Spontaneous Retroperitoneal Hematoma in SARS-CoV-2 Patients: Diagnostic and Management Challenges—A Literature Review
Abstract
1. Introduction
2. Results
2.1. Materials and Methods
2.2. Results
2.2.1. General Patient Data, Clinical, Imaging, and Biological Characteristics
2.2.2. Interventional Data and Progression
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trentadue, M.; Calligaro, P.; Lazzarini, G.; Boseggia, F.B.; Residori, E.; Hu, J.; Vanti, S.; Lillo, L.; Varischi, G.; Cerini, R. Spontaneous bleeding in COVID-19: A retrospective experience of an Italian COVID-19 hospital. SA J. Radiol. 2022, 26, 2509. [Google Scholar] [CrossRef]
- Hashemi, H.; Moradi, H.; Hashemi, M.; Naderi, Z.; Jafarpisheh, S. Retroperitoneal hematoma in patients with COVID-19 infection during anticoagulant therapy: A case series and literature review. J. Int. Med. Res. 2022, 50, 3000605221119662. [Google Scholar] [CrossRef] [PubMed]
- Scialpi, M.; Russo, P.; Piane, E.; Gallo, E.; Scalera, G.B. First case of retroperitoneal hematoma in COVID-19. Turk. J. Urol. 2020, 46, 407–409. [Google Scholar] [CrossRef] [PubMed]
- Yeoh, W.C.; Lee, K.T.; Zainul, N.H.; Syed Alwi, S.B.; Low, L.L. Spontaneous retroperitoneal hematoma: A rare bleeding occurrence in COVID-19. Oxf. Med. Case Rep. 2021, 2021, omab081. [Google Scholar] [CrossRef]
- Teta, M.; Drabkin, M.J. Fatal retroperitoneal hematoma associated with COVID-19 prophylactic anticoagulation protocol. Radiol. Case Rep. 2021, 16, 1618–1621. [Google Scholar] [CrossRef] [PubMed]
- Pálek, R.; Rosendorf, J.; Třeška, V. Spontaneous retroperitoneal bleeding in COVID-19 patients—Two case reports. Rozhl. Chir. 2022, 100, 607–611. [Google Scholar] [CrossRef]
- Tanal, M.; Celayir, M.F.; Kale, Z.S. Unexpected tendency to bleeding in COVID-19 patients: A case of spontaneous retroperitoneal hematoma. SAGE Open Med. Case Rep. 2021, 9, 2050313X211067907. [Google Scholar] [CrossRef]
- Perfecto, A.; Villalabeitia, I.; Sendino, P.; Sarriugarte, A. Spontaneous retroperitoneal hematoma in critical patients with bilateral SARS-CoV-2 pneumonia. Cirugía Española 2022, 100, 387–388. [Google Scholar] [CrossRef]
- Sexe, J.; McCarthy, R.; Dara, N.; Brown, L.; Dutta, G. Fatal Retroperitoneal Hematoma in a Patient Receiving Enoxaparin for Bilateral Pulmonary Emboli. Case Rep. Hematol. 2020, 2020, 4805967. [Google Scholar] [CrossRef]
- Erdinc, B.; Raina, J.S. Spontaneous Retroperitoneal Bleed Coincided with Massive Acute Deep Vein Thrombosis as Initial Presentation of COVID-19. Cureus 2020, 12, e9772. [Google Scholar] [CrossRef]
- Jalali, K.S.; Basala, A.; Habeb, M. Arterio-Venous Thrombosis and Spontaneous Bleeding in COVID-19-Associated Coagulopathy: A Case Report. Cureus 2022, 14, e27770. [Google Scholar] [CrossRef]
- Evrev, D.; Sekulovski, M.; Gulinac, M.; Dobrev, H.; Velikova, T.; Hadjidekov, G. Retroperitoneal and abdominal bleeding in anticoagulated COVID-19 hospitalized patients: Case series and brief literature review. World J. Clin. Cases 2023, 11, 1528–1548. [Google Scholar] [CrossRef] [PubMed]
- Dubovský, M.; Hajská, M.; Panyko, A.; Vician, M. Severe Retroperitoneal Hemorrhage in a COVID-19 Patient on a Therapeutic Dose of Low Molecular Weight Heparin: A Case Report. Cureus 2022, 14, e26275. [Google Scholar] [CrossRef] [PubMed]
- Okada, N.; Niimi, K.; Asami, Y.; Hattori, S.; Takiguchi, H.; Hayama, N.; Ito, Y.; Oguma, T.; Ono, S.; Asano, K. Retroperitoneal Hematoma During Prophylactic Dose of Heparin Therapy for Coronavirus Disease 2019. Tokai J. Exp. Clin. Med. 2023, 48, 47–51. [Google Scholar]
- Ohn, M.H.; Ng, J.R.; Ohn, K.M.; Luen, N.P. Double-edged sword effect of anticoagulant in COVID-19 infection. BMJ Case Rep. 2021, 14, e241955. [Google Scholar] [CrossRef]
- Shah, M.; Colombo, J.P.; Chandna, S.; Rana, H. Life-Threatening Retroperitoneal Hematoma in a Patient with COVID-19. Case Rep. Hematol. 2021, 2021, 8774010. [Google Scholar] [CrossRef]
- Ottewill, C.; Mulpeter, R.; Lee, J.; Shrestha, G.; O’Sullivan, D.; Subramaniam, A.; Hogan, B.; Varghese, C. Therapeutic anti-coagulation in COVID-19 and the potential enhanced risk of retroperitoneal hematoma. QJM Int. J. Med. 2021, 114, 508–510. [Google Scholar] [CrossRef]
- Atanasov, T.D.; Todorova, K.T.; Tsvetanov, A.I. Spontaneous retroperitoneal hematoma in COVID-19 patients. Int. Surg. J. 2022, 9, 1464–1469. [Google Scholar] [CrossRef]
- Patel, I.; Akoluk, A.; Douedi, S.; Upadhyaya, V.; Mazahir, U.; Costanzo, E.; Flynn, D. Life-Threatening Psoas Hematoma due to Retroperitoneal Hemorrhage in a COVID-19 Patient on Enoxaparin Treated with Arterial Embolization: A Case Report. J. Clin. Med. Res. 2020, 12, 458–461. [Google Scholar] [CrossRef]
- Vasković, I.; Udovičić, I.; Stojić, M.; Arsenović, L.; Nešković, V. Retroperitoneal hematoma: An unexpected complication of anticoagulant therapy in COVID-19 patients. Srp. Arh. Celok. Lek. 2023, 151, 343–347. [Google Scholar] [CrossRef]
- Gupta, V.K.; Alkandari, B.M.; Mohammed, W.; Abdelmohsen, M.A.; Mohammad, M.G.A. Spontaneous retroperitoneal hematoma in COVID-19 severe pneumonia–dual-phase multidetector computed tomography angiogram and role of radiologist. J. Clin. Intervent. Radiol. ISVIR 2022, 6, 58–60. [Google Scholar] [CrossRef]
- Javid, A.; Kazemi, R.; Dehghani, M.; Samani, H.B. Catastrophic retroperitoneal hemorrhage in COVID-19 patients under anticoagulant prophylaxis. Urol. Case Rep. 2021, 36, 101568. [Google Scholar] [CrossRef] [PubMed]
- Mahboubi-Fooladi, Z.; Pourkarim Arabi, K.; Khazaei, M.; Nekooghadam, S.; Shadbakht, B.; Moharamzad, Y.; Taheri, M.S. Parenteral anticoagulation and retroperitoneal hemorrhage in COVID-19: Case report of five patients. SN Compr. Clin. Med. 2021, 3, 2005–2010. [Google Scholar] [CrossRef]
- Liu, H.; Hu, T.; Zhang, C.; Chen, X.; Zhang, S.; Li, M.; Jing, H.; Wang, C.; Hu, T.; Shi, J. Mechanisms of COVID-19 thrombosis in an inflammatory environment and new anticoagulant targets. Am. J. Transl. Res. 2021, 13, 3925–3941. [Google Scholar] [PubMed]
- Savla, S.R.; Prabhavalkar, K.S.; Bhatt, L.K. Cytokine storm associated coagulation complications in COVID-19 patients: Pathogenesis and Management. Expert Rev. Anti-Infect. Ther. 2021, 19, 1397–1413. [Google Scholar] [CrossRef] [PubMed]
- Sutanto, H.; Soegiarto, G. Risk of Thrombosis during and after a SARS-CoV-2 Infection: Pathogenesis, Diagnostic Approach, and Management. Hematol. Rep. 2023, 15, 225–243. [Google Scholar] [CrossRef] [PubMed]
- Cheng, N.M.; Chan, Y.C.; Cheng, S.W. COVID-19 related thrombosis: A mini-review. Phlebology 2022, 37, 326–337. [Google Scholar] [CrossRef] [PubMed]
- Musoke, N.; Lo, K.B.; Albano, J.; Peterson, E.; Bhargav, R.; Gul, F.; DeJoy, R.; Salacup, G.; Pelayo, J.; Tipparaju, P.; et al. Anticoagulation and bleeding risk in patients with COVID-19. Thromb. Res. 2020, 196, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Negro, A.; Villa, G.; Rolandi, S.; Lucchini, A.; Bambi, S. Gastrointestinal Bleeding in COVID-19 Patients: A Rapid Review. Gastroenterol. Nurs. 2022, 45, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Reisi-Vanani, V.; Lorigooini, Z.; Dayani, M.A.; Mardani, M.; Rahmani, F. Massive intraperitoneal hemorrhage in patients with COVID-19: A case series. J. Thromb. Thrombolysis 2021, 52, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.Y.; Yang, S.J.; Fu, C.Y.; Liao, C.-H.; Kang, S.-C.; Hsu, Y.-P.; Lin, B.-C.; Yuan, K.-C.; Wang, S.-Y. The risk factors of concomitant intraperitoneal and retroperitoneal hemorrhage in the patients with blunt abdominal trauma. World J. Emerg. Surg. 2015, 10, 4. [Google Scholar] [CrossRef]
- Mondie, C.; Maguire, N.J.; Rentea, R.M. Retroperitoneal Hematoma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Mohseni Afshar, Z.; Tavakoli Pirzaman, A.; Hosseinzadeh, R.; Babazadeh, A.; Moghadam, M.A.T.; Miri, S.R.; Sio, T.T.; Sullman, M.J.M.; Barary, M.; Ebrahimpour, S. Anticoagulant therapy in COVID-19: A narrative review. Clin. Transl. Sci. 2023, 16, 1510–1525. [Google Scholar] [CrossRef] [PubMed]
- Giannis, D.; Douketis, J.D.; Spyropoulos, A.C. Anticoagulant therapy for COVID-19: What we have learned and what are the unanswered questions? Eur. J. Intern. Med. 2022, 96, 13–16. [Google Scholar] [CrossRef]
- Micic, D.; Doklestic, K.; Gregoric, P.; Ivancevic, N.; Arsenijevic, V.; Milin-Lazovic, J.; Maricic, B.; Loncar, Z. Outcomes of Open Surgery for Retroperitoneal Hematoma in COVID-19 Patients: Experience from a Single Centre. Chirurgia 2022, 117, 526–534. [Google Scholar] [CrossRef]
- Bereanu, A.-S.; Vintilă, B.I.; Bereanu, R.; Codru, I.R.; Hașegan, A.; Olteanu, C.; Săceleanu, V.; Sava, M. TiO2 Nanocomposite Coatings and Inactivation of Carbapenemase-Producing Klebsiella Pneumoniae Biofilm—Opportunities and Challenges. Microorganisms 2024, 12, 684. [Google Scholar] [CrossRef]
- Oh, C.H.; Cho, S.B.; Kwon, H. Clinical Outcomes and Safety of Transcatheter Arterial Embolization in Patients with Traumatic or Spontaneous Psoas and Retroperitoneal Hemorrhage. J. Clin. Med. 2024, 13, 3317. [Google Scholar] [CrossRef] [PubMed]
- Codru, I.R.; Vintilă, B.I.; Sava, M.; Bereanu, A.S.; Neamțu, S.I.; Bădilă, R.M.; Bîrluțiu, V. Optimizing Diagnosis and Management of Ventilator-Associated Pneumonia: A Systematic Evaluation of Biofilm Detection Methods and Bacterial Colonization on Endotracheal Tubes. Microorganisms 2024, 12, 1966. [Google Scholar] [CrossRef] [PubMed]
- Tiralongo, F.; Seminatore, S.; Di Pietro, S.; Distefano, G.; Galioto, F.; Vacirca, F.; Giurazza, F.; Palmucci, S.; Venturini, M.; Scaglione, M.; et al. Spontaneous Retroperitoneal Hematoma Treated with Percutaneous Transarterial Embolization in COVID-19 Era: Diagnostic Findings and Procedural Outcome. Tomography 2022, 8, 1228–1240. [Google Scholar] [CrossRef] [PubMed]
- Lukies, M.; Gipson, J.; Tan, S.Y.; Clements, W. Spontaneous Retroperitoneal Haemorrhage: Efficacy of Conservative Management and Embolisation. Cardiovasc. Intervent. Radiol. 2023, 46, 488–495. [Google Scholar] [CrossRef]
- Chan, Y.C.; Morales, J.P.; Reidy, J.F.; Taylor, P.R. Management of spontaneous and iatrogenic retroperitoneal haemorrhage: Conservative management, endovascular intervention or open surgery? Int. J. Clin. Pract. 2008, 62, 1604–1613. [Google Scholar] [CrossRef]
Year | Author | Age | Sex | Debut Day | Symptoms | Location | Dimensions | Anticoagulant Therapy | Hgb | Intervention | Outcome |
---|---|---|---|---|---|---|---|---|---|---|---|
2021 | Yeoh et al., [4] | 57 | M | 10 | Back pain | Right | 22 | Enoxiparin 0.6 | 5.2 | Evacuation, massage | Favorable |
2021 | Teta et al., [5] | 81 | F | 5 | Back pain | Left | 25 | Lovenox 40 × 2 | 3.7 | Embolization | Exitus |
2021 | Pálek R et al., [6] | 85 | F | 6 | Back pain | Left | 18 | Nadoparin 0.4 × 2 | 6.9 | Conservative | Exitus |
76 | M | 6 | Right lower limb pain | Right | 20 | Nadoparin 0.4 | 5.2 | Evacuation, massage | Exitus | ||
2022 | Tanal M et al., [7] | 47 | F | 7 | Abdominal pain | Left | 12 | Enoxiparin 0.6 | 7.7 | Conservative | Favorable |
64 | M | 30 | Right lower limb pain | Right | 22.5 | Enoxiparin 0.6 × 2 | 14 | Embolization | Favorable | ||
2021 | Perfecto A et al., [8] | 78 | M | 37 | Back pain | Right | 17 | Enoxaparin 0.6 × 2 | 14 | Embolization | Favorable |
65 | F | 10 | Right lumbar pain | Right | 7.8 | Enoxiparin 0.4 | 8.4 | Evacuation, massage | Favorable | ||
57 | M | 11 | Abdominal pain | Left | 20 | Heparin 5000 | 6.7 | Conservative | Exitus | ||
87 | M | 7 | Back pain | Right | 26 | Enoxiparin 0.4 × 2 | 7.7 | Conservative | Exitus | ||
81 | F | 9 | Back pain | Left | 13 | Heparin 5000 × 2 | 9.6 | Conservative | Favorable | ||
2020 | Sexe J et al., [9] | 51 | F | 10 | Back pain | Right | 26 | Enoxiparin 0.4 | 8 | Conservative | Exitus |
2022 | Erdinc B et al., [10] | 58 | F | 3 | Lower abdominal pain | Left | 25 | Enoxiparin 0.4 × 2 | 10.8 | Conservative | Exitus |
2021 | Jalali KS et al., [11] | 51 | M | 14 | Back pain | Right | 26 | Enoxiparin 0.4 | 7 | Conservative | Favorable |
64 | M | 30 | Back pain | Left | 22 | Enoxiparin 0.4 | 14 | Embolization | Favorable | ||
2023 | Evrev D et al., [12] | 78 | M | 37 | Back pain | Right | 17 | Enoxiparin 0.4 | 14 | Embolization | Favorable |
63 | F | 9 | Back pain | Right | 12 | Enoxiparin 0.4 | 9.6 | Conservative | Favorable | ||
51 | F | 2 | Back pain | Right | 14 | Enoxiparin 0.4 | 7.6 | Evacuation, massage | Favorable | ||
74 | M | 5 | Abdominal pain | Left | 18 | Enoxiparin 0.4 | 7.4 | Conservative | Favorable | ||
86 | F | 10 | Abdominal pain | Left | 21 | Enoxiparin 0.4 | 4.8 | Conservative | Exitus | ||
80 | F | 10 | Right lumbar pan | Right | 20 | Enoxiparin 0.4 | 12 | Evacuation, massage | Favorable | ||
92 | F | 6 | Lower abdominal pain | Right | 23 | Heparin 5000 | 6.5 | Conservative | Exitus | ||
86 | M | 10 | Left lower limb pain | Left | 14 | Enoxiparin 0.6 | 10 | Evacuation, massage | Favorable | ||
74 | M | 19 | Abdominal pain | Left | 23 | Enoxiparin 0.6 | 8.8 | Evacuation, massage | Exitus | ||
65 | M | 12 | Back pain | Right | 18 | Enoxiparin 0.4 | 10.8 | Conservative | Favorable | ||
72 | M | 10 | Back pain | Right | 21 | IV (intravenous) | 9 | Conservative | Exitus | ||
2022 | Dubovský M et al., [13] | 74 | M | 11 | Abdominal pain | Left | 11 | IV (intravenous) | 8.8 | Evacuation, massage | Favorable |
2023 | Okada N et al., [14] | 49 | M | 8 | Left lower limb pain | Left | 17 | Clexane 0.8 × 2 | 9 | Evacuation, massage | Exitus |
2021 | Ohn MH et al., [15] | 79 | M | 9 | - | Left | 7 | Heparin 5000 × 2 | 8 | Embolization | Favorable |
51 | F | 16 | - | Right | 16 | Enoxiparin 0.6 | 9.3 | Conservative | Exitus | ||
2021 | Shah et al., [16] | 67 | M | 2 | Back pain | Right | 10 | Enoxiparin 0.4 | 13.2 | Conservative | Exitus |
2022 | Hashemi et al., [2] | 40 | M | 4 | Back pain | Right | 6 | Enoxiparin 0.8 | 9.5 | Conservative | Favorable |
70 | M | 12 | Inguinal pain | Left | 9 | Enoxiparin 0.8 | 7 | Embolization | Favorable | ||
50 | F | 7 | Back pain | Right | 9 | Heparin 1000 ui | 8.9 | Conservative | Favorable | ||
60 | F | 10 | Back pain | Right | 7 | Heparin 1000 ui | 9.5 | Conservative | Favorable | ||
80 | M | 3 | Back pain | Right | 7 | Warfarin | 9.5 | Conservative | Favorable | ||
70 | M | 10 | Back pain | Right | 12 | Heparin 7500 | 8 | Embolization | Favorable | ||
2021 | Ottewill et al., [17] | 88 | M | 10 | Lower abdominal pain | Right | 9 | Enoxaparin 0.4 | - | Conservative | Favorable |
66 | M | 29 | - | Left | 13 | Enoxiparin 0.8 | 6.8 | Conservative | Exitus | ||
2022 | Atanasov et al., [18] | 56 | F | 7 | Dysuria | Pelvic | 13.9 | nadroparin 0.6 | 7.1 | Conservative | Favorable |
67 | M | 10 | Right lumbar pain | Right | 12.9 | Nadroparin 0.6 | 7.5 | Conservative | Favorable | ||
2020 | Patel et al., [19] | 69 | M | 20 | Abdominal pain | Right | 24 | Enoxaparin 0.4 | 8.4 | Embolization | Favorable |
2023 | Vasković et al., [20] | 67 | F | 15 | Abdominal pain | Bilateral | - | Nadroparin 0.6 | 9.8 | Surgery | Favorable |
60 | F | 16 | Abdominal pain | Right | 9 | Nadroparin 0.6 | 13 | Surgery | Favorable | ||
2020 | Scialpi et al., [21] | 76 | M | NONE | Left | 17 | Nadroparin 0.6 | 6.1 | Embolization | Exitus | |
2022 | Gupta et al., [22] | 63 | M | 7 | Abdominal distension | Left | 11 | Heparin 0.5 | 7.2 | Embolization | Exitus |
57 | F | 6 | Abdominal pain | Left | 10 | Heparin 0.5 | 9 | Embolization | Favorable | ||
63 | M | 3 | Abdominal distension | Right | 13 | Heparin 0.5 | 8.9 | Conservative | Favorable | ||
2021 | Javid et al., [23] | 65 | M | 2 | Right hypocondrum pain | Right | 12 | Heparin 0.5 | - | Surgery | Favorable |
2021 | Mahboubi-Fooladi et al., [24] | 65 | M | 10 | Abdominal pain | Left | 7.8 | Enoxaparin 0.4 | 8.4 | Conservative | Favorable |
57 | M | 11 | Abdominal pain | Right | 20 | Heparin 0.5 | 6.7 | Conservative | Exitus | ||
87 | M | 7 | - | Left | - | Enoxiparin 1 g | 7.7 | Conservative | Exitus | ||
81 | F | 9 | Abdominal pain | Right | 13 | Heparin 1000 ui | 9.6 | Conservative | Favorable | ||
51 | F | 16 | - | Right | - | Enoxaparin 0.6 | 8 | Conservative | Exitus |
Symptom | Right (n, %) | Left (n, %) | Pelvic (n, %) | Bilateral (n, %) | Total (n, %) |
---|---|---|---|---|---|
Back pain | 17 (31.48%) | 4 (7.41%) | 0 (0) | 0 (0) | 21 (38.89%) |
Right lower limb pain | 2 (3.7%) | 0 (0) | 0 (0) | 0 (0) | 2 (3.7%) |
Abdominal pain | 4 (7.41%) | 8 (14.81%) | 0 (0) | 1 (1.85%) | 13 (24.07%) |
Right lumbar pain | 3 (5.56%) | 0 (0) | 0 (0) | 0 (0) | 3 (5.56%) |
Lower abdominal pain | 2 (3.7%) | 1 (1.85%) | 0 (0) | 0 (0) | 3 (5.56%) |
Left lower limb pain | 0 (0) | 3 (5.56%) | 0 (0) | 0 (0) | 3 (5.56%) |
Inguinal pain | 0 (0) | 1 (1.85%) | 0 (0) | 0 (0) | 1 (1.85%) |
None | 1 (1.85%) | 3 (5.56%) | 0 (0) | 0 (0) | 4 (7.41%) |
Dysuria | 0 (0) | 0 (0) | 1 (1.85%) | 0 (0) | 1 (1.85%) |
Abdominal distension | 1 (1.85%) | 1 (1.85%) | 0 (0) | 0 (0) | 2 (3.7%) |
Right hypochondrium pain | 1 (1.85%) | 0 (0) | 0 (0) | 0 (0) | 1 (1.85%) |
Total | 31 (57.41%) | 21 (38.89%) | 1 (1.85%) | 1 (1.85%) | 54 (100%) |
Analyzed Parameters | Statistical Value |
---|---|
Back pain—right retroperitoneum | p = 0.029 |
Abdominal pain—right retroperitoneum | p = 0.049 |
Disuria—right retroperitoneum | p = 0.019 |
Back pain—left retroperitoneum | p = 0.029 |
Abdominal pain—left retroperitoneum | p = 0.049 |
Disuria—right retroperitoneum | p = 0.019 |
Intervention | Right (%) | Left (%) | Pelvic (%) | Bilateral (%) | Total (%) |
---|---|---|---|---|---|
Evacuation | 12.96 | 7.41 | 0 | 1.85 | 22.22 |
Embolization | 9.26 | 12.96 | 0 | 0 | 22.22 |
Conservative | 35.19 | 18.52 | 1.85 | 0 | 55.56 |
Total | 57.41 | 38.89 | 1.85 | 1.85 | 100 |
% | Minimum | Maximum | Skew | Kurtosis | Mean ± Std. | ||
---|---|---|---|---|---|---|---|
Hgb | Conservative | 55.56% | 4.8 | 15 | 1.23 | 2.68 | 8.6 ± 2.04 |
Evacuation | 22.22% | 5.2 | 15 | 0.38 | 0.09 | 9.4 ± 2.89 | |
Embolization | 22.22% | 3.7 | 14 | 0.27 | −1.26 | 9.45 ± 3.61 |
Intervention | Favorable (%) | Favorable (% Within Outcome) | Exitus (%) | Exitus (% Within Outcome) | Total (%) |
---|---|---|---|---|---|
Evacuation | 16.67 | 75 | 5.56 | 25 | 22.22 |
Embolization | 16.67 | 75 | 5.56 | 25 | 22.22 |
Conservative | 29.63 | 53.33 | 25.93 | 46.67 | 55.56 |
Total | 62.96 | - | 37.04 | - | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandu, A.; Bratu, D.; Mihețiu, A.; Serban, D.; Tănăsescu, C. Spontaneous Retroperitoneal Hematoma in SARS-CoV-2 Patients: Diagnostic and Management Challenges—A Literature Review. J. Clin. Med. 2025, 14, 6999. https://doi.org/10.3390/jcm14196999
Sandu A, Bratu D, Mihețiu A, Serban D, Tănăsescu C. Spontaneous Retroperitoneal Hematoma in SARS-CoV-2 Patients: Diagnostic and Management Challenges—A Literature Review. Journal of Clinical Medicine. 2025; 14(19):6999. https://doi.org/10.3390/jcm14196999
Chicago/Turabian StyleSandu, Alexandra, Dan Bratu, Alin Mihețiu, Dragos Serban, and Ciprian Tănăsescu. 2025. "Spontaneous Retroperitoneal Hematoma in SARS-CoV-2 Patients: Diagnostic and Management Challenges—A Literature Review" Journal of Clinical Medicine 14, no. 19: 6999. https://doi.org/10.3390/jcm14196999
APA StyleSandu, A., Bratu, D., Mihețiu, A., Serban, D., & Tănăsescu, C. (2025). Spontaneous Retroperitoneal Hematoma in SARS-CoV-2 Patients: Diagnostic and Management Challenges—A Literature Review. Journal of Clinical Medicine, 14(19), 6999. https://doi.org/10.3390/jcm14196999