Outcomes at Patient and Limb Levels in Peripheral Artery Disease by the Location of Atherosclerotic Lower Limb Lesions: An Observational Study from a High-Volume German Center
Abstract
1. Introduction
2. Methods
2.1. Study Design and Data Acquisition
2.2. Definition of Primary and Secondary Endpoints
2.3. The Allocation of the Level of Atherosclerotic Lesions and the Definition of Primary Revascularization Procedures
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Primary and Secondary Endpoints at Patient Level
3.3. Primary and Secondary Endpoints at Limb Level
4. Discussion
4.1. Limitations
4.2. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation 2021, 143, e254–e743. [Google Scholar] [CrossRef]
- GBD 2019 Peripheral Artery Disease Collaborators. Global burden of peripheral artery disease and its risk factors, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Glob. Health 2023, 11, e1553–e1565. [Google Scholar] [CrossRef]
- Polonsky, T.S.; McDermott, M.M. Lower Extremity Peripheral Artery Disease Without Chronic Limb-Threatening Ischemia: A Review. JAMA 2021, 325, 2188–2198. [Google Scholar] [CrossRef]
- Treat-Jacobson, D.; Halverson, S.L.; Ratchford, A.; Regensteiner, J.G.; Lindquist, R.; Hirsch, A.T. A patient-derived perspective of health-related quality of life with peripheral arterial disease. J. Nurs. Scholarsh. 2002, 34, 55–60. [Google Scholar] [CrossRef]
- Criqui, M.H.; Langer, R.D.; Fronek, A.; Feigelson, H.S.; Klauber, M.R.; McCann, T.J.; Browner, D. Mortality over a period of 10 years in patients with peripheral arterial disease. N. Engl. J. Med. 1992, 326, 381–386. [Google Scholar] [CrossRef]
- Yusuf, S.; Reddy, S.; Ôunpuu, S.; Anand, S. Global burden of cardiovascular diseases: Part I: General considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation 2001, 104, 2746–2753. [Google Scholar] [CrossRef]
- Kolls, B.J.; Sapp, S.; Rockhold, F.W.; Jordan, J.D.; Dombrowski, K.E.; Fowkes, F.G.R.; Mahaffey, K.W.; Berger, J.S.; Katona, B.G.; Blomster, J.I. Stroke in Patients With Peripheral Artery Disease. Stroke 2019, 50, 1356–1363. [Google Scholar] [CrossRef]
- The TASC Steering Committee; Jaff, M.R.; White, C.J.; Hiatt, W.R.; Fowkes, G.R.; Dormandy, J.; Razavi, M.; Reekers, J.; Norgren, L. An Update on Methods for Revascularization and Expansion of the TASC Lesion Classification to Include Below-the-Knee Arteries: A Supplement to the Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). Vasc. Med. 2015, 20, 465–478. [Google Scholar] [CrossRef]
- Pokharel, Y.; Kokkinidis, D.G.; Wang, J.; Gosch, K.L.; Safley, D.M.; Spertus, J.A.; Mena-Hurtado, C.; Smolderen, K.G. Predictors of Revascularization in Lower-Extremity Peripheral Artery Disease: Insights From the PORTRAIT Study. J. Endovasc. Ther. 2023, 32, 423–430. [Google Scholar] [CrossRef]
- Lee, M.S.; Mustapha, J.; Beasley, R.; Chopra, P.; Das, T.; Adams, G.L. Impact of lesion location on procedural and acute angiographic outcomes in patients with critical limb ischemia treated for peripheral artery disease with orbital atherectomy: A CONFIRM registries subanalysis. Catheter. Cardiovasc. Interv. 2016, 87, 440–445. [Google Scholar] [CrossRef]
- Diehm, N.; Rohrer, S.; Baumgartner, I.; Keo, H.; Do, D.; Kalka, C. Distribution pattern of infrageniculate arterial obstructions in patients with diabetes mellitus and renal insufficiency—Implications for revascularization. Vasa 2008, 37, 265–273. [Google Scholar] [CrossRef]
- Poredoš, P.; Cevc, M.; Blinc, A. Characteristics of atherosclerosis in femoropopliteal artery and its clinical relevance. Atherosclerosis 2021, 335, 31–40. [Google Scholar] [CrossRef]
- Bryniarski, K.L.; Yamamoto, E.; Takumi, H.; Xing, L.; Zanchin, T.; Sugiyama, T.; Lee, H.; Jang, I.-K. Differences in coronary plaque characteristics between patients with and those without peripheral arterial disease. Coron. Artery Dis. 2017, 28, 658–663. [Google Scholar] [CrossRef]
- Smith, F.; Lee, A.; Fowkes, F.; Lowe, G.; Rumley, A. Variation in cardiovascular risk factors by angiographic site of lower limb atherosclerosis. Eur. J. Vasc. Endovasc. Surg. 1996, 11, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Vogt, M.T.; Wolfson, S.K.; Kuller, L.H. Segmental arterial disease in the lower extremities: Correlates of disease and relationship to mortality. J. Clin. Epidemiol. 1993, 46, 1267–1276. [Google Scholar] [CrossRef] [PubMed]
- Smolderen, K.G.; van Zitteren, M.; Jones, P.G.; Spertus, J.A.; Heyligers, J.M.; Nooren, M.J.; Vriens, P.W.; Denollet, J. Long-Term Prognostic Risk in Lower Extremity Peripheral Arterial Disease as a Function of the Number of Peripheral Arterial Lesions. J. Am. Heart Assoc. 2015, 4, e001823. [Google Scholar] [CrossRef] [PubMed]
- Mathew, G.; Agha, R. STROCSS 2021: Strengthening the Reporting of cohort, cross-sectional and case-control studies in Surgery. Int. J. Surg. 2021, 6, e35. [Google Scholar]
- Rashid, R.; Sohrabi, C.B.; Kerwan, A.; Franchi, T.; Mathew, G.; Nicola, M.; Agha, R.A. The STROCSS 2024 guideline: Strengthening the reporting of cohort, cross-sectional, and case-control studies in surgery. Int. J. Surg. 2024, 110, 3151–3165. [Google Scholar] [CrossRef]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M.; STROBE Initiative. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and elaboration. PLoS Med. 2007, 4, 1500–1524. [Google Scholar] [CrossRef]
- Kotecha, D.; Asselbergs, F.W.; Achenbach, S.; Anker, S.D.; Atar, D.; Baigent, C.; Banerjee, A.; Beger, B.; Brobert, G.; Casadei, B.; et al. CODE-EHR best practice framework for the use of structured electronic healthcare records in clinical research. BMJ 2022, 378, e069048. [Google Scholar] [CrossRef]
- Eckart, A.; Hauser, S.I.; Haubitz, S.; Struja, T.; Kutz, A.; Koch, D.; Neeser, O.; A Meier, M.; Mueller, B.; Schuetz, P. Validation of the hospital frailty risk score in a tertiary care hospital in Switzerland: Results of a prospective, observational study. BMJ Open 2019, 9, e026923. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, T.; Neuburger, J.; Kraindler, J.; Keeble, E.; Smith, P.; Ariti, C.; Arora, S.; Street, A.; Parker, P.S.; Roberts, P.H.C.; et al. Development and validation of a Hospital Frailty Risk Score focusing on older people in acute care settings using electronic hospital records: An observational study. Lancet 2018, 391, 1775–1782. [Google Scholar] [CrossRef]
- VanderWeele, T.J. Principles of confounder selection. Eur. J. Epidemiol. 2019, 34, 211–219. [Google Scholar] [CrossRef]
- VanderWeele, T.J.; Shpitser, I. A new criterion for confounder selection. Biometrics 2011, 67, 1406–1413. [Google Scholar] [CrossRef]
- Efron, B. The Efficiency of Cox’s Likelihood Function for Censored Data. J. Am. Stat. Assoc. 1976, 72, 557–565. [Google Scholar] [CrossRef]
- Sauerbrei, W. Building multivariable prognostic and diagnostic models: Transformation of the predictors by using fractional polynomials. J. R. Stat. Soc. 1999, 162, 71–94. [Google Scholar] [CrossRef]
- Aboyans, V.; Lacroix, P.; Criqui, M.H. Large and small vessels atherosclerosis: Similarities and differences. Prog. Cardiovasc. Dis. 2007, 50, 112–125. [Google Scholar] [CrossRef]
- Hou, B.; Gang, Q.; Li, X.; Lun, Y.; Jiang, H.; Shen, S.; Xin, S.; Zhang, J. Clinical implications of diverse calcification patterns in endovascular therapy for femoral-popliteal arterial occlusive disease. J. Vasc. Surg. 2024, 80, 188–198.e1. [Google Scholar] [CrossRef]
- Baretella, O.; Buser, L.; Andres, C.; Häberli, D.; Lenz, A.; Döring, Y.; Baumgartner, I.; Schindewolf, M. Association of sex and cardiovascular risk factors with atherosclerosis distribution pattern in lower extremity peripheral artery disease. Front. Cardiovasc. Med. 2023, 10, 1004003. [Google Scholar] [CrossRef]
- Hansen, M.E.; Valentine, R.J.; McIntire, D.D.; Myers, S.I.; Chervu, A.; Clagett, G.P. Age-related differences in the distribution of peripheral atherosclerosis: When is atherosclerosis truly premature? Surgery 1995, 118, 834–839. [Google Scholar] [CrossRef]
- Diehm, N.; Shang, A.; Silvestro, A.; Do, D.-D.; Dick, F.; Schmidli, J.; Mahler, F.; Baumgartner, I. Association of cardiovascular risk factors with pattern of lower limb atherosclerosis in 2659 patients undergoing angioplasty. Eur. J. Vasc. Endovasc. Surg. 2006, 31, 59–63. [Google Scholar] [CrossRef] [PubMed]
- van der Feen, C.; Neijens, F.S.; Kanters, S.D.J.M.; Mali, W.P.T.M.; Stolk, R.P.; Banga, J.D. Angiographic distribution of lower extremity atherosclerosis in patients with and without diabetes. Diabet. Med. 2002, 19, 366–370. [Google Scholar] [CrossRef] [PubMed]
- Barretto, S.; Ballman, K.V.; Rooke, T.W.; Kullo, I.J. Early-onset peripheral arterial occlusive disease: Clinical features and determinants of disease severity and location. Vasc. Med. 2003, 8, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Haltmayer, M.; Mueller, T.; Horvath, W.; Luft, C.; Poelz, W.; Haidinger, D. Impact of atherosclerotic risk factors on the anatomical distribution of peripheral arterial disease. Int. Angiol. 2001, 20, 200–207. [Google Scholar]
- Wasmuth, S.; Baumgartner, I.; Do, D.-D.; Willenberg, T.; Saguner, A.; Zwahlen, M.; Diehm, N. Renal insufficiency is independently associated with a distal distribution pattern of symptomatic lower-limb atherosclerosis. Eur. J. Vasc. Endovasc. Surg. 2010, 39, 591–596. [Google Scholar] [CrossRef]
- Heuberger, B.M.; Diehm, N.; Husmann, M.; Kalka, C.; Baumgartner, I. Female patients with atherosclerotic lesions of the lower limbs. Not all are alike. Vasa 2007, 36, 205–209. [Google Scholar] [CrossRef]
- Ozkan, U.; Oguzkurt, L.; Tercan, F. Atherosclerotic risk factors and segmental distribution in symptomatic peripheral artery disease. J. Vasc. Interv. Radiol. 2009, 20, 437–441. [Google Scholar] [CrossRef]
- Chen, Q.; Smith, C.Y.; Bailey, K.R.; Wennberg, P.W.; Kullo, I.J. Disease location is associated with survival in patients with peripheral arterial disease. J. Am. Heart Assoc. 2013, 2, e000304. [Google Scholar] [CrossRef]
- Aboyans, V.; Desormais, I.; Lacroix, P.; Salazar, J.; Criqui, M.H.; Laskar, M. The general prognosis of patients with peripheral arterial disease differs according to the disease localization. J. Am. Coll. Cardiol. 2010, 55, 898–903. [Google Scholar] [CrossRef]
- Ko, T.; Higashitani, M.; Uemura, Y.; Utsunomiya, M.; Yamaguchi, T.; Matsui, A.; Ozaki, S.; Tobita, K.; Kodama, T.; Morita, H.; et al. Clinical Outcome and Diverse Risk Factors for Different Therapeutic Target Locations of Peripheral Artery Disease. J. Atheroscler. Thromb. 2020, 27, 769–779. [Google Scholar] [CrossRef]
- van Kuijk, J.-P.; Flu, W.-J.; Welten, G.M.J.M.; Hoeks, S.E.; Chonchol, M.; Vidakovic, R.; Verhagen, H.J.M.; Bax, J.J.; Poldermans, D. Long-term prognosis of patients with peripheral arterial disease with or without polyvascular atherosclerotic disease. Eur. Heart J. 2010, 31, 992–999. [Google Scholar] [CrossRef]
- Kiesz, R.S.; Góra, B.; Kolarczyk-Haczyk, A.; Kachel, M.; Trendel, W.; Paz, J.; Nowakowski, P.; Proczka, R.; Milewski, K. Clinical significance of mirror lesions in lower extremity arterial disease. Catheter. Cardiovasc. Interv. 2020, 95, 300–306. [Google Scholar] [CrossRef]
- Conte, M.S.; Bradbury, A.W.; Kolh, P.; White, J.V.; Dick, F.; Fitridge, R.; Mills, J.L.; Ricco, J.-B.; Suresh, K.R.; Murad, M.H.; et al. Global vascular guidelines on the management of chronic limb-threatening ischemia. J. Vasc. Surg. 2019, 58, S1–S109.e33. [Google Scholar]
- Hinchliffe, R.J.; Forsythe, R.O.; Apelqvist, J.; Boyko, E.J.; Fitridge, R.; Hong, J.P.; Katsanos, K.; Mills, J.L.; Nikol, S.; Reekers, J.; et al. Guidelines on diagnosis, prognosis, and management of peripheral artery disease in patients with foot ulcers and diabetes (IWGDF 2019 update). Diabetes Metab. Res. Rev. 2020, 36 (Suppl. 1), e3276. [Google Scholar] [CrossRef] [PubMed]
- Heidemann, F.; Kuchenbecker, J.; Peters, F.; Kotov, A.; Marschall, U.; L’HOest, H.; Acar, L.; Ramkumar, N.; Goodney, P.; Debus, E.S.; et al. A health insurance claims analysis on the effect of female sex on long-term outcomes after peripheral endovascular interventions for symptomatic peripheral arterial occlusive disease. J. Vasc. Surg. 2021, 74, 780–787.e7. [Google Scholar] [CrossRef] [PubMed]
- Poredoš, P.; Jezovnik, M.K. Do the Effects of Secondary Prevention of Cardiovascular Events in PAD Patients Differ from Other Atherosclerotic Disease? Int. J. Mol. Sci. 2015, 16, 14477–14489. [Google Scholar] [CrossRef] [PubMed]
- Vogel, T.R.; Braet, D.J.; Kruse, R.L.; Bath, J.; Wang, J.; Gosch, K.; Smolderen, K.G. Level of disease and association with health status in patients presenting with claudication from the PORTRAIT registry. J. Vasc. Surg. 2020, 72, 2017–2026. [Google Scholar] [CrossRef]
- Mazzolai, L.; Teixido-Tura, G.; Lanzi, S.; Boc, V.; Bossone, E.; Brodmann, M.; Bura-Rivière, A.; De Backer, J.; Deglise, S.; Della Corte, A. 2024 ESC Guidelines for the management of peripheral arterial and aortic diseases: Developed by the task force on the management of peripheral arterial and aortic diseases of the European Society of Cardiology (ESC) Endorsed by the European Association for Cardio-Thoracic Surgery (EACTS), the European Reference Network on Rare Multisystemic Vascular Diseases (VASCERN), and the European Society of Vascular Medicine (ESVM). Eur. Heart J. 2024, 45, 3538–3700. [Google Scholar]
- Scheurig-Muenkler, C.; Schwarz, F.; Kroencke, T.J.; Decker, J.A. Impact of the COVID-19 Pandemic on In-Patient Treatment of Peripheral Artery Disease in Germany during the First Pandemic Wave. J. Clin. Med. 2022, 11, 2008. [Google Scholar] [CrossRef]
- Uttinger, K.; Medicke, P.; Aldmour, S.; Wiegering, A.; Steiner, S.; Schmidt, A.; Branzan, D. Ten Year Time Trends of Amputation Surgery in Peripheral Arterial Disease in Germany: Before and During the COVID-19 Pandemic. Eur. J. Vasc. Endovasc. Surg. 2024, 81, 268. [Google Scholar] [CrossRef]
- Rosoff, D.B.; Smith, G.D.; Mehta, N.; Clarke, T.-K.; Lohoff, F.W. Evaluating the relationship between alcohol consumption, tobacco use, and cardiovascular disease: A multivariable Mendelian randomization study. PLoS Med. 2020, 17, e1003410. [Google Scholar] [CrossRef]
Total no. of patients | 2067 |
Age at first admission n (%), overall * | 68 (61–78) |
≤59 | 404 (19.6) |
60–74 | 961 (46.5) |
≥75 | 702 (34.0) |
No. of females n (%) | 595 (28.8) |
Sex ratio (M/F) | 2.5:1 |
Body mass index kg/m2 * | 26 (23–30) |
PAD stage at first admission (Fontaine) n (%) | |
IIa | 94 (4.6) |
IIb | 926 (44.9) |
III | 267 (13.0) |
IV | 732 (35.5) |
unknown | 48 (2.3) |
Acute limb ischemia n (%) | 37 (1.8) |
No of admissions per patient n (%), overall * | 1 (1–1) |
1 | 1411 (68.3) |
2 | 400 (19.4) |
≥3 | 258 (12.5) |
Time between admissions * | 63 (34–156) |
Frailty at first admission n (%) | |
1 | 1518 (73.4) |
2 | 433 (21.0) |
3 | 116 (5.6) |
Coronary heart disease n (%) | 753 (36.4) |
Diabetes mellitus n (%) | 941 (45.5) |
Arterial hypertension n (%) | 1610 (77.9) |
Hypercholesterolemia n (%) | 1555 (75.2) |
Chronic kidney disease n (%) | 951 (46.0) |
Medication † | |
Antiplatelet any n (%) | 459 (54.6) |
Antiplatelet mono n (%) | 313 (37.2) |
DOAK or Vit.K-antagonist n (%) | 71 (8.4) |
Statin n (%) | 595 (70.8) |
Overall Cohort | Missing Allocation | Suprainguinal Lesion | Infrainguinal-to-Popliteal Lesion | Infrapopliteal Lesion | Lesion At Two Levels | Lesion at All Levels | |
---|---|---|---|---|---|---|---|
No. of patients | 2067 | 251 (12.1) | 133 (6.4) | 275 (13.3) | 258 (12.5) | 870 (42.1) | 280 (13.6) |
Primary revascularization | |||||||
None | 1502 (72.7) | 94 (37.5) | 124 (93.2) | 224 (81.5) | 233 (90.3) | 652 (74.9) | 175 (62.5) |
Interventional | 253 (12.2) | 13 (5.2) | 6 (4.5) | 35 (12.7) | 24–26 (9.7) | 133 (15.3) | 42 (15.0) |
Surgical | 215 (10.4) | 108 (43.0) | 0–2 (0.8) | 14 (5.1) | 0–2 (0.4) | 52 (6.0) | 39 (13.9) |
Both interventional + surgical | 97 (4.7) | 36 (14.3) | 1–3 (1.5) | 1–3 (0.7) | 0 | 33 (3.8) | 24 (8.6) |
Time under observation (in days; min–max, median, IQR) | 0–2149, 1020, 658–1412 | 0–2147, 139, 16–1047 | 2–2099, 1092, 879–1312 | 3–2148, 1168, 895–1540 | 3–2125, 951, 457–1311 | 0–2147, 1073, 736–1477 | 1–2149, 1040.5, 693–1411 |
In-hospital death n (%) | 97 (4.7) | 35 (13.9) | 3–5 (2.3) | 2–4 (0.7) | 15 (5.8) | 34 (3.9) | 8 (2.9) |
Endpoints at patient level: | |||||||
Amputation-free survival | 1398 (67.6) | 150 (59.8) | 123 (92.5) | 224 (81.5) | 153 (59.3) | 572 (65.7) | 176 (62.9) |
Time to major amputation or death (days) * | 340, 58–843 | 52, 7–497 | 162, 29–814 | 610, 250–1052 | 289.5, 42.5–678 | 427, 92–927 | 445.5, 88–828 |
Overall survival | 1434 (69.4) | 160 (63.8) | 123 (92.5) | 225 (81.8) | 158 (61.2) | 579 (66.6) | 189 (67.5) |
Time to death (days) * | 407, 88–899 | 127 (16–596) | 162 (34–814) | 652.5 (293–1096) | 358 (67.5–731) | 445 (133–961) | 483 (113–930) |
Overall Cohort | Missing Allocation | Suprainguinal Lesion | Infrainguinal-to-Popliteal Lesion | Infrapopliteal Lesion | Lesion at Two Levels | Lesion at All Levels | |
---|---|---|---|---|---|---|---|
No. of limbs | 2633 | 380 (14.4) | 304 (11.6) | 482 (18.3) | 299 (11.4) | 949 (36.0) | 219 (8.3) |
Primary revascularization | |||||||
None | 2189 (83.1) | 134 (35.3) | 290 (95.4) | 450 (93.4) | 291 (97.3) | 851 (89.7) | 173 (79.0) |
Interventional | 127 (4.8) | 66 (17.4) | 8 (2.6) | 16 (3.3) | 7–9 (2.7) | 22 (2.3) | 8 (3.7) |
Surgical | 233 (8.9) | 137 (36.1) | 6 (2.0) | 12 (2.5) | 1–3 (0.3) | 50 (5.3) | 27 (12.3) |
Both interventional + surgical | 84 (3.2) | 43 (11.3) | 0 | 4 (0.8) | 0 | 26 (2.7) | 11 (5.0) |
Time under observation for limb events (in days; min–max, median, IQR) | 0–1423, 12, 4–78 | 0–1257, 32, 8.5–147 | 0–1157, 4, 2–30.5 | 1–1413, 6, 2–71 | 1–1413, 9, 4–46 | 1–1423, 13, 4–77 | 1–1148, 34, 6–170 |
Endpoints at limb level: | |||||||
Major adverse limb event | 164 (6.2) | 55 (14.5) | 8 (2.6) | 17 (3.5) | 8 (2.7) | 48 (5.1) | 28 (12.8) |
Time to major adverse limb event (days) * | 122.5 (39.5–354.5) | 81 (21–352) | 321.5 (120.5–576.5) | 364 (65–523) | 29.5 (18.5–41.5) | 89 (50–248) | 188.5 (54.5–425) |
Minor limb event | 320 (12.2) | 111 (29.2) | 9 (3.0) | 13 (2.7) | 51 (17.1) | 106 (11.2) | 30 (13.7) |
Time to minor limb event (days) * | 29.5 (15–79.5) | 0 (0–10) | 0 (0–4) | 12 (0–272) | 4 (0–8) | 4.5 (0–19) | 0 (0–27) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimmermann, A.; Holstein, D.J.F.; Stürzebecher, P.; Medicke, P.; Niezold, A.; Brunotte, M.; Zeynalova, S.; Wiegering, A.; Seehofer, D.; Schmidt, A.; et al. Outcomes at Patient and Limb Levels in Peripheral Artery Disease by the Location of Atherosclerotic Lower Limb Lesions: An Observational Study from a High-Volume German Center. J. Clin. Med. 2025, 14, 7037. https://doi.org/10.3390/jcm14197037
Zimmermann A, Holstein DJF, Stürzebecher P, Medicke P, Niezold A, Brunotte M, Zeynalova S, Wiegering A, Seehofer D, Schmidt A, et al. Outcomes at Patient and Limb Levels in Peripheral Artery Disease by the Location of Atherosclerotic Lower Limb Lesions: An Observational Study from a High-Volume German Center. Journal of Clinical Medicine. 2025; 14(19):7037. https://doi.org/10.3390/jcm14197037
Chicago/Turabian StyleZimmermann, Anne, David J. F. Holstein, Paulina Stürzebecher, Paul Medicke, Annika Niezold, Maximilian Brunotte, Samira Zeynalova, Armin Wiegering, Daniel Seehofer, Andrej Schmidt, and et al. 2025. "Outcomes at Patient and Limb Levels in Peripheral Artery Disease by the Location of Atherosclerotic Lower Limb Lesions: An Observational Study from a High-Volume German Center" Journal of Clinical Medicine 14, no. 19: 7037. https://doi.org/10.3390/jcm14197037
APA StyleZimmermann, A., Holstein, D. J. F., Stürzebecher, P., Medicke, P., Niezold, A., Brunotte, M., Zeynalova, S., Wiegering, A., Seehofer, D., Schmidt, A., Steiner, S., Scheinert, D., Branzan, D., & Uttinger, K. (2025). Outcomes at Patient and Limb Levels in Peripheral Artery Disease by the Location of Atherosclerotic Lower Limb Lesions: An Observational Study from a High-Volume German Center. Journal of Clinical Medicine, 14(19), 7037. https://doi.org/10.3390/jcm14197037