standard 3-port laparoscopic procedures in the treatment of acute appendicitis. Surg. Laparosc. Endosc. Percutan. Tech. 2013, 23, 74–78. [Google Scholar] [CrossRef]
- Perez, E.A.; Piper, H.; Burkhalter, L.S.; Fischer, A.C. Single-incision laparoscopic surgery in children: A randomized controlled trial of acute appendicitis. Surg. Endosc. 2013, 27, 1367–1371. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.E.; Choi, Y.S.; Kim, B.G.; Rah, H.; Choi, S.K.; Hong, T.H. Single-port laparoscopic appendectomy in children using glove port and conventional rigid instruments. Ann. Surg. Treat. Res. 2014, 86, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, G.; Mao, X.; Shi, M.; Zhang, J.; Jin, S.; Yao, L. Single-incision laparoscopic appendectomy versus traditional three-hole laparoscopic appendectomy for acute appendicitis in children by senior pediatric surgeons: A multicenter study from China. Front. Pediatr. 2023, 11, 1224113. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Liao, Z.; Feng, S.; He, Y.; Zhao, Q.; Li, K. Single-incision versus conventional laparoscopic appendicectomy in children: A systematic review and meta-analysis. Pediatr. Surg. Int. 2015, 31, 347–353. [Google Scholar] [CrossRef]
- Imren, C.; IJsselstijn, H.; Vermeulen, M.J.; Wijnen, R.H.M.; Rietman, A.B.; Keyzer--Dekker, C.M.G. Scar perception in school--aged children after major surgery in infancy. J. Pediatr. Surg. 2024, 59, 161659. [Google Scholar] [CrossRef]
- Steinvall, I.; Kennedy, S.; Karlsson, M.; Ellabban, M.A.; Sjöberg, F.; Andersson, C.; Elmasry, M.; Abdelrahman, I. Evaluating scar outcomes in pediatric burn patients following skin grafting. Sci. Rep. 2025, 15, 20205. [Google Scholar] [CrossRef]
- Gasior, A.C.; Knott, E.M.; Holcomb, G.W., 3rd; Ostlie, D.J.; St Peter, S.D. Patient- and parent-reported scar satisfaction after single incision versus standard 3-port laparoscopic appendectomy: Long-term follow-up from a prospective randomized trial. J. Pediatr. Surg. 2014, 49, 120–122. [Google Scholar] [CrossRef]
- McGlothlin, A.E.; Lewis, R.J. Minimal clinically important difference: Defining what really matters to patients. JAMA 2014, 312, 1342–1343. [Google Scholar] [CrossRef]
- Srouji, R.; Ratnapalan, S.; Schneeweiss, S. Pain in children: Assessment and nonpharmacological management. Int. J. Pediatr. 2010, 2010, 474838. [Google Scholar] [CrossRef]
- Fearmonti, R.; Bond, J.; Erdmann, D.; Levinson, H. A review of scar scales and scar measuring devices. Eplasty 2010, 10, e43. [Google Scholar]
- Austin, P.C. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivar. Behav. Res. 2011, 46, 399–424. [Google Scholar] [CrossRef]
- Powell, C.V.; Kelly, A.M.; Williams, A. Determining the minimum clinically significant difference in visual analog pain score for children. Ann. Emerg. Med. 2001, 37, 28–31. [Google Scholar] [CrossRef]
- Kandathil, C.K.; Cordeiro, P.G.; Matros, E. Minimal Clinically Important Difference of the Standardized Cosmesis and Health Nasal Outcomes Survey. Plast. Reconstr. Surg. 2019, 144, 86e–93e. [Google Scholar] [CrossRef] [PubMed]
- Draaijers, L.J.; Tempelman, F.R.; Botman, Y.A.; Tuinebreijer, W.E.; Middelkoop, E.; Kreis, R.W.; van Zuijlen, P.P. The Patient and Observer Scar Assessment Scale: A Reliable and Feasible Tool for Scar Evaluation. Plast. Reconstr. Surg. 2004, 113, 1960–1965. [Google Scholar] [CrossRef] [PubMed]
- Van de Kar, A.L.; Corion, L.U.; Smeulders, M.J.; Draaijers, L.J.; van der Horst, C.M.; van Zuijlen, P.P. Reliable and feasible evaluation of linear scars by the Patient and Observer Scar Assessment Scale. Plast. Reconstr. Surg. 2005, 116, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Boo, Y.J.; Lee, S.J.; Yoon, H.R.; Kim, J.S.; Hong, T.H.; Choi, S.K. Comparison of transumbilical laparoscopic-assisted appendectomy versus single incision laparoscopic appendectomy in children: Which is the better surgical option? J. Pediatr. Surg. 2016, 51, 1288–1291. [Google Scholar] [CrossRef]
- Kang, S.I.; Woo, I.T.; Bae, S.U.; Yang, C.S. Single-incision versus conventional laparoscopic appendectomy: A multi-center randomized controlled trial (SCAR trial). Ann. Surg. 2018, 267, 146–153. [Google Scholar] [CrossRef]
- Chandler, N.M.; Danielson, P.D. Single-incision laparoscopic appendectomy vs multiport laparoscopic appendectomy in children: A retrospective comparison. J. Pediatr. Surg. 2010, 45, 2186–2190. [Google Scholar] [CrossRef]
- Teoh, A.Y.; Chiu, P.W.; Wong, T.C.; Wong, S.K.; Lai, P.B.; Ng, E.K. A double-blinded randomized controlled trial of laparoendoscopic single-site access versus conventional 3-port appendectomy. Ann. Surg. 2012, 256, 909–914. [Google Scholar] [CrossRef]
- Carter, J.T.; Kaplan, J.A.; Nguyen, J.N.; Lin, M.Y.; Rogers, W.K.; Harris, H.W. A prospective, randomized controlled trial of single-incision laparoscopic vs conventional 3-port laparoscopic appendectomy for treatment of acute appendicitis. J. Am. Coll. Surg. 2014, 218, 950–959. [Google Scholar] [CrossRef]
- Frutos, M.D.; Abrisqueta, J.; Luján, J.; Abellan, I.; Parrilla, P. Randomized prospective study to compare laparoscopic appendectomy versus umbilical single-incision appendectomy. Ann. Surg. 2013, 257, 413–418. [Google Scholar] [CrossRef]
- Von Baeyer, C.L. Children’s self-reports of pain intensity: Scale selection, limitations, and interpretation. Pain Res. Manag. 2006, 11, 157–164. [Google Scholar] [CrossRef]
- Stinson, J.N.; Kavanagh, T.; Yamada, J.; Gill, N.; Stevens, B. Systematic review of the psychometric properties, interpretability, and feasibility of self-report pain intensity measures for use in clinical trials in children and adolescents. Pain 2006, 125, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Hamill, J.K.; Liley, A.; Hill, A.G. Intraperitoneal local anesthetic for laparoscopic appendectomy in children: A randomized controlled trial. Ann. Surg. 2015, 262, 1051–1058. [Google Scholar] [CrossRef] [PubMed]
- Aly, O.E.; Black, D.H.; Rehman, H.; Ahmed, I. Single incision laparoscopic appendicectomy versus conventional three-port laparoscopic appendicectomy: A systematic review and meta-analysis. Int. J. Surg. 2016, 35, 120–128. [Google Scholar] [CrossRef] [PubMed]
- St Peter, S.D.; Adibe, O.O.; Juang, D.; Sharp, S.W.; Garey, C.L.; Laituri, C.A.; Murphy, J.P.; Snyder, C.L.; Holcomb, G.W., 3rd; Ostlie, D.J. Single incision versus standard 3-port laparoscopic appendectomy: A prospective randomized trial. Ann. Surg. 2011, 254, 586–590. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Liu, R.; Zhao, L.; Liu, N.; Li, J. Systematic review and meta-analysis of single-incision versus conventional laparoscopic appendectomy in children. J. Pediatr. Surg. 2015, 50, 1600–1609. [Google Scholar] [CrossRef]
- Qin, X.; Sun, Z.; Li, J.; Cheng, X.; Zhou, Z.; Chen, J. Transumbilical Single-Site Double-Port Laparoscopic Appendectomy versus Conventional Three-Port Laparoscopic Appendectomy in Children: A Retrospective Study. Front. Pediatr. 2025, 13, 1541702. [Google Scholar] [CrossRef]
- Phutane, V.H.; Shaikh, S.; Yelavarthi, R.; Reddy, N.; Kalburgi, V.; Kale, R.; Pawar, A. Transumbilical Laparoscopic Assisted Appendectomy (TULAA) in Pediatric Patients: A Prospective Observational Study. Cureus 2025, 17, e80505. [Google Scholar] [CrossRef]
- Abdullah, M.; Al-Taher, R.; Abdin, B.; Abbad, M.; Khris, I.; Atieh, D.; Matar, S.G.; Nawaiseh, M.B. Is Transumbilical Laparoscopic-Assisted Appendectomy Better than Laparoscopic Appendectomy in Children? A Randomized Controlled Study. J. Indian Assoc. Pediatr. Surg. 2025, 30, 369–376. [Google Scholar] [CrossRef]
- Ostlie, D.J.; Sharp, N.E.; Thomas, P.; Ostlie, M.M.; St Peter, S.D. Patient scar assessment after single-incision versus four-port laparoscopic cholecystectomy: Long-term follow-up from a prospective randomized trial. J. Laparoendosc. Adv. Surg. Tech. A 2013, 23, 553–555. [Google Scholar] [CrossRef]
- Mustoe, T.A.; Cooter, R.D.; Gold, M.H.; Hobbs, F.D.; Ramelet, A.A.; Shakespeare, P.G.; Stella, M.; Téot, L.; Wood, F.M.; Ziegler, U.E. International clinical recommendations on scar management. Plast. Reconstr. Surg. 2002, 110, 560–571. [Google Scholar] [CrossRef]
- Bush, J.; Duncan, J.A.; Bond, J.S.; Durani, P.; So, K.; Mason, T.; O’Kane, S.; Ferguson, M.W. Scar-improving efficacy of avotermin administered into the wound margins of skin incisions as evaluated by a randomized, double-blind, placebo-controlled, phase II clinical trial. Plast. Reconstr. Surg. 2010, 126, 1604–1615. [Google Scholar] [CrossRef] [PubMed]
- Duncan, J.A.; Bond, J.S.; Mason, T.; Ludlow, A.; Cridland, P.; O’Kane, S.; Ferguson, M.W. Visual analogue scale scoring and ranking: A suitable and sensitive method for assessing scar quality? Plast. Reconstr. Surg. 2006, 118, 909–918. [Google Scholar] [CrossRef] [PubMed]
- Katsuno, G.; Fukunaga, M.; Nagakari, K.; Yoshikawa, S.; Azuma, D.; Kohama, S. Short-term and long-term outcomes of single-incision versus multi-port laparoscopic appendectomy for appendicitis: A propensity-score-matched analysis of a single-center experience. Surg. Today 2016, 46, 851–858. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, J.I.; Lee, Y.S.; Lee, I.K.; Park, J.H.; Lee, S.K.; Kang, W.K.; Cho, H.M.; You, Y.T.; Oh, S.T. Single-port transumbilical laparoscopic appendectomy: 43 consecutive cases. Surg. Endosc. 2010, 24, 2765–2769. [Google Scholar] [CrossRef]
- Larsson, J.B.; Longaker, M.T.; Lorenz, H.P. Scarless fetal wound healing: A basic science review. Cochrane Database Syst. Rev. 2010, 6, CD001546. [Google Scholar] [CrossRef]
- Borges, A.F. Relaxed skin tension lines (RSTL) versus other skin lines. Plast. Reconstr. Surg. 1984, 73, 144–150. [Google Scholar] [CrossRef]
- Bayat, A.; McGrouther, D.A.; Ferguson, M.W. Skin scarring. BMJ 2003, 326, 88–92. [Google Scholar] [CrossRef]
- Bock, O.; Schmid-Ott, G.; Malewski, P.; Mrowietz, U. Quality of life of patients with keloid and hypertrophic scarring. Arch. Dermatol. Res. 2006, 297, 433–438. [Google Scholar] [CrossRef]
- O’Brien, L.; Jones, D.J. Silicone gel sheeting for preventing and treating hypertrophic and keloid scars. Cochrane Database Syst. Rev. 2013, 2013, CD003826. [Google Scholar] [CrossRef]
- Butzelaar, L.; Ulrich, M.M.; Mink van der Molen, A.B.; Niessen, F.B.; Beelen, R.H. Currently known risk factors for hypertrophic skin scarring: A review. J. Plast. Reconstr. Aesthet. Surg. 2016, 69, 163–169. [Google Scholar] [CrossRef]
Variable | SLA (n = 127) | TLA (n = 111) | MD or OR [95% CI], or U | p-Value |
---|---|---|---|---|
Age, year | 10.1 ± 3.0 | 9.8 ± 3.1 | 0.34 [−0.46, 1.14] | 0.407 |
Sex, male (%) | 53 (41.7) | 40 (36.0) | 1.27 [0.75, 2.15] | 0.425 |
Weight, kg | 39.3 ± 14.7 | 38.3 ± 14.9 | 0.93 [−2.83, 4.69] | 0.629 |
BMI, kg/m2 * | 18.3 [15.9–20.5] | 17.8 [15.8–19.9] | 5524 | 0.871 |
WBC, ×103 | 14.2 ± 5.2 | 14.5 ± 4.9 | −0.31 [−1.59, 0.97] | 0.632 |
Neutrophil, % * | 80.9 [73.7–86.2] | 82.2 [73.6–87.3] | 6156 | 0.397 |
CRP * | 7.9 [1.6–31.0] | 6.9 [1.6–25.0] | 5892 | 0.770 |
Operation time, min * | 35 [30–50] | 40 [30–55] | 6432 | 0.360 |
Postoperative days * | 2 [2–2] | 2 [2–2] | 6987 | 0.717 |
Wound seroma | 3 (2.4%) | 3 (2.7%) | 0.87 [0.17, 4.41] | 0.871 |
Postoperative ileus | 3 (2.4%) | 2 (1.8%) | 1.32 [0.22, 8.04] | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.A.; Kang, W.M.; Ahn, S.M. Practical Benefits of Single- vs. Three-Port Laparoscopic Appendectomy for Pain Relief and Long-Term Cosmesis in Pediatric Patients: A Prospective Comparative Study. J. Clin. Med. 2025, 14, 7077. https://doi.org/10.3390/jcm14197077
Kim TA, Kang WM, Ahn SM. Practical Benefits of Single- vs. Three-Port Laparoscopic Appendectomy for Pain Relief and Long-Term Cosmesis in Pediatric Patients: A Prospective Comparative Study. Journal of Clinical Medicine. 2025; 14(19):7077. https://doi.org/10.3390/jcm14197077
Chicago/Turabian StyleKim, Tae Ah, Won Me Kang, and Soo Min Ahn. 2025. "Practical Benefits of Single- vs. Three-Port Laparoscopic Appendectomy for Pain Relief and Long-Term Cosmesis in Pediatric Patients: A Prospective Comparative Study" Journal of Clinical Medicine 14, no. 19: 7077. https://doi.org/10.3390/jcm14197077
APA StyleKim, T. A., Kang, W. M., & Ahn, S. M. (2025). Practical Benefits of Single- vs. Three-Port Laparoscopic Appendectomy for Pain Relief and Long-Term Cosmesis in Pediatric Patients: A Prospective Comparative Study. Journal of Clinical Medicine, 14(19), 7077. https://doi.org/10.3390/jcm14197077